留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

环境作用下钢管混凝土桥梁温度研究综述

刘永健 闫新凯 刘江 陈宝春 姜磊 吕毅

刘永健, 闫新凯, 刘江, 陈宝春, 姜磊, 吕毅. 环境作用下钢管混凝土桥梁温度研究综述[J]. 交通运输工程学报, 2025, 25(5): 159-179. doi: 10.19818/j.cnki.1671-1637.2025.05.012
引用本文: 刘永健, 闫新凯, 刘江, 陈宝春, 姜磊, 吕毅. 环境作用下钢管混凝土桥梁温度研究综述[J]. 交通运输工程学报, 2025, 25(5): 159-179. doi: 10.19818/j.cnki.1671-1637.2025.05.012
LIU Yong-jian, YAN Xin-kai, LIU Jiang, CHEN Bao-chun, JIANG Lei, LYU Yi. Review on thermal behavior of concrete-filled steel tube bridges under environmental effects[J]. Journal of Traffic and Transportation Engineering, 2025, 25(5): 159-179. doi: 10.19818/j.cnki.1671-1637.2025.05.012
Citation: LIU Yong-jian, YAN Xin-kai, LIU Jiang, CHEN Bao-chun, JIANG Lei, LYU Yi. Review on thermal behavior of concrete-filled steel tube bridges under environmental effects[J]. Journal of Traffic and Transportation Engineering, 2025, 25(5): 159-179. doi: 10.19818/j.cnki.1671-1637.2025.05.012

环境作用下钢管混凝土桥梁温度研究综述

doi: 10.19818/j.cnki.1671-1637.2025.05.012
基金项目: 

国家自然科学基金项目 51978061

国家自然科学基金项目 52108111

青海省科技厅重点研发与转化计划 2024-GX-117

详细信息
    作者简介:

    刘永健(1966-),男,江西玉山人,长安大学教授,工学博士,从事钢与组合结构桥梁、桥梁温度问题研究

    通讯作者:

    刘江(1991-),男,陕西西安人,长安大学副教授,工学博士

  • 中图分类号: U448.38

Review on thermal behavior of concrete-filled steel tube bridges under environmental effects

Funds: 

National Natural Science Foundation of China 51978061

National Natural Science Foundation of China 52108111

Key Research and Development and Transformation Project of Depantment of Science and Technology of Qinghai Province 2024-GX-117

More Information
Article Text (Baidu Translation)
  • 摘要: 为提高钢管混凝土桥梁应对温度响应的能力, 梳理了钢管混凝土桥梁在水化热和环境因素影响下面临的关键温度问题, 总结了钢管混凝土桥梁施工和运营阶段温度作用与效应、界面热脱黏以及温度效应计算方法等的研究进展, 探讨了未来的研究方向。研究结果表明: 施工阶段, 空钢管拼装受日照温度场影响显著, 需对拼装线形进行精准调控, 管内混凝土水化热导致大管径(大于1.2 m)截面的温升和里表温差均超过30 ℃, 开裂风险较高, 钢管混凝土拱的合龙温度取值存在争议, 需结合累积内力反算; 在运营阶段, 气温变化和太阳辐射分别引起均匀温度和截面非线性温度梯度(温差大于10 ℃)作用, 温度效应对钢管混凝土桥梁的应力、内力、变形和稳定性均有较显著的影响, 并通过加速混凝土徐变改变结构的长期响应; 钢管与核心混凝土间温差易诱发钢-混界面拉应力超限和热脱黏, 脱黏高度为0.03~0.72 mm, 通过红外热成像和分布式光纤等热感知技术可有效检测界面脱黏。现有规范对温度作用模式和线膨胀系数等的界定尚存不足, 热弹性力学分析和能量法等解析法以及精细化热-力耦合模拟为温度效应计算提供支撑, 未来需进一步研发低水化热和辐射吸收率材料, 推广界面连接件应用, 开展长期热损伤演化评估以及优化超大跨钢管混凝土桥梁温度控制策略, 并完善相关设计规范。研究结果为钢管混凝土桥梁的高品质建造与长寿命运维提供理论参考。

     

  • 图  1  影响桥梁温度场的环境因素[39]

    Figure  1.  Environmental factors influencing bridge temperature field[39]

    图  2  钢管混凝土桥梁的温度问题

    Figure  2.  Thermal behavior of concrete-filled steel tube (CFST) bridges

    图  3  钢管混凝土桥塔的水化热温度场和开裂风险[68]

    Figure  3.  Hydration temperature field and cracking risk of CFST pylon[68]

    图  4  钢-混结合段的水化热温度场和开裂风险[60]

    Figure  4.  Hydration temperature field and cracking risk of steel-concrete connecting segments[60]

    图  5  钢管混凝土拱的日照温度梯度模式[87-88, 91]

    Figure  5.  Solar-induced temperature gradient patterns in CFST arches[87-88, 91]

    图  6  钢管混凝土桁架的温度作用模式[39, 98-99]

    Figure  6.  Temperature action patterns in CFST trusses[39, 98-99]

    图  7  桥梁日照温度场的精细化模拟

    Figure  7.  Refined simulation of solar temperature field in bridges

    图  8  低温条件下钢管混凝土界面抗剪强度提高的机理[113]

    Figure  8.  Mechanism of shear strength enhancement at CFST interface under low-temperature conditions[113]

    图  9  钢管混凝土界面热脱黏[125, 127]

    Figure  9.  Thermal debonding at CFST interface[125, 127]

    图  10  钢管混凝土界面增强措施

    Figure  10.  Enhancement measures for CFST interface

    图  11  基于温度变化的钢-混界面脱黏检测原理[133]

    Figure  11.  Detection principle for interface debonding based on temperature variation[133]

    图  12  钢管混凝土的组合线膨胀系数

    Figure  12.  Composite coefficient of thermal expansion for CFST

    表  1  钢管混凝土拱的合龙温度

    Table  1.   Closure temperature of CFST arches

    来源 合龙温度
    文献[70] 取决于D、T28dT0, s
    文献[71] 取决于T7dNCFST
    文献[53] 可取T0, sT0, c的平均值,考虑日照加1 ℃~2 ℃
    文献[72]、《国标》 $T_{28 \mathrm{~d}}+\frac{D-0.85}{0.20}+T_{\mathrm{h}} $
    《行规》 钢管拱合龙时的环境温度
    注:T7dT28d分别为混凝土灌注后7、28 d内的平均气温;T0, sT0, c分别为钢管拱的合龙温度和混凝土的入模温度;NCFST为水化热结束后钢管混凝土拱的累积内力;Th为混凝土水化热引起的附加温升,取3 ℃~5 ℃。
    下载: 导出CSV

    表  2  钢管混凝土桥梁的有效温度

    Table  2.   Effective temperature of CFST bridges

    来源 最高有效温度 最低有效温度
    文献[70]、[53] 最高日平均气温 最低日平均气温
    文献[72] 最高极端气温/最低极端气温/-2.0 ℃ 1.5 ℃(0.5 ℃)/3.5 ℃ (2.5 ℃)/0.0 ℃(-1.0 ℃)
    《通规》 39 ℃/39 ℃/ 39 ℃ —32 ℃/—15 ℃/ —6 ℃(—1 ℃)
    《国标》、《行规》 最高极端气温 最低极端气温
    注:文献[72]的取值依次为福建的北部沿海、南部沿海和山区,括号内为D<0.75 m时的取值;《通规》为按混凝土桥面板钢桥的取值,依次为严寒、寒冷和温热地区,括号中数值适用于昆明、南宁、广州、福州地区。
    下载: 导出CSV

    表  3  钢管混凝土的日照温度场测试和温度梯度模式

    Table  3.   Solar temperature field testing and temperature gradient patterns in CFST

    来源 测试试件 测试时间 温度梯度模式
    文献[83] 1个竖直和1个水平节段,D=550 mm 典型年份的7月26日~7月28日 3次抛物线
    文献[84] 2个不同倾角节段,D=610、405 mm 2005年7月13日、2005年7月27日 2次抛物线
    文献[85] 1个倾斜节段,D=530 mm 2007年9月18日~2007年9月20日 4次抛物线
    文献[86] 拱的1个截面,D=850 mm 2009年8月5日~2009年8月6日 3次抛物线
    文献[87]、[88] 4个不同朝向和倾角节段,D=436 mm 2017年3月22日~2018年6月30日 幂函数曲线
    文献[89] 拱的1个截面,D=1 600 mm 2018年6月~2019年6月 3折线
    文献[90] 1个水平节段,D=1 600 mm 4个典型季节各一天 3折线
    文献[91] 3个水平节段,拱的9个截面,D=426~1 000 mm 2022年11月1日~2023年10月30日 统一形式曲线
    下载: 导出CSV
  • [1] 周绪红, 刘永健, 姜磊, 等. PBL加劲型矩形钢管混凝土结构力学性能研究综述[J]. 中国公路学报, 2017, 30(11): 45-62.

    ZHOU Xu-hong, LIU Yong-jian, JIANG Lei, et al. Review on mechanical behavior research of concrete filled rectangular hollow section tube stiffened with PBL[J]. China Journal of Highway and Transport, 2017, 30(11): 45-62.
    [2] SUN L P, LIU Y J, HAN Q, et al. Conceptual design of lightweight assembled double-skinned UHPC composite pylons for large-span suspension bridges[J]. Structures, 2024, 70: 107725. doi: 10.1016/j.istruc.2024.107725
    [3] 姜磊, 刘永健, 周绪红, 等. 钢管混凝土组合结构桥梁设计原理与技术发展综述[J]. 中国公路学报, 2025, 38(3): 278-302.

    JIANG Lei, LIU Yong-jian, ZHOU Xu-hong, et al. Design principles and technological development of concrete-filled steel tube composite bridges[J]. China Journal of Highway and Transport, 2025, 38(3): 278-302.
    [4] SUN L P, LIU Y J, WANG L, et al. Elastic local buckling of double-skinned UHPC composite plates considering interfacial shear slip[J]. Journal of Constructional Steel Research, 2025, 224: 109170. doi: 10.1016/j.jcsr.2024.109170
    [5] ZHANG G J, LIU Y J, ZHAO W, et al. Optimal arch shape of long-span open-spandrel arch bridges under vertical perma-nent loads[J]. Structures, 2022, 45: 1012-1030. doi: 10.1016/j.istruc.2022.09.086
    [6] LIU Y J, LI J J, JIANG L, et al. Mechanism and design method of load transfer into concrete-filled steel tubular arch ribs through perfobond-rib-shear connectors[J]. Buildings, 2023, 13(3): 807. doi: 10.3390/buildings13030807
    [7] 刘永健, 马印平, 田智娟, 等. 矩形钢管混凝土组合桁梁连续刚构桥实桥试验[J]. 中国公路学报, 2018, 31(5): 53-62.

    LIU Yong-jian, MA Yin-ping, TIAN Zhi-juan, et al. Field test of rectangular concrete filled steel tubular composite truss bridge with continuous rigid system[J]. China Journal of Highway and Transport, 2018, 31(5): 53-62.
    [8] 马印平, 刘永健, 刘江. 基于响应面法的钢管混凝土组合桁梁桥多尺度有限元模型修正[J]. 中国公路学报, 2019, 32(11): 51-61.

    MA Yin-ping, LIU Yong-jian, LIU Jiang. Multi-scale finite element model updating of CFST composite truss bridge based on response surface method[J]. China Journal of Highway and Transport, 2019, 32(11): 51-61.
    [9] SUN L P, LIU Y J, WANG H T, et al. Axial compressive behavior of PBL-stiffened double-skin composite walls considering local buckling: Experimental and theoretical investigation[J]. Engineering Structures, 2023, 289: 116329. doi: 10.1016/j.engstruct.2023.116329
    [10] SUN L P, LIU Y J, WANG H T, et al. Eccentric compres-sive behavior of PBL-stiffened double-skin composite walls in bridge pylons[J]. Journal of Constructional Steel Research, 2023, 208: 108027. doi: 10.1016/j.jcsr.2023.108027
    [11] HAN L H, LI W, BJORHOVDE R. Developments and advanced applications of concrete-filled steel tubular (CFST) struc-tures: Members[J]. Journal of Constructional Steel Resear-ch, 2014, 100: 211-228. doi: 10.1016/j.jcsr.2014.04.016
    [12] 高诣民, 刘永健, 周绪红, 等. 高性能钢管混凝土组合桁梁桥[J]. 中国公路学报, 2018, 31(12): 174-187.

    GAO Yi-min, LIU Yong-jian, ZHOU Xu-hong, et al. High-performance CFST composite truss bridge[J]. China Journal of Highway and Transport, 2018, 31(12): 174-187.
    [13] JIANG L, LIU Y J, FAM A, et al. Experimental and numerical analyses on stress concentration factors of concrete-filled welded integral K-joints in steel truss bridges[J]. Thin-walled Structures, 2023, 183: 110347. doi: 10.1016/j.tws.2022.110347
    [14] SUN L P, LIU Y J, WANG H T, et al. Local and post-local buckling behavior of welded square high-strength steel tubes with concrete-infilled restraints[J]. Thin-Walled Structures, 2023, 183: 110381. doi: 10.1016/j.tws.2022.110381
    [15] ZHENG J L. Recent construction technology innovations and practices for large-span arch bridges in China[J]. Engi-neering, 2024, 41: 110-129.
    [16] 郑皆连, 王建军, 冯智, 等. 钢管混凝土拱段真空辅助灌注工艺试验[J]. 中国公路学报, 2014, 27(6): 44-50.

    ZHENG Jie-lian, WANG Jian-jun, FENG Zhi, et al. Vacuum aided concrete grouting process test of concrete filled steel tube arch segment[J]. China Journal of Highway and Tran-sport, 2014, 27(6): 44-50.
    [17] ZHENG J L, DU H L, MU T M, et al. Innovations in design, construction, and management of Pingnan Third Bridge: The largest-span arch bridge in the world[J]. Structural Engineering International, 2022, 32(2): 134-141. doi: 10.1080/10168664.2021.1956399
    [18] 刘永健, 周绪红. 矩形钢管混凝土组合桁梁桥[M]. 北京: 人民交通出版社, 2021.

    LIU Yong-jian, ZHOU Xu-hong. Composite truss bridge with concrete-filled rectangular steel tube members[M]. Beijing: China Communications Press, 2021.
    [19] 姜磊. 矩形钢管混凝土桁梁桥节点疲劳性能和计算方法研究. 西安: 长安大学, 2019.

    JIANG Lei. Research on fatigue behaviour and calculation method of joints in concrete-filled rectangular hollow section truss bridge. Xi'an: Chang'an University, 2019.
    [20] 陈宝春. 钢管混凝土拱桥[M]. 北京: 人民交通出版社, 2016.

    CHEN Bao-chun. Concrete filled steel tubular arch bridges[M]. Beijing: China Communications Press, 2016.
    [21] 陈宝春, 韦建刚, 周俊, 等. 我国钢管混凝土拱桥应用现状与展望[J]. 土木工程学报, 2017, 50(6): 50-61.

    CHEN Bao-chun, WEI Jian-gang, ZHOU Jun, et al. Appli-cation of concrete-filled steel tube arch bridges in China: Current status and prospects[J]. China Civil Engineering Journal, 2017, 50(6): 50-61.
    [22] 陈宝春, 刘君平. 世界拱桥建设与技术发展综述[J]. 交通运输工程学报, 2020, 20(1): 27-41. doi: 10.19818/j.cnki.1671-1637.2020.01.002

    CHEN Bao-chun, LIU Jun-ping. Review of construction and technology development of arch bridges in the world[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 27-41. doi: 10.19818/j.cnki.1671-1637.2020.01.002
    [23] LIU J P, LI X F, LIU H L, et al. Recent application and development of concrete-filled steel tube arch bridges in China//Springer. Advances in Civil Engineering Materials. Berlin: Springer, 2023: 263-272.
    [24] 郑皆连, 王建军, 牟廷敏, 等. 700 m级钢管混凝土拱桥设计与建造可行性研究[J]. 中国工程科学, 2014, 16(8): 33-37.

    ZHENG Jie-lian, WANG Jian-jun, MOU Ting-min, et al. Feasibility study on design and construction of concrete filled steel tubular arch bridge with a span of 700 m[J]. Strategic Study of CAE, 2014, 16(8): 33-37.
    [25] WU Y X, WANG X C, FAN Y H, et al. A study on the ultimate span of a concrete-filled steel tube arch bridge[J]. Buildings, 2024, 14(4): 896. doi: 10.3390/buildings14040896
    [26] 刘永健, 孙立鹏, 周绪红, 等. 钢管混凝土桥塔工程应用与研究进展[J]. 中国公路学报, 2022, 35(6): 1-21.

    LIU Yong-jian, SUN Li-peng, ZHOU Xu-hong, et al. Progress in the application of research on concrete-filled steel tubular bridge towers[J]. China Journal of Highway and Transport, 2022, 35(6): 1-21.
    [27] 孙立鹏. PBL加劲型薄壁钢管混凝土桥塔的计算理论与设计方法研究. 西安: 长安大学, 2023.

    SUN Li-peng. Investigation on computational theory and design methodology of PBL-stiffened thin-walled concrete-filled steel tubular pylons of bridges. Xi'an: Chang'an University, 2023.
    [28] 王仁贵, 张翀, 陈上有, 等. 钢箱-钢管混凝土组合索塔设计及试验研究. 工程力学, 2025, http://kns.cnki.net/kcms/detail/11.2595.O3.20250303.1606.019. http://kns.cnki.net/kcms/detail/11.2595.O3.20250303.1606.019

    WANG Ren-gui, ZHANG Chong, CHEN Shang-you, et al. Design and experimental study of a steel box-steel tube concrete composite tower. Engineering Mechanics, 2025, http://kns.cnki.net/kcms/detail/11.2595.O3.20250303.1606.019. http://kns.cnki.net/kcms/detail/11.2595.O3.20250303.1606.019
    [29] ZHAO H Y, CHEN W L, LIU S, et al. Research on the compression-bending behavior of concrete-filled double-steel-plate composite bridge towers[J]. Journal of Constructional Steel Research, 2024, 221: 108871. doi: 10.1016/j.jcsr.2024.108871
    [30] 中共中央, 国务院. 交通强国建设纲要. (2019-09-19), https://www.gov.cn/zhengce/2019-09/19/content_5431432.htm.

    The Central Committee of the CPC, the State Council of the People's Republic of China. Outline for building China into a transport power. (2019-09-19), https://www.gov.cn/zhengce/2019-09/19/content_5431432.htm.
    [31] 交通运输部, 国家铁路局, 中国民用航空局, 等. 加快建设交通强国五年行动计划(2023-2027年). (2023-04-23), https://www.gov.cn/zhengce/2023-04/23/content_5752770.htm.

    Ministry of Transport of the People's Republic of China, National Railway Administration of the People's Republic of China, Civil Aviation Administration of China, et al. The Five-year Action Plan to accelerate the construction of a transportation power (2023-2027). (2023-04-23), https://www.gov.cn/zhengce/2023-04/23/content_5752770.htm.
    [32] 刘永健, 刘江, 张宁. 桥梁结构日照温度作用研究综述[J]. 土木工程学报, 2019, 52(5): 59-78.

    LIU Yong-jian, LIU Jiang, ZHANG Ning. Review on solar thermal actions of bridge structures[J]. China Civil Engi-neering Journal, 2019, 52(5): 59-78.
    [33] LI L F, CHEN B, ZHOU L R, et al. Thermal behaviors of bridges — A literature review[J]. Advances in Structural Engineering, 2023, 26(6): 985-1010. doi: 10.1177/13694332231153976
    [34] 闫新凯, 刘永健, 刘江, 等. 钢板组合梁温度作用的极值统计模型[J]. 东南大学学报(自然科学版), 2022, 52(5): 856-865.

    YAN Xin-kai, LIU Yong-jian, LIU Jiang, et al. Extreme value statistical model of temperature action of steel plate composite girder[J]. Journal of Southeast University (Natural Science Edition), 2022, 52(5): 856-865.
    [35] 韩石, 刘永健, 王振华, 等. 高寒地区组合梁斜拉桥施工阶段温度效应研究[J]. 建筑科学与工程学报, 2021, 38(5): 107-117.

    HAN Shi, LIU Yong-jian, WANG Zhen-hua, et al. Study on temperature effect of composite girder cable-stayed bridge during construction in alpine region[J]. Journal of Architec-ture and Civil Engineering, 2021, 38(5): 107-117.
    [36] 邢子寒, 刘永健, 闫新凯, 等. 不同截面形式混凝土梁桥的竖向温度梯度效应分析[J]. 建筑科学与工程学报, 2022, 39(2): 97-110.

    XING Zi-han, LIU Yong-jian, YAN Xin-kai, et al. Analysis of vertical temperature gradient effects of concrete girder bridges with different cross sections[J]. Journal of Archi-tecture and Civil Engineering, 2022, 39(2): 97-110.
    [37] LEE J H. Behavior of precast prestressed concrete bridge girders involving thermal effects and initial imperfections during construction[J]. Engineering Structures, 2012, 42: 1-8. doi: 10.1016/j.engstruct.2012.04.003
    [38] ALI MUBARACK C K, UPADHYAY A. Stability of conti-nuous welded rail on steel bridge subjected to thermal loading[J]. Structures, 2021, 34: 4524-4531. doi: 10.1016/j.istruc.2021.10.050
    [39] LIU J, LIU Y J, ZHANG C Y, et al. Temperature action and effect of concrete-filled steel tubular bridges: A review[J]. Journal of Traffic and Transportation Engineering (English Edition), 2020, 7(2): 174-191. doi: 10.1016/j.jtte.2020.03.001
    [40] 樊健生, 朱尧于, 崔冰, 等. 钢板-混凝土组合结构桥塔研究及应用综述[J]. 土木工程学报, 2023, 56(4): 61-71.

    FAN Jian-sheng, ZHU Yao-yu, CUI Bing, et al. A review on research and applications of concrete-filled steel-plate composite bridge tower[J]. China Civil Engineering Journal, 2023, 56(4): 61-71.
    [41] 刘永健, 刘江, 周绪红, 等. 桥梁长寿命设计理论综述[J]. 交通运输工程学报, 2024, 24(3): 1-24.

    LIU Yong-jian, LIU Jiang, ZHOU Xu-hong, et al. Review on long-life design theory for bridges[J]. Journal of Traffic and Transportation Engineering, 2024, 24(3): 1-24.
    [42] 刘江, 刘永健, 白永新, 等. 混凝土箱梁温度梯度模式的地域差异性及分区研究[J]. 中国公路学报, 2020, 33(3): 73-84.

    LIU Jiang, LIU Yong-jian, BAI Yong-xin, et al. Regional variation and zoning of temperature gradient pattern of concrete box girder[J]. China Journal of Highway and Transport, 2020, 33(3): 73-84.
    [43] 刘江, 刘永健, 马志元, 等. 钢-混凝土组合梁桥的温度梯度作用——地域差异与等值线地图[J]. 中国公路学报, 2023, 36(1): 135-149.

    LIU Jiang, LIU Yong-jian, MA Zhi-yuan, et al. Tempera-ture gradient action of steel-concrete composite girder bridge: Regional difference and isoline map[J]. China Journal of Highway and Transport, 2023, 36(1): 135-149.
    [44] 刘永健, 马志元, 刘江, 等. 陕西地区混凝土无伸缩缝桥梁的温度作用及其区划[J]. 交通运输工程学报, 2022, 22(5): 85-103. doi: 10.19818/j.cnki.1671-1637.2022.05.004

    LIU Yong-jian, MA Zhi-yuan, LIU Jiang, et al. Tempera-ture action and zoning of concrete jointless bridge in Shaanxi[J]. Journal of Traffic and Transportation Engineering, 2022, 22(5): 85-103. doi: 10.19818/j.cnki.1671-1637.2022.05.004
    [45] 马志元, 刘江, 刘永健, 等. 钢-混组合梁桥有效温度取值的地域差异性[J]. 浙江大学学报(工学版), 2022, 56(5): 909-919.

    MA Zhi-yuan, LIU Jiang, LIU Yong-jian, et al. Regional difference of value taking of effective temperature for steel-concrete composite girder bridges[J]. Journal of Zhejiang University (Engineering Science), 2022, 56(5): 909-919.
    [46] XIA Y, XU Y L, WEI Z L, et al. Variation of structural vibration characteristics versus non-uniform temperature distribution[J]. Engineering Structures, 2011, 33(1): 146-153. doi: 10.1016/j.engstruct.2010.09.027
    [47] XIA Y, CHEN B, WENG S, et al. Temperature effect on vibration properties of civil structures: A literature review and case studies[J]. Journal of Civil Structural Health Moni-toring, 2012, 2(1): 29-46. doi: 10.1007/s13349-011-0015-7
    [48] TENG J, TANG D H, HU W H, et al. Mechanism of the effect of temperature on frequency based on long-term monitoring of an arch bridge[J]. Structural Health Moni-toring, 2021, 20(4): 1716-1737. doi: 10.1177/1475921720931370
    [49] LIN Y H, ZHENG J H, CHEN L B, et al. Performance deterioration analysis of CFSST columns with debonding defects under axial compression[J]. Journal of Constructional Steel Research, 2025, 226: 109263. doi: 10.1016/j.jcsr.2024.109263
    [50] 涂光亚, 颜东煌, 邵旭东. 脱粘对单圆管钢管混凝土拱桥极限承载力的影响[J]. 哈尔滨工业大学学报, 2010, 42(12): 1999-2002.

    TU Guang-ya, YAN Dong-huang, SHAO Xu-dong. Debonding effects on ultimate bearing capacity of single tube concrete-filled steel tubular arch bridge[J]. Journal of Harbin Institute of Technology, 2010, 42(12): 1999-2002.
    [51] 黄永辉. 钢管混凝土拱桥拱肋病害机理与影响分析及吊杆更换技术研究. 广州: 华南理工大学, 2010.

    HUANG Yong-hui. Mechanism and effect of arch rib disease and suspender replacement for concrete-filled steel tube arch bridge. Guangzhou: South China University of Techno-logy, 2010.
    [52] 谢肖礼, 赵国藩, 胡安妮, 等. 钢管混凝土拱桥施工过程中考虑温度效应的预抬高量二阶分析[J]. 工程力学, 2005, 22(4): 62-66.

    XIE Xiao-li, ZHAO Guo-fan, HU An-ni, et al. The second-order analysis of preraised height of concrete-filled steel tube arch bridge during construction considering temperature effect[J]. Engineering Mechanics, 2005, 22(4): 62-66.
    [53] 孙国富. 大跨度钢管混凝土拱桥日照温度效应理论及应用研究. 济南: 山东大学, 2010.

    SUN Guo-fu. Theory and application study of sunshine temperature effects on long-span CFST arch bridge. Jinan: Shandong University, 2010.
    [54] HU W, LIU J, LIU Y J, et al. Construction alignment and closure control of CFST truss arch bridges based on tempe-rature effect[J]. Structures, 2024, 63: 106471. doi: 10.1016/j.istruc.2024.106471
    [55] 涂光亚, 颜东煌, 张克波. 桁架式钢管混凝土拱桥合龙时温度影响对策与计算方法[J]. 工程力学, 2008, 25(4): 236-240.

    TU Guang-ya, YAN Dong-huang, ZHANG Ke-bo. Calcu-lation method and countermeasure for closure temperature influence in trussed CFST arch bridge[J]. Engineering Mechanics, 2008, 25(4): 236-240.
    [56] GONG B X, FENG L J, LIU J, et al. Finite-element analysis of temperature field and effect on steel-concrete composite pylon of cable-stayed bridge without backstays[J]. Buildings, 2024, 14(6): 1731. doi: 10.3390/buildings14061731
    [57] WU Y X, WEN Q, DAI M H, et al. Mechanical response of long-span CFST arch bridges based on the hydration heat temperature effect[J]. Scientific Reports, 2024, 14(1): 14648. doi: 10.1038/s41598-024-65361-1
    [58] 韩林海, 杨有福, 李永进, 等. 钢管高性能混凝土的水化热和收缩性能研究[J]. 土木工程学报, 2006, 39(3): 1-9.

    HAN Lin-hai, YANG You-fu, LI Yong-jin, et al. Hydration heat and shrinkage of high performance concrete-filled steel tubes[J]. China Civil Engineering Journal, 2006, 39(3): 1-9.
    [59] 周倩, 周建庭, 任伟, 等. 钢管混凝土拱肋水化热温度场足尺节段试验研究[J]. 应用基础与工程科学学报, 2024, 32(2): 546-567.

    ZHOU Qian, ZHOU Jian-ting, REN Wei, et al. Full-scale model experimental study on hydration heat temperature field of long-span CFST arch rib segment[J]. Journal of Basic Science and Engineering, 2024, 32(2): 546-567.
    [60] LIU J, LIU Y J, ZHANG Z J. Numerical simulation on thermomechanical coupling behavior of early-age concrete in the large-scale steel-concrete connecting segment of a hybrid-girder cable-stayed bridge[J]. Journal of Bridge Engineering, 2020, 25(11): 05020009. doi: 10.1061/(ASCE)BE.1943-5592.0001633
    [61] ZHANG K, LEI J S, ZUO S H, et al. Early-age thermo-hydro-mechanical properties of reinforced concrete bridge piers on the plateau[J]. Engineering Structures, 2024, 310: 118142. doi: 10.1016/j.engstruct.2024.118142
    [62] ZHU J S, WANG Z Y. Experimental modeling and quan-titative evaluation of mitigating cracks in early-age mass concrete by regulating heat transfer[J]. Journal of Building Engineering, 2024, 96: 110641. doi: 10.1016/j.jobe.2024.110641
    [63] 孙建渊, 谢津宝. 基于等效龄期的钢管拱内混凝土硬化过程热应力[J]. 同济大学学报(自然科学版), 2019, 47(6): 755-763.

    SUN Jian-yuan, XIE Jin-bao. Thermal stress of concrete-filled steel tube arch during hardening process based on equivalent age method[J]. Journal of Tongji University (Natural Science), 2019, 47(6): 755-763.
    [64] XIE J B, SUN J Y, BAI Z Z. Degree of hydration-based thermal stress analysis of large-size CFST incorporating creep[J]. Steel and Composite Structures, 2022, 45(2): 263-279.
    [65] SUN J Y, XIE J B. Simulation analysis of the hydration heat of large diameter CFST arch and its effects on loading age[J]. Applied Thermal Engineering, 2019, 150: 482-491. doi: 10.1016/j.applthermaleng.2019.01.022
    [66] 周大为, 邓年春, 郭晓. 低温灌注条件下钢管混凝土水化热应力试验研究[J]. 铁道科学与工程学报, 2020, 17(11): 2807-2815.

    ZHOU Da-wei, DENG Nian-chun, GUO Xiao. Experimental study on hydration thermal stress of concrete-filled steel tube at low temperature[J]. Journal of Railway Science and Engineering, 2020, 17(11): 2807-2815.
    [67] LIU X F, WANG Z X, BAI B, et al. In-situ measurements of temperature and strain fields of large-diameter concrete-filled steel tube columns and the refined finite element modeling[J]. Advances in Structural Engineering, 2024, 27(4): 637-653. doi: 10.1177/13694332231223012
    [68] LYU Y, LIU Y J, LIU J, et al. Research on hydration-caused thermal cracking risk of steel-concrete composite bridge pylons[J]. Journal of Constructional Steel Research, 2023, 211: 108165. doi: 10.1016/j.jcsr.2023.108165
    [69] ZHANG Z A, LIU J, LIU Y J, et al. Research on hydration heat effect and influence parameters of concrete filled steel shell composite pylon[J]. Structures, 2024, 70: 107860. doi: 10.1016/j.istruc.2024.107860
    [70] 陈宝春, 徐爱民, 孙潮. 钢管混凝土拱桥温度内力计算时温差取值分析[J]. 中国公路学报, 2000, 13(2): 52-56.

    CHEN Bao-chun, XU Ai-min, SUN Chao. Analysis of thermal difference magnitude in thermal inner force calcu-lation of CFST arch bridge[J]. China Journal of Highway and Transport, 2000, 13(2): 52-56.
    [71] 林春姣, 郑皆连, 黄海东. 钢管混凝土拱计算合龙温度试验研究[J]. 广西大学学报(自然科学版), 2010, 35(4): 601-609.

    LIN Chun-jiao, ZHENG Jie-lian, HUANG Hai-dong. Expe-rimental research on calculated closure temperature of concrete filled steel tubular arch bridge[J]. Journal of Guangxi University (Natural Science), 2010, 35(4): 601-609.
    [72] 刘振宇, 孙潮, 陈宝春. 钢管混凝土桁拱温差计算取值研究[J]. 公路交通科技, 2010, 27(12): 86-93.

    LIU Zhen-yu, SUN Chao, CHEN Bao-chun. Research on thermal difference magnitude of concrete filled steel tubular truss arch[J]. Journal of Highway and Transportation Research and Development, 2010, 27(12): 86-93.
    [73] 刘永健, 刘江. 钢-混凝土组合梁桥温度作用与效应综述[J]. 交通运输工程学报, 2020, 20(1): 42-59.

    LIU Yong-jian, LIU Jiang. Review on temperature action and effect of steel-concrete composite girder bridge[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 42-59.
    [74] 刘江, 刘永健, 房建宏, 等. 高原高寒地区"上"形钢-混凝土组合梁的竖向温度梯度模式[J]. 交通运输工程学报, 2017, 17(4): 32-44.

    LIU Jiang, LIU Yong-jian, FANG Jian-hong, et al. Vertical temperature gradient patterns of上-shaped steel-concrete composite girder in arctic-alpine plateau region[J]. Journal of Traffic and Transportation Engineering, 2017, 17(4): 32-44.
    [75] 刘江, 刘永健, 马志元, 等. 钢-混凝土组合梁桥的温度梯度作用: 作用模式与极值分析[J]. 中国公路学报, 2022, 35(9): 269-286.

    LIU Jiang, LIU Yong-jian, MA Zhi-yuan, et al. Tempera-ture gradient action of steel-concrete composite girder bridge: Action pattern and extreme value analysis[J]. China Journal of Highway and Transport, 2022, 35(9): 269-286.
    [76] LIU J, LIU Y J, JIANG L, et al. Long-term field test of temperature gradients on the composite girder of a long-span cable-stayed bridge[J]. Advances in Structural Engineering, 2019, 22(13): 2785-2798. doi: 10.1177/1369433219851300
    [77] 彭友松, 强士中, 刘悦臣. 钢管混凝土圆管拱肋日照温度分布研究[J]. 桥梁建设, 2006(6): 18-20, 24.

    PENG You-song, QIANG Shi-zhong, LIU Yue-chen. Study of sunshine temperature distribution in circular concrete-filled steel tube arch rib[J]. Bridge Construction, 2006(6): 18-20, 24.
    [78] 彭友松, 强士中, 李松. 哑铃形钢管混凝土拱日照温度分布研究[J]. 中国铁道科学, 2006, 27(5): 71-75.

    PENG You-song, QIANG Shi-zhong, LI Song. Temperature distributions in dumbbell cross section concrete-filled steel tube arches due to solar radiation[J]. China Railway Science, 2006, 27(5): 71-75.
    [79] 任志刚, 胡曙光, 丁庆军, 等. 钢管膨胀混凝土墩柱日照温度场分析[J]. 武汉理工大学学报, 2008, 30(11): 99-102, 107.

    REN Zhi-gang, HU Shu-guang, DING Qing-jun, et al. Analysis on temperature field of expansive concrete filled-steel tube pier under solar radiation[J]. Journal of Wuhan University of Technology, 2008, 30(11): 99-102, 107.
    [80] 任志刚, 胡曙光, 丁庆军. 太阳辐射模型对钢管混凝土墩柱温度场的影响研究[J]. 工程力学, 2010, 27(4): 246-250, 256.

    REN Zhi-gang, HU Shu-guang, DING Qing-jun. Research on the effect of solar radiation model on temperature field of concrete-filled steel tube pier[J]. Engineering Mechanics, 2010, 27(4): 246-250, 256.
    [81] YANG D G, CHEN G R, DING X F, et al. Thermal field of large-diameter concrete filled steel tubular members under solar radiation[J]. Computers and Concrete, 2020, 26(4): 343-350.
    [82] GUO C, LU Z R. Effect of temperature on CFST arch bridge ribs in harsh weather environments[J]. Mechanics of Advanced Materials and Structures, 2022, 29(5): 732-747. doi: 10.1080/15376494.2020.1790701
    [83] 陈宝春, 刘振宇. 日照作用下钢管混凝土构件温度场实测分析[J]. 公路交通科技, 2008, 25(12): 117-122.

    CHEN Bao-chun, LIU Zhen-yu. Analysis on temperature field tests of CFST members under solar radiation[J]. Journal of Highway and Transportation Research and Deve-lopment, 2008, 25(12): 117-122.
    [84] 王璐, 向中富, 杜秋. 钢管混凝土构件温变试验分析[J]. 辽宁省交通高等专科学校学报, 2005, 7(4): 9-12.

    WANG Lu, XIANG Zhong-fu, DU Qiu. Analysis of thermal difference magnitude of concrete filled steel tubes[J]. Journal of Liaoning Provincial College of Communications, 2005, 7(4): 9-12.
    [85] 闫雯. 钢管混凝土拱肋截面温度场及温度效应分析. 西安: 长安大学, 2008.

    YAN Wen. Analysis on temperature field and its effect of concrete filled steel tubular rib section. Xi'an: Chang'an University, 2008.
    [86] 陈可, 李亚东. 钢管混凝土拱肋截面日照温度场实测及有限元计算[J]. 公路交通科技, 2012, 29(9): 77-84.

    CHEN Ke, LI Ya-dong. Test and finite element calculation of solar temperature field of section of CFST arch rib[J]. Journal of Highway and Transportation Research and Development, 2012, 29(9): 77-84.
    [87] LIU J, LIU Y J, ZHANG G J. Experimental analysis of temperature gradient patterns of concrete-filled steel tubular members[J]. Journal of Bridge Engineering, 2019, 24(11): 04019109. doi: 10.1061/(ASCE)BE.1943-5592.0001488
    [88] LIU J, LIU Y J, ZHANG G J, et al. Prediction formula for temperature gradient of concrete-filled steel tubular member with an arbitrary inclination[J]. Journal of Bridge Engineering, 2020, 25(10): 04020076. doi: 10.1061/(ASCE)BE.1943-5592.0001599
    [89] SHI T, DENG N C, CHEN Z, et al. Vertical gradient temperature difference of the main arch with single pipe section in Tibet based on statistical analysis[J]. Advances in Materials Science and Engineering, 2020, 2020(1): 9767621. doi: 10.1155/2020/9767621
    [90] ZHOU Q, ZHOU J T, FENG P C, et al. Full-scale experi-mental study on temperature field of large-diameter CFST arch bridges under strong radiation and large daily ambient temperature difference[J]. Journal of Civil Structural Health Monitoring, 2022, 12(5): 1247-1263. doi: 10.1007/s13349-022-00604-1
    [91] YAN X K, LIU Y J, LIU J, et al. Experimental and numerical investigation on vertical temperature gradient of concrete-filled steel tubular arch under sunlight[J]. Structures, 2024, 70: 107550. doi: 10.1016/j.istruc.2024.107550
    [92] 田智娟, 刘永健, 马印平, 等. 严寒地区矩形钢管混凝土截面温度分布试验[J]. 建筑科学与工程学报, 2018, 35(5): 170-178.

    TIAN Zhi-juan, LIU Yong-jian, MA Yin-ping, et al. Expe-riment on temperature distribution of rectangular CFST cross section in severe cold areas[J]. Journal of Architecture and Civil Engineering, 2018, 35(5): 170-178.
    [93] PENG G H, NAKAMURA S, ZHU X Q, et al. An experi-mental and numerical study on temperature gradient and thermal stress of CFST truss girders under solar radiation[J]. Computers and Concrete, 2017, 20(5): 605-616.
    [94] 刘宇飞, 张寒硕, 王仁贵, 等. 张靖皋长江大桥日照作用下组合结构桥塔温度效应研究[J]. 中国公路学报, 2024, 37(7): 125-136.

    LIU Yu-fei, ZHANG Han-shuo, WANG Ren-gui, et al. Research on temperature effect of composite bridge tower in Zhang-Jing-Gao Yangtze River bridge under solar radiation[J]. China Journal of Highway and Transport, 2024, 37(7): 125-136.
    [95] ZHANG H S, ZHAO Y, RUAN J, et al. Experiment study on temperature field and effect on steel-concrete composite bridge towers[J]. Structures, 2023, 50: 937-953. doi: 10.1016/j.istruc.2023.02.058
    [96] WANG R Z, JI W, LI X T, et al. Thermal load models for the static design of steel-concrete composite girders[J]. Structures, 2023, 51: 1004-1018. doi: 10.1016/j.istruc.2023.03.029
    [97] 陈宝春, 刘振宇. 日照作用下钢管混凝土桁拱温度场实测研究[J]. 中国公路学报, 2011, 24(3): 72-79.

    CHEN Bao-chun, LIU Zhen-yu. Research on thermal field test of concrete filled steel tubular truss arch under solar radiation[J]. China Journal of Highway and Transport, 2011, 24(3): 72-79.
    [98] LIU J, LIU Y J, YAN X K, et al. Statistical investigation on the temperature actions of CFST truss based on long-term measurement[J]. Journal of Bridge Engineering, 2021, 26(8): 04021045. doi: 10.1061/(ASCE)BE.1943-5592.0001740
    [99] YAN X K, LIU Y J, LIU J, et al. Experimental and stati-stical investigation on temperature gradient of CFST truss chords[J]. Advances in Structural Engineering, 2025, 28(5): 860-878. doi: 10.1177/13694332241298019
    [100] 王壮, 刘永健, 唐志伟, 等. 基于日照阴影识别的桁式拱肋三维温度场模拟方法[J]. 中国公路学报, 2022, 35(12): 91-105.

    WANG Zhuang, LIU Yong-jian, TANG Zhi-wei, et al. Three-dimensional temperature field simulation method of truss arch rib based on sunshine shadow recognition[J]. China Journal of Highway and Transport, 2022, 35(12): 91-105.
    [101] ZHU J S, MENG Q L. Effective and fine analysis for temperature effect of bridges in natural environments[J]. Journal of Bridge Engineering, 2017, 22(6): 04017017. doi: 10.1061/(ASCE)BE.1943-5592.0001039
    [102] LIU Y J, HAN S, GONG B X, et al. Refined 3D solar temperature field and effect simulation of ultra-high steel bridge pylon[J]. Applied Sciences, 2023, 13(7): 4400. doi: 10.3390/app13074400
    [103] ZHAN Y L, CHEN K, LI Z L, et al. Solar-induced tempe-rature distribution in vase-shaped bridge towers under terrain shading simulated with an accelerated shadow identification algorithm[J]. Structures, 2025, 71: 108054. doi: 10.1016/j.istruc.2024.108054
    [104] 熊红霞, 刘沐宇. 钢管混凝土系杆拱桥温度应力的数值模拟分析[J]. 武汉理工大学学报, 2007, 29(2): 107-109.

    XIONG Hong-xia, LIU Mu-yu. FEM analysis of the tempe-rature stress in CFST tied arch bridge[J]. Journal of Wuhan University of Technology, 2007, 29(2): 107-109.
    [105] 勾红叶, 苏震乾, 王君明, 等. 极端温度下高速铁路钢管混凝土拱桥行车安全[J]. 铁道工程学报, 2023, 40(3): 50-56.

    GOU Hong-ye, SU Zhen-qian, WANG Jun-ming, et al. Running safety of high-speed railway concrete-filled steel tube arch bridge under extreme temperature[J]. Journal of Rail-way Engineering Society, 2023, 40(3): 50-56.
    [106] BAŽANT Z P, CUSATIS G, CEDOLIN L. Temperature effect on concrete creep modeled by microprestress-solidi-fication theory[J]. Journal of Engineering Mechanics, 2004, 130(6): 691-699. doi: 10.1061/(ASCE)0733-9399(2004)130:6(691)
    [107] WANG Y F, MA Y S, HAN B, et al. Temperature effect on creep behavior of CFST arch bridges[J]. Journal of Bridge Engineering, 2013, 18(12): 1397-1405. doi: 10.1061/(ASCE)BE.1943-5592.0000484
    [108] WANG Y B, ZHAO R D. Experimental study on time-dependent behavior of concrete filled steel tubes in ambient environment[J]. KSCE Journal of Civil Engineering, 2019, 23(1): 200-209. doi: 10.1007/s12205-018-1070-y
    [109] 张戎令, 郝兆峰, 祁强, 等. 考虑温度变化的钢管混凝土徐变试验研究及预测模型[J]. 材料导报, 2021, 35(20): 20028-20034.

    ZHANG Rong-ling, HAO Zhao-feng, QI Qiang, et al. Pre-diction model for creep of concrete filled steel tube (CFST) based on temperature variation by experimental study[J]. Materials Reports, 2021, 35(20): 20028-20034.
    [110] YAN J B, DONG X, ZHU J S. Compressive behaviours of CFST stub columns at low temperatures relevant to the Arctic environment[J]. Construction and Building Materials, 2019, 223: 503-519. doi: 10.1016/j.conbuildmat.2019.07.026
    [111] YAN J B, DONG X, WANG T. Axial compressive beha-viours of square CFST stub columns at low temperatures[J]. Journal of Constructional Steel Research, 2020, 164: 105812. doi: 10.1016/j.jcsr.2019.105812
    [112] 虞庐松, 刘彪, 王力, 等. 高寒环境温度下圆钢管混凝土短柱轴压性能试验研究[J]. 土木工程学报, 2023, 56(10): 20-31.

    YU Lu-song, LIU Biao, WANG Li, et al. Experimental study on axial compression performance of CFST stub columns under very-cold ambient temperature[J]. China Civil Engineering Journal, 2023, 56(10): 20-31.
    [113] YAN J B, XIE W J, ZHANG L X, et al. Bond behaviour of concrete-filled steel tubes at the Arctic low temperatures[J]. Construction and Building Materials, 2019, 210: 118-131. doi: 10.1016/j.conbuildmat.2019.03.168
    [114] WANG L, YANG X J, LI Z Q, et al. Experimental study on the interfacial bonding performance of concrete-filled steel tubes at different ambient temperatures[J]. Thin-walled Structures, 2024, 205: 112368. doi: 10.1016/j.tws.2024.112368
    [115] JIN L, LUO Z H, YU W X, et al. Size effect on CFST-column seismic performances at cryogenic temperature via mesoscale simulations[J]. Journal of Constructional Steel Research, 2024, 223: 109048. doi: 10.1016/j.jcsr.2024.109048
    [116] YAN J B. Materials and structures at cold-region and Arctic low temperatures: A state-of-the-art review[J]. Earthquake Engineering and Resilience, 2024, 3(4): 519-547. doi: 10.1002/eer2.98
    [117] LIAO F Y, HAN L H, TAO Z. Behaviour of CFST stub columns with initial concrete imperfection: Analysis and calculations[J]. Thin-walled Structures, 2013, 70: 57-69. doi: 10.1016/j.tws.2013.04.012
    [118] XUE J Q, FIORE A, LIU Z H, et al. Prediction of ultimate load capacities of CFST columns with debonding by EPR[J]. Thin-Walled Structures, 2021, 164: 107912. doi: 10.1016/j.tws.2021.107912
    [119] XUE J Q, HUANG J P, FIORE A, et al. Prediction of the mechanical performance of compressed circular CFST columns with circumferential debonding gap[J]. Journal of Construc-tional Steel Research, 2023, 208: 107988. doi: 10.1016/j.jcsr.2023.107988
    [120] XU W, YANG R, ZHAO H T, et al. Shrinkage separation prediction of concrete-filled steel tube arch bridge: A coupling model concerning multiple factors[J]. Journal of Building Engineering, 2024, 95: 110024. doi: 10.1016/j.jobe.2024.110024
    [121] 周倩, 冯鹏程, 周建庭, 等. 不均匀温度场下钢管混凝土拱桥管内混凝土脱空分析[J]. 桥梁建设, 2024, 54(1): 103-109.

    ZHOU Qian, FENG Peng-cheng, ZHOU Jian-ting, et al. Analysis of debonding between steel tube and core concrete in concrete-filled steel tubular arch under uneven temperature field[J]. Bridge Construction, 2024, 54(1): 103-109.
    [122] 童林, 夏桂云, 吴美君, 等. 钢管混凝土脱空的探讨[J]. 公路, 2003(5): 16-20.

    TONG Lin, XIA Gui-yun, WU Mei-jun, et al. Discussion on void of concrete filled steel tube[J]. Highway, 2003(5): 16-20.
    [123] 吴德明, 王福敏, 殷祥林. 基于温度影响的钢管混凝土脱空机理分析[J]. 重庆交通大学学报(自然科学版), 2009, 28(2): 190-194.

    WU De-ming, WANG Fu-min, YIN Xiang-lin. Analysis on CFST disengaging mechanism based on temperature impact[J]. Journal of Chongqing Jiaotong University (Natural Science), 2009, 28(2): 190-194.
    [124] 刘振宇, 陈宝春. 钢管混凝土界面法向粘结强度试验研究[J]. 广西大学学报(自然科学版), 2012, 37(4): 698-705.

    LIU Zhen-yu, CHEN Bao-chun. An experimental study on interfacial bond strength of concrete filled steel tube[J]. Journal of Guangxi University (Natural Science Edition), 2012, 37(4): 698-705.
    [125] 刘永健, 闫新凯, 刘江, 等. 钢管混凝土拱温度效应的解析计算方法[J]. 中南大学学报(自然科学版), 2025, 56(1): 283-296.

    LIU Yong-jian, YAN Xin-kai, LIU Jiang, et al. Analytical methods for thermal effect of concrete-filled steel tubular arch[J]. Journal of Central South University (Science and Tech-nology), 2025, 56(1): 283-296.
    [126] 严仁章, 刘佳奇, 刘时龙, 等. 太阳辐射作用下钢管混凝土拱不均匀温度场及其引起的脱空分析与试验研究[J]. 中国公路学报, 2021, 34(1): 79-92.

    YAN Ren-zhang, LIU Jia-qi, LIU Shi-long, et al. Analysis and experimental study of uneven temperature fields in concrete filled steel tubular arches under solar radiation and its void effect[J]. China Journal of Highway and Transport, 2021, 34(1): 79-92.
    [127] BAI Y X, LIU Y J, LIU J, et al. Research on solar radia-tion-caused radial temperature difference and interface sepa-ration of CFST[J]. Structures, 2024, 62: 106151. doi: 10.1016/j.istruc.2024.106151
    [128] 徐长武, 任志刚, 霍凯成. 太阳辐射作用下钢管膨胀混凝土界面性能试验与分析[J]. 工程力学, 2015, 32(8): 201-210.

    XU Chang-wu, REN Zhi-gang, HUO Kai-cheng. Experi-ment and analysis on interfacial performance of concrete filled steel tubes under solar radiation[J]. Engineering Mechanics, 2015, 32(8): 201-210.
    [129] 刘君平, 陈津凯, 陈宝春. 钢管混凝土桁肋内栓钉相贯节点受力行为试验研究[J]. 工程力学, 2017, 34(9): 150-157.

    LIU Jun-ping, CHEN Jin-kai, CHEN Bao-chun. Experi-mental studies on load-transferring mechanism of CFST directly-welded K-joints with studs[J]. Engineering Mecha-nics, 2017, 34(9): 150-157.
    [130] HUANG W J, FENU L, CHEN B C, et al. Experimental study on K-joints of concrete-filled steel tubular truss structures[J]. Journal of Constructional Steel Research, 2015, 107: 182-193. doi: 10.1016/j.jcsr.2015.01.023
    [131] FERROTTO M F, FENU L, XUE J Q, et al. Simplified equivalent finite element modelling of concrete-filled steel tubular K-joints with and without studs[J]. Engineering Structures, 2022, 266: 114634. doi: 10.1016/j.engstruct.2022.114634
    [132] 陈宝春, 刘振宇. 钢管混凝土脱粘构件温度场研究[J]. 中国公路学报, 2009, 22(6): 82-89.

    CHEN Bao-chun, LIU Zhen-yu. Research on temperature field of CFST debonding members[J]. China Journal of Highway and Transport, 2009, 22(6): 82-89.
    [133] 陈劲, 陈晓东, 赵辉, 等. 基于红外热成像法和超声波法的钢管混凝土无损检测技术的试验研究与应用[J]. 建筑结构学报, 2021, 42(增2): 444-453.

    CHEN Jin, CHEN Xiao-dong, ZHAO Hui, et al. Experi-mental research and application of non-destructive detecting techniques for concrete-filled steel tubes based on infrared thermal imaging and ultrasonic method[J]. Journal of Building Structures, 2021, 42(S2): 444-453.
    [134] CAI H N, CHENG C S, WANG L L, et al. Numerical and experimental study on the evolution of thermal contrast for infrared detection of debonding in concrete filled steel tubular structure[J]. Applied Thermal Engineering, 2025, 258: 124743. doi: 10.1016/j.applthermaleng.2024.124743
    [135] GONG S L, FENG X, ZHANG G H. A thermal-driven method based on brillouin fiber-optic sensors for the quantitative identification of subsurface cavities in concrete-filled steel tube structures[J]. Journal of Civil Structural Health Monitoring, 2021, 11(2): 521-536. doi: 10.1007/s13349-020-00464-7
    [136] 刘永健, 刘江, 张宁, 等. 钢-混凝土组合梁温度效应的解析解[J]. 交通运输工程学报, 2017, 17(4): 9-19. https://transport.chd.edu.cn/article/id/201704002

    LIU Yong-jian, LIU Jiang, ZHANG Ning, et al. Analytical solution of temperature effects of steel-concrete composite girder[J]. Journal of Traffic and Transportation Engi-neering, 2017, 17(4): 9-19. https://transport.chd.edu.cn/article/id/201704002
    [137] 刘江, 张宁, 刘永健, 等. 钢-混组合梁荷载-温度效应的统一解析模型[J]. 浙江大学学报(工学版), 2024, 58(5): 988-1000.

    LIU Jiang, ZHANG Ning, LIU Yong-jian, et al. Unified analytical model for load-temperature effect of steel-concrete composite girder[J]. Journal of Zhejiang University (Engi-neering Science), 2024, 58(5): 988-1000.
    [138] ZHANG H S, LIU Y F, LI H T, et al. An efficient model for solar radiation induced top displacement of steel-concrete composite bridge towers[J]. Structures, 2023, 52: 1009-1019. doi: 10.1016/j.istruc.2023.04.054
    [139] 周毅, 孙利民, 谢谟文. 温度对斜拉桥跨中竖向位移的作用机理研究[J]. 工程力学, 2018, 35(8): 46-54.

    ZHOU Yi, SUN Li-min, XIE Mo-wen. Temperature effects on the mid-span vertical displacement of a cable-stayed bridge[J]. Engineering Mechanics, 2018, 35(8): 46-54.
    [140] ZHOU Y, XIA Y, FUJINO Y. Analytical formulas of beam deflection due to vertical temperature difference[J]. Engineering Structures, 2021, 240: 112366. doi: 10.1016/j.engstruct.2021.112366
    [141] 任志刚, 胡曙光. 轴对称变温下钢管混凝土平面应变问题解析解[J]. 华中科技大学学报(自然科学版), 2012, 40(8): 34-38.

    REN Zhi-gang, HU Shu-guang. Plane strain analytical solu-tions to concrete-filled steel tube under axisymmetric variable temperature[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2012, 40(8): 34-38.
    [142] BOURAS Y, VRCELJ Z. Thermal in-plane stability of con-crete-filled steel tubular arches[J]. International Journal of Mechanical Sciences, 2019, 163: 105130. doi: 10.1016/j.ijmecsci.2019.105130
    [143] MA Z Y, LIU Y J, LIU J, et al. Mitigation of thermal effects in bridges: A comprehensive review of control methodologies[J]. Journal of Traffic and Transportation Engineering (English Edition), 2025, 12(2): 215-235. doi: 10.1016/j.jtte.2024.12.003
    [144] HUANG Y H, YANG Z C, FU J Y, et al. Long-term late-ral-torsional buckling behavior of pin-ended CFST arches under uniform radial loads and temperature field[J]. Mechanics of Advanced Materials and Structures, 2021, 28(23): 2472-2486. doi: 10.1080/15376494.2020.1743397
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  66
  • HTML全文浏览量:  34
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-17
  • 录用日期:  2025-08-25
  • 修回日期:  2025-06-04
  • 刊出日期:  2025-10-28

目录

    /

    返回文章
    返回