Research review on demountable shear connectors for prefabricated steel-concrete composite beams
-
摘要: 为响应国家“双碳”战略对交通基础设施绿色可持续发展的要求, 针对装配式钢-混组合梁可拆卸剪力连接关键技术开展了系统研究, 通过模块化设计与装配式施工, 有效解决了传统焊接剪力连接组合梁资源回收难题;基于近十年国内外相关研究成果的梳理, 重点分析了四大类可拆卸剪力连接件(包括高强螺栓型、盲栓型、可拆卸压型钢板型和创新可拆卸型)的构造特征与力学性能;通过静力与疲劳荷载作用可拆卸连接件推出试验和梁式试验, 揭示了不同连接形式的滑移演化规律、破坏模式以及承载机理。试验结果表明:单螺母螺栓连接件极限抗剪强度达传统焊钉的95%, 贯穿式螺栓连接件疲劳性能显著提升;而创新可拆卸型连接件展现出优异的长期性能, 但普遍存在加工精度要求高、拆卸工艺复杂等技术瓶颈;基于现行设计规范, 提出的涵盖混凝土压溃、螺栓剪切和复合失效模式的抗剪承载力、抗剪刚度计算公式, 通过修正相关系数显著提升计算精度;未来需进一步优化连接件构造以突破成本与工艺限制, 明确复杂服役环境下长期性能演变规律, 建立全寿命周期性能预测模型, 完善相关设计施工规范。研究结果为促进可拆卸连接件技术的工程应用以及桥梁工程装配化建造和可持续发展提供了理论基础和技术支撑。Abstract: In response to the national "dual carbon" strategy for green and sustainable development of transportation infrastructure, a systematic study was conducted on the key technologies for demountable shear connections in prefabricated steel-concrete composite beams. Modular design and prefabricated construction were adopted to effectively address the challenges of resource recycling in traditional composite girders with welded shear connections. Based on a review of relevant research achievements over the past decade, the structural characteristics and mechanical performance of four categories of demountable shear connectors were particularly analyzed, including high-strength bolted, blind-bolted, detachable profiled sheeting, and innovative demountable types. Static and fatigue tests on demountable connectors via push-out and beam tests were conducted to reveal the slip evolution, failure modes, and load-bearing mechanisms under different connection configurations. Test results indicate that the ultimate shear strength of single-nut bolted connectors reaches 95% of that of conventional welded studs, while through-bolted connectors exhibit significantly enhanced fatigue performance. Innovative demountable connectors demonstrate excellent long-term performance, but generally face technical challenges such as high manufacturing precision requirements and complex disassembly processes. Based on current design specifications, proposed calculation formulas for shear capacity and shear stiffness considering concrete crushing, bolt shear, and composite failure modes. The accuracy of the predictions is notably improved by modifying relevant coefficients. Future efforts should be made to optimize connector details to overcome cost and process limitations, clarify long-term performance under complex service conditions, establish life-cycle performance prediction models, and refine relevant design and construction specifications. The research findings provide theoretical and technical support for promoting the engineering application of demountable connectors and advancing the prefabrication and sustainable development of bridge engineering.
-
表 1 埋入式螺栓连接件推出试验汇总
Table 1. Summary of push-out tests with embedded bolt connectors
文献来源 年份 连接件类型 设计要素 连接件排列方式 螺栓类型 公称直径/mm 混凝土强度 [18] 2010 双螺母螺栓连接件 1行×1列 ASTM325 22 C20 [9] 2014 单螺母螺栓连接件 2行×2列 国标8.8 16 C30 1行×2列 国标8.8 24 C30 [22] 2015 焊钉螺栓连接件 1行×2列 ML15 18 C30 [12] 2019 单螺母螺栓连接件 2行×2列 Duplex2205 19 C35 [21] 2022 T型螺母螺栓连接件 2行×2列 国标8.8 20 C60 [20] 2023 单螺母螺栓连接件 1行×2列 国标8.8 22 C60 [26] 2023 新型不锈钢螺栓连接件 1行×2列 Austenitic2-70 12 C50 表 2 贯穿式螺栓连接件推出试验汇总
Table 2. Summary of push-out tests with through-bolt connectors
表 3 盲栓连接件推出试验汇总
Table 3. Summary of push-out tests with blind bolt connectors
文献来源 年份 连接件类型 设计要素 连接件排列方式 螺栓类型 公称直径/mm 混凝土强度 [18] 2010 Hollo型盲栓连接件 1行×1列 ASTM325 22 C20 [100] 2015 Hollo型盲栓连接件 2行×1列 国标10.9 20 C35 Ajax型盲栓连接件 2行×1列 国标9.8 20 C35 焊钉连接件 2行×1列 国标6.8 19 C35 [42] 2015 焊钉连接件 2行×1列 国标8.8 20 C45 Hollo型盲栓连接件 2行×1列 国标8.8 20 C45 Ajax型盲栓连接件 2行×1列 国标8.8 20 C45 [39] 2020 Ajax型盲栓连接件 1行×1列 国标8.8 20 C35 [101] 2021 Hollo型盲栓连接件 2行×1列 国标8.8 20 钢FRP [41] 2021 Ajax型盲栓连接件 1行×2列 国标8.8 20 钢FRP Lindapter型盲栓 1行×2列 国标8.8 20 钢FRP Injected SRR型盲栓 1行×2列 国标8.8 20 钢FRP 表 4 压型钢板可拆卸连接件推出试验汇总
Table 4. Summary of push-out tests with profiled steel decking demountable shear connectors
表 5 新型可拆卸连接件推出试验汇总
Table 5. Summary of push-out tests with novel demountable connectors
文献来源 年份 连接件类型 设计要素 连接件排列方式 螺栓类型 公称直径/mm 混凝土强度 [57] 2018 新型双螺栓连接件 1行×2列 国标8.8 22 C50 [68] 2018 高强螺栓锥形抗剪连接件 单侧单个布置 国标10.9 16 C40 [64] 2018 新型可拆卸开孔钢管连接件 单侧单个布置 20 C55/灌浆C50 [90] 2019 螺旋弹簧连接件 2行×1列 20 C40 [91] 2020 机械耦合器-螺栓剪力连接件 1行×2列 国标10.9 16 C40 1行×2列 国标10.9 20 C40 [78] 2021 新型可拆卸螺栓-焊接混合剪力连接件 2行×2列 国标8.8 20 C30/灌浆C45 [81] 2022 可拆卸式锁紧螺栓剪力连接件 1行×2列 国标8.8 20 C50 [85] 2024 新型型钢-螺栓连接件 单侧单个布置 国标8.8 22 C40 表 6 埋入式螺栓连接件组合梁弯曲试验汇总
Table 6. Summary of bending tests on composite beams with embedded bolt connectors
文献来源 年份 连接件类型 设计要素 跨径/m 加载 混凝土 连接件/mm 钢梁/mm [123] 2020 单螺母螺栓连接件 4.0 正弯矩四点 C30 20行×2列/国标8.8/公称直径20 工字钢Q235/HM294×200×8×12 [25] 2022 焊钉螺栓连接件 1.6 负弯矩四点 UHPC 10行×5列/国标4.8/公称直径16 钢板Q345/厚度10 [124] 2022 单螺母螺栓连接件 3.0 负弯矩三点 C40 17行×2列/国标8.8/公称直径16 工字钢Q235/HM294×200×8×12 [125] 2024 单螺母螺栓连接件 2.9 负弯矩四点 UHPC 18行×2列/国标8.8/公称直径16 直/波形腹板Q235/HM200×200×15×8 表 7 贯穿式螺栓连接件组合梁弯曲试验汇总
Table 7. Summary of bending tests on composite beams with through-bolt connectors
表 8 盲栓连接件组合梁弯曲试验汇总
Table 8. Summary of bending tests on composite beams with blind bolt connectors
文献来源 年份 连接件类型 设计要素 跨径/m 加载 混凝土 连接件/mm 钢梁/mm [42] 2015 Hollo型盲栓连接件 6 正弯矩四点 C45 27行×1列/国标8.8/公称直径20 工字钢S355/UB460×190×75 Ajax型盲栓连接件 表 9 压型钢板可拆卸连接件组合梁弯曲试验汇总
Table 9. Summary of bending tests on composite beams with profiled steel decking demountable shear connectors
文献来源 年份 连接件类型 设计要素 跨径/m 加载 混凝土 连接件/mm 钢梁/mm [44] 2014 压型钢板+焊钉螺栓连接件 2.0 正弯矩三点 C20 4行×1列/国标8.8/公称直径20 工字钢S355/UB254×102×28 5.0 正弯矩四点 C20 15行×1列/国标8.8/公称直径20 工字钢S355/UB305×165×46 10.0 正弯矩四点 C20 22行×1列/国标8.8/公称直径20 工字钢S355/UB254×102×28 [46] 2017 压型钢板+焊钉螺栓连接件 5.2 正弯矩四点 C40 26行×1列/ML15/公称直径17 工字钢S355/UB203×203×52 [132] 2023 压型钢板+焊钉螺栓连接件 5.2 正弯矩四点 C40 34行×1列/国标5.8/公称直径17 工字钢Q345/HN350×175×7×11 表 10 新型可拆卸连接件组合梁弯曲试验汇总
Table 10. Summary of bending tests on composite beams with novel demountable connectors
表 11 埋入式螺栓连接件抗剪强度
Table 11. Shear strength for embedded bolt connectors
公式编号 文献来源 年份 公式 (1) [151]、[152] 2001、2003 $\begin{gathered} V_{\mathrm{u}}=0.76 A_{\mathrm{s}} f_{\mathrm{u}}+\eta f_{\mathrm{c}} d_{\mathrm{wc}} l_{\mathrm{wc}} \\ \eta=1.5 \end{gathered}$ (2) [153] 2004 $V_{\mathrm{u}}=5.4 A_{\mathrm{s}}\left(f_{\mathrm{c}} E_{\mathrm{c}}\right)^{0.3}$ (3) [154] 2008 $\begin{gathered} V_{\mathrm{u} 1}=0.43 A_{\mathrm{s}} \sqrt{f_{\mathrm{c}} E_{\mathrm{c}}} \\ V_{\mathrm{u} 2}=3 \lambda A_{\mathrm{s}} f_{\mathrm{u}}\left(\frac{E_{\mathrm{c}}}{E_{\mathrm{s}}}\right)^{0.4}\left(\frac{f_{\mathrm{c}}}{f_{\mathrm{u}}}\right)^{0.2} \\ \lambda= \begin{cases}6-h_{\mathrm{s}} /\left(1.05 d_{\mathrm{s}}\right) & \varphi_{\mathrm{s}}<5 \\ 1 & 5 \leqslant \varphi_{\mathrm{s}}<7 \\ h_{\mathrm{s}} / d_{\mathrm{s}}-6 & \varphi_{\mathrm{s}} \geqslant 7\end{cases} \end{gathered}$ (4) [155] 2010 $\begin{gathered} V_{\mathrm{u} 1}=17 A_{\mathrm{s}} f_{\mathrm{c}}^{0.45} E_{\mathrm{c}}^{0.04}, V_{\mathrm{u} 2}=6.2 A_{\mathrm{s}}\left(f_{\mathrm{c}} E_{\mathrm{c}}\right)^{0.2} \\ V_{\mathrm{u} 3}=18 A_{\mathrm{s}} f_{\mathrm{c}}^{0.5} h_{\mathrm{s}}^{0.2}, V_{\mathrm{u} 4}=9 \lambda d_{\mathrm{s}}^{1.4} f_{\mathrm{c}}^{0.5} h_{\mathrm{s}}^{0.6} \end{gathered}$ (5) [156]、[157] 2016 $\begin{gathered} V_{\mathrm{u}}=0.76 A_{\mathrm{s}} f_{\mathrm{u}}+\eta f_{\mathrm{c}} d_{\mathrm{wc}} l_{\mathrm{wc}} \\ \eta=2.5 \end{gathered}$ (6) [24] 2017 $V_{\mathrm{u}}=0.644 A_{\mathrm{sc}} f_{\mathrm{u}}, \frac{h_{\mathrm{s}}}{d_{\mathrm{s}}} \geqslant 1.5$ (7) [158] 2017 $V_{\mathrm{u}}=0.22\left(\frac{h_{\mathrm{s}}}{d_{\mathrm{s}}}\right)^{0.4} A_{\mathrm{sc}} \sqrt{f_{\mathrm{c}} E_{\mathrm{c}}}$ (8) [159] 2018 $V_{\mathrm{u}}=A_{\mathrm{s}} f_{\mathrm{u}}+0.16 \eta f_{\mathrm{c}} d_{\mathrm{wc}}^{2}$ (9) [160] 2019 $V_{\mathrm{u}}=\frac{A_{\mathrm{s}} \sqrt{f_{\mathrm{c}} E_{\mathrm{c}}} h_{\mathrm{s}}}{1.284 t_{\mathrm{p}}+1.573 \sqrt{A_{\mathrm{sr}}}} \leqslant 0.9 A_{\mathrm{s}} f_{\mathrm{u}}$ (10) [161] 2021 $\mathrm{V}_{\mathrm{u}}=0.43 A_{\mathrm{s}} \sqrt{f_{\mathrm{c}} E_{\mathrm{c}}} \leqslant 1.36 A_{\mathrm{s}} f_{\mathrm{u}}^{0.85} f_{\mathrm{c}}^{0.15}$ (11) [20]、[21] 2022 $V_{\mathrm{u}}=0.42 A_{\mathrm{s}} \sqrt{f_{\mathrm{c}} E_{\mathrm{c}}} \leqslant 0.72 A_{\mathrm{s}} f_{\mathrm{u}}$ 2023 $V_{\mathrm{u}}=0.605 \Phi_{\mathrm{s}} A_{\mathrm{s}} \sqrt{f_{\mathrm{c}} E_{\mathrm{c}}} \leqslant 1.25 \Phi_{\mathrm{s}} A_{\mathrm{s}} f_{\mathrm{u}}$ (12) [11] 2023 $V_{\mathrm{u}}=0.0047 d_{\mathrm{s}}^{2} f_{\mathrm{G}}^{14}\left(\frac{h_{\mathrm{s}}}{d_{\mathrm{s}}}\right)^{0.3} f_{\mathrm{u}}^{0.5}<0.7 f_{\mathrm{u}} A_{\mathrm{sc}}$ (13) [97] 2024 $\left(\frac{P_{\text {st-t }}}{P_{\text {tl }}}\right)^{1.75}+\left(\frac{P_{\text {st-s }}}{P_{\mathrm{s}}}\right)^{0.5}=1$ (14) [15]、[16] 2023、2024 $\begin{gathered} V_{\mathrm{u}}=0.6 A_{\mathrm{sc}} f_{\mathrm{u}} \\ V_{\mathrm{u}}=C m_{\mathrm{f}} d_{\mathrm{s}} t_{\mathrm{p}} f_{\mathrm{u}} \end{gathered}$ 表 12 贯穿式螺栓连接件抗剪强度
Table 12. Shear strength for through-bolt connectors
公式编号 文献来源 年份 公式 (15) [30] 2014 $\begin{gathered} V_{\text {total }}=V_{\text {friction }}+V_{\text {dowel }}=\left[k_{\mathrm{s}} \sin \left(\alpha_1\right)+\cos \left(\alpha_1\right)\right] m n T_{\text {total }}+V_{\text {dowel }} \\ \left(\frac{V_{\text {dowel }}}{0.6 n A_{\mathrm{s}} f_{\mathrm{u}}}\right)^2+\left(\frac{n T_{\text {total }}}{n A_{\mathrm{s}} f_{\mathrm{u}}}\right)^2 \leqslant 1 \\ V_{\text {dowel }}=0.6 n A_{\mathrm{s}} f_{\mathrm{u}} \sqrt{1-\left(\frac{n T_{\text {total }}}{n A_{\mathrm{s}} f_{\mathrm{u}}}\right)^2} \end{gathered}$ (16) [28] 2015 $\begin{gathered} V_{\mathrm{u} 1}=0.66 A_{\mathrm{sc}} f_{\mathrm{u}} \\ V_{\mathrm{u} 2}=\mu_{\mathrm{f}} \mathrm{k}_{\mathrm{h}} N_{\mathrm{t}} \end{gathered}$ (17) [32] 2020 $V_{\mathrm{u}}=0.6 \alpha_{2} A_{\mathrm{sc}} f_{\mathrm{u}}$ (18) [36] 2020 $\begin{gathered} V_{\mathrm{u}}=0.5 A_{\mathrm{s}} \sqrt{E_{\mathrm{c}} f_{\mathrm{c}}}\left(\frac{d_{\mathrm{s}}}{d_{\mathrm{c}}}\right)^{0.6} A_{\mathrm{pad}}^{0.05} \times 0.25 \\ V_{\mathrm{u}}=0.5 A_{\mathrm{s}} \sqrt{E_{\mathrm{c}} f_{\mathrm{c}}}\left(\frac{d_{\mathrm{s}}}{d_{\mathrm{c}}}\right)^{0.6} \end{gathered}$ (19) [162] 2020 $V_{\mathrm{u}}=\min \left\{0.5 A_{\mathrm{s}} \sqrt{f_{\mathrm{c}} E_{\mathrm{c}}}, 0.76 A_{\mathrm{s}} f_{\mathrm{u}}\right\}$ (20) [163] 2021 $\begin{gathered} V_{\mathrm{u}}=0.76 A_{\mathrm{sc}} f_{\mathrm{u}} \\ V_{\mathrm{u}}=0.76 k_{\mathrm{c}} A_{\mathrm{sc}} f_{\mathrm{u}} \end{gathered}$ 表 13 盲栓连接件抗剪强度
Table 13. Shear strength for blind bolt connectors
表 14 新型可拆卸连接件抗剪强度
Table 14. Shear strength for novel demountable connectors
公式编号 文献来源 年份 公式 (23) [67] 2017 $V_{\mathrm{u}}=\frac{\pi d_{\mathrm{s}}^{2} f_{\mathrm{u}}}{4}\left\{\frac{0.8}{\cos \left(\beta_{1}\right)}+0.4\left[\sin \left(\beta_{1}\right)+\mu \cos \left(\beta_{1}\right)\right]\right\}$ (24) [57] 2018 $V_{\mathrm{u}}=0.8 A_{\mathrm{sc}} f_{\mathrm{tk}}$ (25) [64] 2018 $\begin{gathered} V_{\mathrm{u}}=F_{\mathrm{p}, \mathrm{~s}}+F_{\mathrm{p}, \mathrm{w}} \\ V_{\mathrm{u}}=2\left(c f_{\mathrm{t}} A_{\mathrm{s}}+\mu f_{\mathrm{yr}} A_{\mathrm{tr}} \kappa\right) \end{gathered}$ (26) [73] 2021 $V_{\mathrm{u}}=0.7 A_{\mathrm{sc}} f_{\mathrm{u}}$ (27) [63] 2022 $V_{\mathrm{u}}=0.6\left(\frac{34}{d_{\mathrm{s}}}\right)^{\mathrm{a}} f_{\mathrm{u}} A_{\mathrm{s}}$ (28) [78] 2022 $V_{\mathrm{u}}=\min \left\{\alpha_{3} A_{\mathrm{t}} \sqrt{E_{\mathrm{c}} f_{\mathrm{c}}}, \alpha_{4} A_{\mathrm{s}} f_{\mathrm{u}}\right\}$ (29) [79] 2022 $V_{\mathrm{u}}=0.30 A_{\mathrm{t}} \sqrt{E_{\mathrm{c}} f_{\mathrm{c}}} \leqslant 0.84\left(\frac{20}{d_{\mathrm{s}}}\right)^{0.84} A_{\mathrm{s}} f_{\mathrm{u}}$ (30) [76] 2024 $V_{\mathrm{u}} / A_{\mathrm{sc}} f_{\mathrm{u}}=a-b d_{\mathrm{s}}$ (31) [87] 2024 $V_{\mathrm{u}}=\min \left\{0.3 A_{\mathrm{s}} \sqrt{E_{\mathrm{c}} f_{\mathrm{c}}}, 0.5 A_{\mathrm{s}} f_{\mathrm{u}}\right\}$ (32) [88] 2024 $V_{\mathrm{u}}=\mu D_{\mathrm{u}} P_{1} n_{\mathrm{b}} \beta_{2} \gamma$ 表 15 可拆卸连接件刚度计算公式
Table 15. Stiffness calculation formulas for demountable shear connectors
公式编号 文献来源 年份 公式 (33) [57] 2018 $K=\frac{0.5 V_{u}}{S}$ (34) [59] 2018 $E I_{\text {eff }}(x)=\left\{1+\left[\frac{E I_{\infty}(x)}{E I_{0}(x)}-1\right]\left[1+\left(\frac{\alpha(x) L}{\pi}\right)^{2}\right]^{-1}\right\} E I_{\infty}(x)$ 2019 $\text { 弯曲刚度: } K_{\mathrm{b}}=\frac{\Delta F}{\Delta W(x=L / 2)}$
$\text { 剪切刚度: } K_{\mathrm{s}}=\frac{\Delta F}{\Delta u(x=0)}$(35) [91] 2020 $K=\left(\frac{l_{\mathrm{f}}}{12 d}\right)^{x}, x= \begin{cases}0.3 & \frac{l_{\mathrm{f}}}{d} \leqslant 12 \\ 0 & \frac{l_{\mathrm{f}}}{d}>12\end{cases}$ (36) [19] 2023 $K=\tan (\theta)=\frac{V_{G}-V_{C}}{S_{G}-S_{C}}$ (37) [26] 2023 $K=\frac{V_{u}}{S(n)}$ (38) [11] 2023 $K=d_{\mathrm{s}}^{1.12}\left(1.22+0.86 f_{\mathrm{G}}^{9}{ }^{3}\right)\left(\frac{h_{\mathrm{s}}}{d_{\mathrm{s}}}\right)^{-0.083}$ (39) [25]、[126] 2024 $K=\frac{E_{\mathrm{s}} I_{\mathrm{eq}}}{1+\zeta}$ 表 16 可拆卸连接件荷载-滑移曲线模型
Table 16. Load-slip curves models for demountable shear connectors
公式编号 文献来源 年份 公式 (40) [137] 1971 $\frac{V}{V_{\mathrm{u}}}=\left(1-\mathrm{e}^{-0.71 S}\right)^{2 / 5}$ (41) [57] 2018 $V=V_{\mathrm{u}}\left(1-\mathrm{e}^{A S}\right)$ (42) [28] 2014 $V(S)=V_{1}+\left(V_{\mathrm{u}}-V_{1}\right)\left\{1-\exp \left[-0.005 f_{\mathrm{c}}\left(S-S_{1}\right)\right]\right\}^{0.8}$ (43) [162] 2020 $\frac{V}{V_{\mathrm{u}}}=\left(1-\mathrm{e}^{-0.2 S}\right)^{0.4}$ (44) [32] 2020 $\frac{V}{V_{\mathrm{u}}}= \begin{cases}0.137 S & S \leqslant 0.59 \mathrm{~mm} \\ \frac{S-0.38}{2.08+0.87 S} & 0.59 \mathrm{~mm}<S<18.9 \mathrm{~mm}\end{cases}$ (45) [35] 2022 $\text { 国标 8.8/10.9 螺栓 }: V / V_{\mathrm{u}}=\left(1-\mathrm{e}^{-0.47 S}\right)^{0.36}$
$\text { 国标 } 12.9 \text { 螺栓 }: V / V_{\mathrm{u}}=\left(1-\mathrm{e}^{-0.47 S}\right)^{0.5}$(46) [164] 2022 $\begin{gathered} V= \begin{cases}V_{\mathrm{s}} & 0 \leqslant S \leqslant S_{\mathrm{s}} \\ V_{\mathrm{s}}+\left(V_{\mathrm{u}}-V_{\mathrm{s}}\right) \frac{2\left(S-S_{\mathrm{s}}\right)}{S+S_{\mathrm{u}}-2 S_{\mathrm{s}}} & S_{\mathrm{s}}<S \leqslant S_{\mathrm{u}}\end{cases} \\ V_{\mathrm{S}}=2 \mu P_{\mathrm{t} 2} \end{gathered}$ (47) [97] 2024 $\frac{V}{V_{\mathrm{u}}}= \begin{cases}\frac{d_{\mathrm{s}}^{0.6} S}{S_{\mathrm{u}}} & S \leqslant \frac{V_{\mathrm{s}}}{V_{\mathrm{t}} d_{\mathrm{s}}} \\ \left(1.3-\mathrm{e}^{\frac{-1.4 S}{S_{\mathrm{u}}}}\right)^{1.2} & S>\frac{V_{\mathrm{s}}}{V_{\mathrm{t}} d_{\mathrm{s}}}\end{cases}$ $V / V_{\mathrm{u}}=\left(1-\mathrm{e}^{-2.73 S / \mathrm{S}_{\mathrm{u}}}\right)^{0.68}$ $V / V_{\mathrm{u}}=\left(1-\mathrm{e}^{-0.205}\right)^{0.4}$ (48) [76] 2024 $\frac{V}{V_{\mathrm{u}}}=\left(1-\mathrm{e}^{-0.04 S d_{\mathrm{s}}^{1.65}}\right)^{0.0056 d_{\mathrm{s}}^{1.65}}$ (49) [71] 2024 $V_{\mathrm{u}}=V_{1}+\left(V_{\mathrm{u}}-V_{1}\right)\{1-\exp [-0.557(S-\Delta)]\}^{1.004}$ -
[1] LI X, HE J, ZHOU Y X, et al. A comprehensive review of shear connectors in demountable composite beams[J]. Journal of Constructional Steel Research, 2024, 218: 108723. doi: 10.1016/j.jcsr.2024.108723 [2] 武芳文, 左剑, 樊州, 等. 钢-ECC/UHPC组合梁负弯矩区力学性能研究[J]. 交通运输工程学报, 2024, 24(1): 218-231.WU Fang-wen, ZUO Jian, FAN Zhou, et al. Investigation on mechanical properties of steel-ECC/UHPC composite girders in negative moment regions[J]. Journal of Traffic and Transportation Engineering, 2024, 24(1): 218-231. [3] BRAMBILLA G, LAVAGNA M, VASDRAVELLIS G, et al. Environmental benefits arising from demountable steel-concrete composite floor systems in buildings[J]. Resources, Conservation and Recycling, 2019, 141: 133-142. doi: 10.1016/j.resconrec.2018.10.014 [4] HOSSEINI S M, MASHIRI F, MIRZA O. Research and developments on strength and durability prediction of composite beams utilising bolted shear connectors (review)[J]. Engineering Failure Analysis, 2020, 117: 104790. doi: 10.1016/j.engfailanal.2020.104790 [5] 韩强, 倪玉龙, 胡梦涵, 等. 钢-混组合梁抗剪连接件构造型式及其力学性能研究进展[J]. 北京工业大学学报, 2024, 50(11): 1369-1385.HAN Qiang, NI Yu-long, HU Meng-han, et al. Review of configurations and behavior of shear connector for steel-concrete composite bridges[J]. Journal of Beijing University of Technology, 2024, 50(11): 1369-1385. [6] HAWKINS N M. Strength in shear and tension of cast-in-place anchor bolts[J]. Special Publication, 1987, 103: 233-256. [7] PAVLOVIĆ D M, SPREMIC M, MARKOVIC Z, et al. Headed shear studs versus high-strength bolts in prefabricated composite decks[C]//MARK B, BRIAN U. 2016 Composite Construction in Steel and Concrete Ⅶ. Reston: ASCE, 2016: 687-702. [8] PAVLOVIĆ D M, MARKOVIC Z, VELJKOVIĆ P D M, et al. Bolted shear connectors vs. headed studs behaviour in push-out tests[J]. Journal of Constructional Steel Research, 2013, 88: 134-149. doi: 10.1016/j.jcsr.2013.05.003 [9] PAVLOVIĆ D M, SPREMIC M, MARKOVIC Z, et al. Recent research of shear connection in prefabricated steel-concrete composite beams[J]. Istrazivanja i Projektovanja za Privredu, 2014, 12(1): 75-80. doi: 10.5937/jaes12-5676 [10] PAVLOVIĆ D M, VELJKOVIĆ P D M. FE validation of push-out tests[J]. Steel Construction, 2017, 10(2): 135-144. doi: 10.1002/stco.201710017 [11] FAHMY A S, SWELEM S M, KAMAL ABDELAZIZ M K. Behavior of high-strength demountable bolted shear connectors in steel-concrete girders with prefabricated slabs[J]. Alexandria Engineering Journal, 2023, 70: 247-260. doi: 10.1016/j.aej.2023.02.041 [12] ZHOU Y F, UY B, WANG J, et al. Behaviour and design of stainless steel shear connectors in composite beams[J]. Steel and Composite Structures, 2023, 46: 175-193. [13] PAVLOVIĆ D M, VELJKOVIĆ P D M. 08.08: Prefabricated demountable concrete and FRP decks in composite structures[J]. CE/papers, 2017, 1(2/3): 1889-1898. [14] LAWAN M M, TAHIR M M, MIRZA J. Bolted shear connectors performance in self-compacting concrete integrated with cold-formed steel section[J]. Latin American Journal of Solids and Structures, 2016, 13(4): 731-749. doi: 10.1590/1679-78252004 [15] ATAEI A, MAHMOUDY S A, ZEYNALIAN M, et al. Experimental study of innovative bolted shear connectors in demountable cold-formed steel-concrete composite beams[J]. Thin-walled Structures, 2023, 192: 111116. doi: 10.1016/j.tws.2023.111116 [16] ATAEI A, MAHMOUDY S A. Modeling of innovative bolted shear connectors in demountable cold-formed steel-concrete composite beams: Validation of finite element model and parametric study[J]. Journal of Building Engineering, 2024, 95: 110076. doi: 10.1016/j.jobe.2024.110076 [17] 吴锦鹏, 吴加杰, 曹志鹏, 等. 可拆卸式钢-预制UHPC组合梁中高强螺栓剪力键的抗剪性能试验[J]. 福州大学学报(自然科学版), 2024, 52(4): 462-470.WU Jin-peng, WU Jia-jie, CAO Zhi-peng, et al. Shear performance tests of high-strength bolted shear connectors in demountable steel-prefabricated UHPC composite beams[J]. Journal of Fuzhou University (Natural Science Edition), 2024, 52(4): 462-470. [18] KWON G, ENGELHARDT M D, KLINGNER R E. Behavior of post-installed shear connectors under static and fatigue loading[J]. Journal of Constructional Steel Research, 2010, 66(4): 532-541. doi: 10.1016/j.jcsr.2009.09.012 [19] 汪威, 张谢东, 张虹燕, 等. 钢-SFRC组合梁高强螺栓连接件受剪性能试验[J]. 长安大学学报(自然科学版), 2023, 43(6): 60-70.WANG Wei, ZHANG Xie-dong, ZHANG Hong-yan, et al. Experiment on shear behavior of high-strength bolt connectors in steel-SFRC composite beams[J]. Journal of Chang'an University (Natural Science Edition), 2023, 43(6): 60-70. [20] CHEN B C, DENG Y X, FANG Z C, et al. Shear behaviour of embedded nut-bolted connectors in precast steel-concrete composite beams: Experimental investigations and numerical analyses[J]. Structures, 2023, 58: 105404. doi: 10.1016/j.istruc.2023.105404 [21] CHEN B C, LIU A R, ZHANG J P, et al. Behavior of T-shaped embedded-nut bolted shear connectors in prefabricated steel-concrete composite beams[J]. Engineering Structures, 2022, 272: 114983. doi: 10.1016/j.engstruct.2022.114983 [22] DAI X H, LAM D, SAVERI E. Effect of concrete strength and stud collar size to shear capacity of demountable shear connectors[J]. Journal of Structural Engineering, 2015, 141(11): 04015025. doi: 10.1061/(ASCE)ST.1943-541X.0001267 [23] VARSANI H, TAN E L, SINGH B. 08.14: Behaviour of innovative demountable shear connectors subjected to combined shear and axial tension[J]. CE/papers, 2017, 1(2/3): 1948-1955. [24] WANG J Y, GUO J Y, JIA L J, et al. Push-out tests of demountable headed stud shear connectors in steel-UHPC composite structures[J]. Composite Structures, 2017, 170: 69-79. doi: 10.1016/j.compstruct.2017.03.004 [25] GUO J Y, WANG J Y, WANG Y B, et al. Experimental study on demountable steel ultra-high performance concrete composite slabs under hogging moment[J]. Archives of Civil and Mechanical Engineering, 2022, 22(3): 137. doi: 10.1007/s43452-022-00458-w [26] 单江北, 刘小玲, 汪炳. 新型不锈钢可拆卸螺栓连接件疲劳后剩余力学性能研究[J]. 振动与冲击, 2023, 42(5): 245-252.SHAN Jiang-bei, LIU Xiao-ling, WANG Bing. Residual mechanical properties of new stainless steel detachable bolt connector after fatigue[J]. Journal of Vibration and Shock, 2023, 42(5): 245-252. [27] JUNG D S, PARK S H, KIM T H, et al. Structural behavior of steel-concrete composite girders composed of demountable shear connectors[J]. KSCE Journal of Civil Engineering, 2024, 28(2): 744-759. doi: 10.1007/s12205-023-2217-z [28] LIU X P, BRADFORD M A, LEE M S S. Behavior of high-strength friction-grip bolted shear connectors in sustainable composite beams[J]. Journal of Structural Engineering, 2015, 141(6): 04014149. doi: 10.1061/(ASCE)ST.1943-541X.0001090 [29] ATAEI A, BRADFORD M A, LIU X P. Experimental study of composite beams having a precast geopolymer concrete slab and deconstructable bolted shear connectors[J]. Engineering Structures, 2016, 114: 1-13. doi: 10.1016/j.engstruct.2015.10.041 [30] CHEN Y T, ZHAO Y, WEST J S, et al. Behaviour of steel-precast composite girders with through-bolt shear connectors under static loading[J]. Journal of Constructional Steel Research, 2014, 103: 168-178. doi: 10.1016/j.jcsr.2014.09.001 [31] ZHANG Y J, CHEN B C, LIU A R, et al. Experimental study on shear behavior of high strength bolt connection in prefabricated steel-concrete composite beam[J]. Composites Part B: Engineering, 2019, 159: 481-489. doi: 10.1016/j.compositesb.2018.10.007 [32] YANG T, LIU S Y, QIN B X, et al. Experimental study on multi-bolt shear connectors of prefabricated steel-concrete composite beams[J]. Journal of Constructional Steel Research, 2020, 173: 106260. doi: 10.1016/j.jcsr.2020.106260 [33] WANG W, ZHANG X D, DING F X, et al. Finite element analysis on shear behavior of high-strength bolted connectors under inverse push-off loading[J]. Energies, 2021, 14(2): 479. doi: 10.3390/en14020479 [34] ATAEI A, ZEYNALIAN M. A study on structural performance of deconstructable bolted shear connectors in composite beams[J]. Structures, 2021, 29: 519-533. doi: 10.1016/j.istruc.2020.11.065 [35] JIANG H B, FANG H Z, WU J P, et al. Push-out tests on demountable high-strength friction-grip bolt shear connectors in steel-precast UHPC composite beams for accelerated bridge construction[J]. Steel and Composite Structures, 2022, 45(6): 797-818. [36] ZHAO W, LU S Q, JING X Y. Shear performance of high-strength bolt connector considering different pad and bolt hole[J]. Structures, 2020, 28: 1291-1300. doi: 10.1016/j.istruc.2020.09.050 [37] XU Q Z, SEBASTIAN W, LU K W, et al. Shear behaviour and calculation model for stud-UHPC connections: Finite element and theoretical analyses[J]. Engineering Structures, 2022, 254: 113838. doi: 10.1016/j.engstruct.2022.113838 [38] 张凡, 陈炳聪, 刘爱荣, 等. 装配式钢-混凝土组合梁高强螺栓剪力连接件力学模型[J]. 工程力学, 2022, 39(增1): 173-179.ZHANG Fan, CHEN Bing-cong, LIU Ai-rong, et al. Mechanical model of high-strength bolt shear connector for assembled steel-concrete composite beam[J]. Engineering Mechanics, 2022, 39(S1): 173-179. [39] HOSSEINI S M, MAMUN M S, MIRZA O, et al. Behaviour of blind bolt shear connectors subjected to static and fatigue loading[J]. Engineering Structures, 2020, 214: 110584. doi: 10.1016/j.engstruct.2020.110584 [40] HOSSEINI S M, MASHIRI F, MIRZA O. Parametric study of innovative bolted shear connectors using 3D finite element modelling[J]. Journal of Constructional Steel Research, 2021, 179: 106565. doi: 10.1016/j.jcsr.2021.106565 [41] CSILLAG F, PAVLOVIĆ D M. Push-out behaviour of demountable injected vs. blind-bolted connectors in FRP decks[J]. Composite Structures, 2021, 270: 114043. doi: 10.1016/j.compstruct.2021.114043 [42] PATHIRANA S W, UY B, MIRZA O, et al. Strengthening of existing composite steel-concrete beams utilising bolted shear connectors and welded studs[J]. Journal of Constructional Steel Research, 2015, 114: 417-430. doi: 10.1016/j.jcsr.2015.09.006 [43] PATHIRANA S W, UY B, MIRZA O, et al. Bolted and welded connectors for the rehabilitation of composite beams[J]. Journal of Constructional Steel Research, 2016, 125: 61-73. doi: 10.1016/j.jcsr.2016.06.003 [44] MOYNIHAN M C, ALLWOOD J M. Viability and performance of demountable composite connectors[J]. Journal of Constructional Steel Research, 2014, 99: 47-56. doi: 10.1016/j.jcsr.2014.03.008 [45] REHMAN N, LAM D, DAI X, et al. Experimental study on demountable shear connectors in composite slabs with profiled decking[J]. Journal of Constructional Steel Research, 2016, 122: 178-189. doi: 10.1016/j.jcsr.2016.03.021 [46] LAM D, DAI X H, ASHOUR A, et al. Recent research on composite beams with demountable shear connectors[J]. Steel Construction, 2017, 10(2): 125-134. doi: 10.1002/stco.201710016 [47] REHMAN N, LAM D, DAI X H, et al. Testing of composite beam with demountable shear connectors[J]. Proceedings of the Institution of Civil Engineers — Structures and Buildings, 2018, 171(1): 3-16. doi: 10.1680/jstbu.16.00172 [48] YANG J, LAM D, DAI X H, et al. Experimental study on demountable shear connectors in profiled composite slabs[C]//MANUEL L R, ANA E. Proceedings of 12th International Conference on Advances in Steel-concrete Composite Structures-ASCCS 2018. Valencia: Universitat Politecnica de Valencia, 2018: 115-121. [49] AREZOOMAND L P, EBRAHIMNEJAD M. Numerical study of the behavior of bolted shear connectors in composite slabs with steel deck[J]. Structures, 2020, 26: 501-515. doi: 10.1016/j.istruc.2020.04.037 [50] 卢林枫, 聂少锋, 丁松林, 等. 钢结构用高强度螺栓摩擦型连接抗剪性能的腐蚀退化[J]. 交通运输工程学报, 2025, 25(2): 218-234.LU Lin-feng, NIE Shao-feng, DING Song-lin, et al. Corrosion degradation of shear performance in friction-type connections with high-strength bolts for steel structures[J]. Journal of Traffic and Transportation Engineering, 2025, 25(2): 218-234. [51] DAI X H, LAM D, SHEEHAN T, et al. Use of bolted shear connectors in composite construction[C]//MANUEL L R, ANA E. Proceedings of 12th International Conference on Advances in Steel-concrete Composite Structures-ASCCS 2018. Valencia: Universitat Politecnica de Valencia, 2018: 475-482. [52] GIRÃO COELHO A M, LAWSON R M, AGGELOPOULOS E S. Optimum use of composite structures for demountable construction[J]. Structures, 2019, 20: 116-133. doi: 10.1016/j.istruc.2019.03.005 [53] JAKOVLJEVIC I, SPREMIC M, MARKOVIC Z. Shear behaviour of demountable connections with bolts and headed studs[J]. Advanced Steel Construction, 2023, 19(4): 341-352. [54] PATEL V, UY B, PATHIRANA S, et al. Finite element analysis of demountable steel-concrete composite beams under static loading[J]. Advanced Steel Construction, 2018, 14(3): 392-411. [55] LACKI P, NAWROT J, DERLATKA A, et al. Numerical and experimental tests of steel-concrete composite beam with the connector made of top-hat profile[J]. Composite Structures, 2019, 211: 244-253. doi: 10.1016/j.compstruct.2018.12.035 [56] KARIMIPANAH A, ZEYNALIAN M, ATAEI A. A numerical study on a novel demountable cold-formed steel composite beam with profiled steel sheeting[J]. Thin-Walled Structures, 2024, 199: 111812. doi: 10.1016/j.tws.2024.111812 [57] YANG F, LIU Y Q, JIANG Z B, et al. Shear performance of a novel demountable steel-concrete bolted connector under static push-out tests[J]. Engineering Structures, 2018, 160: 133-146. doi: 10.1016/j.engstruct.2018.01.005 [58] YANG F, LIU Y Q, XIN H H, et al. Fracture simulation of a demountable steel-concrete bolted connector in push-out tests[J]. Engineering Structures, 2021, 239: 112305. doi: 10.1016/j.engstruct.2021.112305 [59] NIJGH M P, VELJKOVIĆ P D M, PAVLOVIĆ D M, et al. Flexible shear connectors in a tapered composite beam optimized for reuse[C]//ANDERSON P. Proceedings of 6th Annual International Conference on Architecture and Civil Engineering (ACE 2018). Singapore: Global Science and Technology Forum, 2018: 32-39. [60] GȊRBACEA I A, NIJGH M P, VELJKOVIĆ P D M. Proof of concept of a demountable steel-concrete composite flooring system[J]. CE/papers, 2019, 3(3/4): 571-576. [61] NIJGH M P, GȊRBACEA I A, VELJKOVIĆ P D M. Elastic behaviour of a tapered steel-concrete composite beam optimized for reuse[J]. Engineering Structures, 2019, 183: 366-374. doi: 10.1016/j.engstruct.2019.01.022 [62] KOZMA A, ODENBREIT C, BRAUN M V, et al. Push-out tests on demountable shear connectors of steel-concrete composite structures[J]. Structures, 2019, 21: 45-54. doi: 10.1016/j.istruc.2019.05.011 [63] KAVOUR F, CHRISTOFORIDOU A, PAVLOVIĆ D M, et al. Mechanical properties of demountable shear connectors under different confined conditions for reusable hybrid decks[J]. Steel and Composite Structures, 2022, 43(4): 419-429. [64] 贺君, VASDRAVELLIS G, 王思豪, 等. 新型可拆卸开孔钢管连接件抗剪性能[J]. 中国公路学报, 2018, 31(12): 28-36, 80.HE Jun, VASDRAVELLIS G, WANG Si-hao, et al. Shear performance of a novel demountable perforated steel-tube connector[J]. China Journal of Highway and Transport, 2018, 31(12): 28-36, 80. [65] FEIDAKI E, VASDRAVELLIS G, HE J, et al. Steel-yielding demountable shear connector for composite floors with precast hollow-core slab units[J]. Journal of Structural Engineering, 2019, 145(8): 04019076. doi: 10.1061/(ASCE)ST.1943-541X.0002356 [66] HE J, VASDRAVELLIS G, WANG S H. Circular perforated steel yielding demountable shear connector for sustainable precast composite floors[J]. Steel and Composite Structures, 2021, 39(6): 701-721. [67] SUWAED A S H, KARAVASILIS T L. Novel demountable shear connector for accelerated disassembly, repair, or replacement of precast steel-concrete composite bridges[J]. Journal of Bridge Engineering, 2017, 22(9): 04017052. doi: 10.1061/(ASCE)BE.1943-5592.0001080 [68] SUWAED A S H, KARAVASILIS T L. Removable shear connector for steel-concrete composite bridges[J]. Steel and Composite Structures, 2018, 29(1): 107-123. [69] SUWAED A S H, KARAVASILIS T L. Demountable steel-concrete composite beam with full-interaction and low degree of shear connection[J]. Journal of Constructional Steel Research, 2020, 171: 106152. doi: 10.1016/j.jcsr.2020.106152 [70] TZOUKA E, KARAVASILIS T L, KASHANI M M, et al. Finite element modelling of push-out tests for novel locking nut shear connectors[J]. Structures, 2021, 33: 1020-1032. doi: 10.1016/j.istruc.2021.04.088 [71] YAN Q S, CHEN X Y, JIA B Y, et al. Theoretical and FEA study on shear performance of novel shear connectors[J]. Journal of Constructional Steel Research, 2025, 225: 109186. doi: 10.1016/j.jcsr.2024.109186 [72] 罗云标, 齐连训, 严加宝, 等. 可拆卸组合梁剪力连接件抗剪性能数值分析[J]. 建筑科学与工程学报, 2021, 38(2): 117-126.LUO Yun-biao, QI Lian-xun, YAN Jia-bao, et al. Numerical analysis on shear behavior of shear connector for demountable composite beam[J]. Journal of Architecture and Civil Engineering, 2021, 38(2): 117-126. [73] 齐连训, 罗云标, 严加宝, 等. 高变形能力螺栓抗剪连接件抗剪承载力理论分析与验证[J]. 工程力学, 2021, 38(10): 74-82.QI Lian-xun, LUO Yun-biao, YAN Jia-bao, et al. Theoretical analysis and verification on shear capacity of high-deformability bolted shear connector[J]. Engineering Mechanics, 2021, 38(10): 74-82. [74] LUO Y B, YAN J B. Developments of prefabricated steel-concrete composite beams with novel steel-yielding demountable bolt connectors[J]. Journal of Constructional Steel Research, 2022, 190: 107123. doi: 10.1016/j.jcsr.2021.107123 [75] SONG S S, XU F, CHEN J, et al. Feasibility and performance of novel tapered iron bolt shear connectors in demountable composite beams[J]. Journal of Building Engineering, 2022, 53: 104528. doi: 10.1016/j.jobe.2022.104528 [76] YAN Z, CHEN J, PANDEY M. Mechanism analysis and design of novel tapered iron bolt shear connectors[J]. Structures, 2024, 70: 107708. doi: 10.1016/j.istruc.2024.107708 [77] SUWAED A S H, HE J, VASDRAVELLIS G. Experimental and numerical evaluation of a welded demountable shear connector through horizontal pushout tests[J]. Journal of Structural Engineering, 2022, 148(2): 04021274. doi: 10.1061/(ASCE)ST.1943-541X.0003269 [78] HE J, SUWAED A S H, VASDRAVELLIS G, et al. Standard pushout tests and design rules for a bolted-welded hybrid demountable shear connector[J]. Journal of Structural Engineering, 2022, 148(8): 04022097. doi: 10.1061/(ASCE)ST.1943-541X.0003404 [79] HE J, SUWAED A S H, VASDRAVELLIS G, et al. Behaviour and design of the "lockbolt" demountable shear connector for sustainable steel-concrete composite structures[J]. Structures, 2022, 44: 988-1010. doi: 10.1016/j.istruc.2022.08.062 [80] HE J, FENG S D, VASDRAVELLIS G, et al. Behaviour of the lockbolt demountable shear connector under combined shear and tension loading[J]. Engineering Failure Analysis, 2022, 141: 106712. doi: 10.1016/j.engfailanal.2022.106712 [81] HE J, SUWAED A S H, VASDRAVELLIS G. Horizontal pushout tests and parametric analyses of a locking-bolt demountable shear connector[J]. Structures, 2022, 35: 667-683. doi: 10.1016/j.istruc.2021.11.041 [82] GU J B, WANG J Y, TAO Y, et al. Experimental assessment on flexural behavior of demountable steel-UHPC composite slabs with a novel NPR steel plate[J]. Steel and Composite Structures, 2023, 49(4): 381-392. [83] 古金本, 王俊颜, 陆伟. 新型可拆卸式钢-UHPC组合板的抗弯性能[J]. 哈尔滨工业大学学报, 2024, 56(1): 84-92.GU Jin-ben, WANG Jun-yan, LU Wei. Flexural behavior of a novel demountable steel-UHPC composite slab[J]. Journal of Harbin Institute of Technology, 2024, 56(1): 84-92. [84] KIRALY K, DUNAI L. Experimental study of novel demountable shear connectors for steel-concrete composite buildings[J]. Periodica Polytechnica Civil Engineering, 2024, 68(2): 647-656. doi: 10.3311/PPci.22732 [85] KARAKUŞ B, ARIKOGLU P, TOPKAYA C. Pushout tests on demountable bolted angle shear connectors for steel-concrete composite structures[J]. Engineering Structures, 2024, 317: 118701. doi: 10.1016/j.engstruct.2024.118701 [86] LI W, FAN H T, JIANG H M, et al. Experimental and numerical study on behavior of demountable shear connectors in sustainable reinforced concrete beam-slab[J]. Construction and Building Materials, 2024, 445: 137918. doi: 10.1016/j.conbuildmat.2024.137918 [87] LI W, FAN H T, HE S, et al. Experimental studies on fully demountable P-DBSCs shear connectors in sustainable reinforced concrete beam-slab[J]. Structures, 2024, 68: 107134. doi: 10.1016/j.istruc.2024.107134 [88] LI W, CHEN W, FAN H T, et al. Experimental and numerical study on behavior of demountable T-shaped bolt shear connectors in sustainable composite beams[J]. Construction and Building Materials, 2024, 447: 138070. doi: 10.1016/j.conbuildmat.2024.138070 [89] LI W, CHEN W, FAN H T, et al. Corrigendum to "experimental and numerical study on behavior of demountable T-shaped bolt shear connectors in sustainable composite beams"[Constr. Build. Mater. 47 (2024) 138070][J]. Construction and Building Materials, 2024, 449: 138584. [90] HÄLLMARK R, JACKSON P, COLLIN P, et al. Strengthening bridges with postinstalled coiled spring pin shear connectors: State-of-the-art review[J]. Practice Periodical on Structural Design and Construction, 2019, 24(1): 03118001. doi: 10.1061/(ASCE)SC.1943-5576.0000394 [91] MILICEVIC I, MILOSAVLJEVIC B, PAVLOVIĆ D M, et al. Bolted connectors with mechanical coupler embedded in concrete: Shear resistance under static load[J]. Steel and Composite Structures, 2020, 36(3): 321-337. [92] NIE J G, LI Y X, TAO M X, et al. Uplift-restricted and slip-permitted T-shape connectors[J]. Journal of Bridge Engineering, 2015, 20(4): 04014073. doi: 10.1061/(ASCE)BE.1943-5592.0000660 [93] JOHNSON R P, ANDERSON D. EN1994 Eurocode 4: Design of composite steel and concrete structures[J]. Proceedings of the Institution of Civil Engineers-Civil Engineering, 2001, 144(6): 33-38. doi: 10.1680/cien.2001.144.6.33 [94] 冯剑平, 黄平明, 王树来, 等. PBL剪力连接件受力性能的有限元分析[J]. 公路交通科技, 2015, 32(1): 90-95.FENG Jian-ping, HUANG Ping-ming, WANG Shu-lai, et al. Finite element analysis of mechanical behavior of PBL shear connectors[J]. Journal of Highway and Transportation Research and Development, 2015, 32(1): 90-95. [95] 宋瑞年, 占玉林, 刘芳, 等. 钢-混凝土组合试件长期推出试验与有限元分析[J]. 交通运输工程学报, 2019, 19(3): 36-45.SONG Rui-nian, ZHAN Yu-lin, LIU Fang, et al. Long-term push out test and finite element analysis of steel-concrete composite specimens[J]. Journal of Traffic and Transportation Engineering, 2019, 19(3): 36-45. [96] TAN E L, VARSANI H, LIAO F Y. Experimental study on demountable steel-concrete connectors subjected to combined shear and tension[J]. Engineering Structures, 2019, 183: 110-123. doi: 10.1016/j.engstruct.2018.12.088 [97] XIAN B X, WANG G D, MA F Y, et al. Shear performance of single embedded nut bolted shear connectors in precast steel-UHPC composite beams under combined tension-shear loads[J]. Case Studies in Construction Materials, 2024, 21: e03558. doi: 10.1016/j.cscm.2024.e03558 [98] SCHAAP B. Methods to develop composite action in non-composite bridge floor systems: Part I[D]. Austin: The University of Texas at Austin, 2004. [99] SENCU R M, WANG Y C, YANG J, et al. Performance evaluation of demountable shear connectors with collar step at ambient and elevated temperatures[J]. Engineering Structures, 2019, 194: 94-105. doi: 10.1016/j.engstruct.2019.05.059 [100] BAN H Y, UY B, PATHIRANA S W, et al. Time-dependent behaviour of composite beams with blind bolts under sustained loads[J]. Journal of Constructional Steel Research, 2015, 112: 196-207. doi: 10.1016/j.jcsr.2015.05.004 [101] OLIVIER G, CSILLAG F, TROMP E, et al. Static, fatigue and creep performance of blind-bolted connectors in shear experiments on steel-FRP joints[J]. Engineering Structures, 2021, 230: 111713. doi: 10.1016/j.engstruct.2020.111713 [102] 宗周红, 车惠民. 剪力连接件静载和疲劳试验研究[J]. 福州大学学报(自然科学版), 1999, 27(6): 61-66.ZONG Zhou-hong, CHE Hui-min. Experimental study of shear connector under static and fatigue loading[J]. Journal of Fuzhou University (Natural Sciences Edition), 1999, 27(6): 61-66. [103] SHARIATI M, RAMLI S N H, ARABNEJAD K M M. Experimental assessment of channel shear connectors under monotonic and fully reversed cyclic loading in high strength concrete[J]. Materials & Design, 2012, 34: 325-331. [104] 荣学亮, 黄侨, 任远. 栓钉连接件锈蚀后静力性能和抗疲劳性能的试验研究[J]. 土木工程学报, 2013, 46(2): 10-18.RONG Xue-liang, HUANG Qiao, REN Yuan. Experimental study on static and fatigue behaviors of stud connectors for composite beams after corrosion[J]. China Civil Engineering Journal, 2013, 46(2): 10-18. [105] SHARIATI M, RAMLI S N H, SHARIATI A, et al. Behavior of Ⅴ-shaped angle shear connectors: Experimental and parametric study[J]. Materials and Structures, 2016, 49(9): 3909-3926. doi: 10.1617/s11527-015-0762-8 [106] OVUOBA B, PRINZ G S. Fatigue capacity of headed shear studs in composite bridge girders[J]. Journal of Bridge Engineering, 2016, 21(12): 04016094. doi: 10.1061/(ASCE)BE.1943-5592.0000915 [107] CAO J H, SHAO X D, DENG L, et al. Static and fatigue behavior of short-headed studs embedded in a thin ultrahigh-performance concrete layer[J]. Journal of Bridge Engineering, 2017, 22(5): 04017005. doi: 10.1061/(ASCE)BE.1943-5592.0001031 [108] DENG W Q, XIONG Y Q, LIU D, et al. Static and fatigue behavior of shear connectors for a steel-concrete composite girder[J]. Journal of Constructional Steel Research, 2019, 159: 134-146. doi: 10.1016/j.jcsr.2019.04.031 [109] GYAWALI M, SENNAH K, AHMED M, et al. Experimental study of static and fatigue push-out test on headed stud shear connectors in UHPC composite steel beams[J]. Structures, 2024, 70: 107923. doi: 10.1016/j.istruc.2024.107923 [110] 宗周红, 车惠民. 预应力钢-混凝土组合梁的疲劳性能[J]. 铁道学报, 2000, 22(3): 92-95.ZONG Zhou-hong, CHE Hui-min. Fatigue behavior of prestressed composite steel concrete beams[J]. Journal of the China Railway Society, 2000, 22(3): 92-95. [111] 刘诚, 樊健生, 聂建国, 等. 钢-超高性能混凝土组合桥面系中栓钉连接件的疲劳性能研究[J]. 中国公路学报, 2017, 30(3): 139-146.LIU Cheng, FAN Jian-sheng, NIE Jian-guo, et al. Fatigue performance research of headed studs in steel and ultra-high performance concrete composite deck[J]. China Journal of Highway and Transport, 2017, 30(3): 139-146. [112] ATAEI A, ZEYNALIAN M, YAZDI Y. Cyclic behaviour of bolted shear connectors in steel-concrete composite beams[J]. Engineering Structures, 2019, 198: 109455. doi: 10.1016/j.engstruct.2019.109455 [113] KHADEMI Z, ZANDI S M, ATAEI A. Experimental study of deconstructable embedded bolted shear connectors in composite beam subjected to cyclic loading[J]. Structures, 2024, 69: 107559. doi: 10.1016/j.istruc.2024.107559 [114] BALKOS K D, SJAARDA M, WEST J S, et al. Static and fatigue tests of steel-precast composite beam specimens with through-bolt shear connectors[J]. Journal of Bridge Engineering, 2019, 24(5): 04019036. doi: 10.1061/(ASCE)BE.1943-5592.0001382 [115] GHIAMI AZAD A R, KREITMAN K, ENGELHARDT M, et al. Large-scale fatigue testing of post-installed shear connectors in partially-composite bridge girders[J]. Journal of Constructional Steel Research, 2019, 161: 57-69. doi: 10.1016/j.jcsr.2019.06.007 [116] HE J, WANG Z T, VASDRAVELLIS G, et al. Fatigue tests and fatigue-life prediction models for hybrid welded-bolted demountable shear connectors[J]. International Journal of Fatigue, 2023, 175: 107826. doi: 10.1016/j.ijfatigue.2023.107826 [117] HE J, FENG S D, VASDRAVELLIS G, et al. Cyclic inelastic performance evaluation of locking bolt demountable shear connectors in steel-concrete composite structures[J]. Engineering Structures, 2024, 318: 118690. doi: 10.1016/j.engstruct.2024.118690 [118] 贺绍华, 杨刚, 房腾鹏, 等. 带开孔板连接件的HSS-UHPC组合梁抗弯性能[J]. 交通运输工程学报, 2022, 22(6): 143-157. doi: 10.19818/j.cnki.1671-1637.2022.06.009 HE Shao-hua, YANG Gang, FANG Teng-peng, et al. Flexural performance of HSS-UHPC composite beams with perfobond strip connectors[J]. Journal of Traffic and Transportation Engineering, 2022, 22(6): 143-157. doi: 10.19818/j.cnki.1671-1637.2022.06.009 [119] 聂建国, 谭英, 王洪全. 钢-高强混凝土组合梁栓钉剪力连接件的设计计算[J]. 清华大学学报(自然科学版), 1999, 39(12): 94-97.NIE Jian-guo, TAN Ying, WANG Hong-quan. Strength of stud shear connectors in composite steel HC beams[J]. Journal of Tsinghua University (Science and Technology), 1999, 39(12): 94-97. [120] 许伟, 王坤, 许峰, 等. 钢与高强混凝土连续组合梁连接件的布置方式[J]. 东北大学学报, 2005, 26(9): 901-903.XU Wei, WANG Kun, XU Feng, et al. Arrangement of shear connector for steel-high strength concrete continuous composite beams[J]. Journal of Northeastern University, 2005, 26(9): 901-903. [121] 许波, 刘永健, 朱伟庆, 等. 焊钉锈蚀后钢-混组合梁抗弯承载力简化计算方法[J]. 交通运输工程学报, 2019, 19(2): 25-35.XU Bo, LIU Yong-jian, ZHU Wei-qing, et al. Simplified method of calculating flexural capacity of steel-concrete composite beam after stud corrosion[J]. Journal of Traffic and Transportation Engineering, 2019, 19(2): 25-35. [122] KWON G, ENGELHARDT M D, KLINGNER R E. Parametric studies and preliminary design recommendations on the use of postinstalled shear connectors for strengthening noncomposite steel bridges[J]. Journal of Bridge Engineering, 2012, 17(2): 310-317. doi: 10.1061/(ASCE)BE.1943-5592.0000261 [123] DU H, HU X M, MENG Y F, et al. Study on composite beams with prefabricated steel bar truss concrete slabs and demountable shear connectors[J]. Engineering Structures, 2020, 210: 110419. doi: 10.1016/j.engstruct.2020.110419 [124] 陈俊, 王韶纤, 胥卉, 等. 负弯矩作用下可拆卸预制装配式组合梁力学性能试验[J]. 吉林大学学报(工学版), 2022, 52(3): 604-614.CHEN Jun, WANG Shao-xian, XU Hui, et al. Experiment on mechanical properties of detachable prefabricated composite beams subjected to negative bending moment[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(3): 604-614. [125] 贺君, 邓素芬, 李红利, 等. 可拆卸UHPC-波形钢腹板组合梁负弯矩区受力性能试验研究[J]. 建筑结构学报, 2024, 45(增1): 247-257.HE Jun, DENG Su-fen, LI Hong-li, et al. Experimental study on mechanical behavior of detachable UHPC-corrugated steel web composite beam in negative bending moment zone[J]. Journal of Building Structures, 2024, 45(S1): 247-257. [126] 郭君渊, 王俊颜, 杲晓龙, 等. 采用装配式栓钉的钢-UHPC组合板的抗弯性能[J]. 哈尔滨工业大学学报, 2024, 56(1): 63-72.GUO Jun-yuan, WANG Jun-yan, GAO Xiao-long, et al. Flexural behavior of steel-UHPC composite slabs with demountable shear connectors[J]. Journal of Harbin Institute of Technology, 2024, 56(1): 63-72. [127] LIU X P, BRADFORD M A, CHEN Q J, et al. Finite element modelling of steel-concrete composite beams with high-strength friction-grip bolt shear connectors[J]. Finite Elements in Analysis and Design, 2016, 108: 54-65. doi: 10.1016/j.finel.2015.09.004 [128] LIU X P, BRADFORD M A, ATAEI A. Flexural performance of innovative sustainable composite steel-concrete beams[J]. Engineering Structures, 2017, 130: 282-296. doi: 10.1016/j.engstruct.2016.10.009 [129] ATAEI A, MORADI M, VALIPOUR H R, et al. Finite element modelling of demountable precast reinforced concrete deck slabs with external confining system[J]. Journal of Constructional Steel Research, 2018, 151: 204-215. doi: 10.1016/j.jcsr.2018.09.023 [130] FANG Z C, FANG H Z, LI P J, et al. Interfacial shear and flexural performances of steel-precast UHPC composite beams: Full-depth slabs with studs vs. demountable slabs with bolts[J]. Engineering Structures, 2022, 260: 114230. doi: 10.1016/j.engstruct.2022.114230 [131] PATHIRANA W S, UY B, MIRZA O, et al. Flexural behaviour of composite steel-concrete beams utilising blind bolt shear connectors[J]. Engineering Structures, 2016, 114: 181-194. doi: 10.1016/j.engstruct.2016.01.057 [132] LONG J J, WANG Y C, LOU G B, et al. Experimental, numerical and analytical investigation of bending performance of bolted demountable composite beams with profiled steel decking[J]. Engineering Structures, 2023, 295: 116887. doi: 10.1016/j.engstruct.2023.116887 [133] LONG J J, WANG Y C, LOU G B, et al. An experimental investigation of the fire behaviour of demountable composite beams with profiled steel decking[J]. Engineering Structures, 2024, 307: 117944. doi: 10.1016/j.engstruct.2024.117944 [134] VIEST I. Investigation of stud shear connectors for composite concrete and steel T beams[J]. ACI Journal Proceedings, 1956, 52(4): 875-892. [135] DRISCOLL JR G C, SLUTTER R G. Research on composite design at Lehigh University, Proc. AISC, National Engineering Conference (1961)[R]. Bethlehem: Lehigh University, 1961. [136] SLUTTER R G, DRISCOLL JR G C. Flexural strength of steel-concrete composite beams[J]. Journal of the Structural Division, 1965, 91(2): 71-99. doi: 10.1061/JSDEAG.0001257 [137] OLLGAARD J G, SLUTTER R G, FISHER J W. Shear strength of stud connectors in lightweight and normal-weight concrete[J]. Engineering Journal, 1971, 8(2): 55-64. doi: 10.62913/engj.v8i2.160 [138] JOHNSON R, OEHLERS D. The strength of stud shear connectors in composite beams[J]. The Structural Engineer, 1987, 65: 44. [139] HIRAGI H, MATSUI S, FUKUMOTO Y. Derivation strength equations of headed stud shear connectors-static strengths[J]. Journal of Structural Engineering, 1989, 35(3): 1221-1232. [140] GB 50917—2013, 钢-混凝土组合桥梁设计规范[S].GB 50917—2013, Code for design of steel and concrete composite bridges[S]. [141] GB 50017—2017, 钢结构设计标准[S].GB 50017—2017, Standard for design of steel structures[S]. [142] EN 1993-1-1: 2005, Eurocode 3: Design of steel structures — Part 1-1: General rules and rules for buildings[S]. [143] BARKER R M, PUCKETT J A. Design of highway bridges based on AASHTO LRFD bridge design specifications[M]. Washington DC: American Association of State Highway and Transportation Officials, 1987. [144] ZHANG H, LIU H Y, ELLINGWOOD B R, et al. System reliabilities of planar gravity steel frames designed by the inelastic method in AISC 360-10[J]. Journal of Structural Engineering, 2018, 144(3): 04018011. doi: 10.1061/(ASCE)ST.1943-541X.0001991 [145] ANSI/AISC 360-16: 2016, Specification for structural steel buildings[S]. [146] ACI CODE 318-08: 2007, Building code requirements for structural concrete and commentary[S]. [147] ACI CODE 318-14: 2014, Building code requirements for structural concrete and commentary[S]. [148] ACI CODE 318-19: 2019, Building code requirements for structural concrete and commentary[S]. [149] PCI MNL-120-17: 2017, Precast/prestressed concrete institute design handbook[S]. [150] POURIA A, NOR H R S, ZAINAH I. Analysis and review of concrete-filled double skin steel tubes under compression[J]. Thin-Walled Structures, 2020, 148: 106495. doi: 10.1016/j.tws.2019.106495 [151] HEGGER J, SEDLACEK G, DÖINGHAUS P, et al. Untersuchungen zur duktilität der verbundmittel bei anwendung von hochfestem stahl und hochfestem beton[J]. Stahlbau, 2001, 70(7): 436-446. doi: 10.1002/stab.200101600 [152] DÖINGHAUS P, GORALSKI C, WILL N. Design rules for composite structures with high performance steel and high performance concrete[C]//DOINGHAUS P, GORALSKI C, WILL N. National Academies Sciences Engineering Medicine. Reston: ASCE, 2003: 139-149. [153] TOPKAYA C, YURA J A, WILLIAMSON E B. Composite shear stud strength at early concrete ages[J]. Journal of Structural Engineering, 2004, 130(6): 952-960. doi: 10.1061/(ASCE)0733-9445(2004)130:6(952) [154] XUE W C, DING M, WANG H, et al. Static behavior and theoretical model of stud shear connectors[J]. Journal of Bridge Engineering, 2008, 13(6): 623-634. doi: 10.1061/(ASCE)1084-0702(2008)13:6(623) [155] PALLARÉS L, HAJJAR J F. Headed steel stud anchors in composite structures, Part Ⅰ: Shear[J]. Journal of Constructional Steel Research, 2010, 66(2): 198-212. doi: 10.1016/j.jcsr.2009.08.009 [156] LUO Y B, HOKI K, HAYASHI K, et al. Behavior and strength of headed stud-SFRCC shear connection. Ⅰ: Experimental study[J]. Journal of Structural Engineering, 2016, 142(2): 04015112. doi: 10.1061/(ASCE)ST.1943-541X.0001363 [157] LUO Y B, HOKI K, HAYASHI K, et al. Behavior and strength of headed stud-SFRCC shear connection. Ⅱ: Strength evaluation[J]. Journal of Structural Engineering, 2016, 142(2): 04015113. doi: 10.1061/(ASCE)ST.1943-541X.0001372 [158] 杜浩, 张冰, 胡夏闽, 等. 钢-混凝土组合梁螺栓连接件受剪性能试验研究[J]. 建筑结构学报, 2017, 38(增1): 308-314.DU Hao, ZHANG Bing, HU Xia-min, et al. Experimental study on shear behavior of bolt connectors of steel-concrete composite beams[J]. Journal of Building Structures, 2017, 38(S1): 308-314. [159] KRUSZEWSKI D, WILLE K, ZAGHI A E. Design considerations for headed shear studs embedded in ultra-high performance concrete as part of a novel bridge repair method[J]. Journal of Constructional Steel Research, 2018, 149: 180-194. doi: 10.1016/j.jcsr.2018.07.015 [160] LING Y H, ZHENG Z Y, YANG T Y, et al. Behaviour and modeling of the bearing capacity of shear stud connectors[J]. International Journal of Steel Structures, 2019, 19(2): 650-659. doi: 10.1007/s13296-018-0154-3 [161] WANG S D, FANG Z C, CHEN G F, et al. Numerical analysis on shear behavior of grouped head stud shear connectors between steel girders and precast concrete slabs with high-strength concrete-filled shear pockets[J]. Journal of Bridge Engineering, 2021, 26(6): 04021030. doi: 10.1061/(ASCE)BE.1943-5592.0001727 [162] ZHANG Y J, LIU A R, CHEN B C, et al. Experimental and numerical study of shear connection in composite beams of steel and steel-fibre reinforced concrete[J]. Engineering Structures, 2020, 215: 110707. doi: 10.1016/j.engstruct.2020.110707 [163] FANG Z C, LIANG W B, FANG H Z, et al. Experimental investigation on shear behavior of high-strength friction-grip bolt shear connectors in steel-precast UHPC composite structures subjected to static loading[J]. Engineering Structures, 2021, 244: 112777. doi: 10.1016/j.engstruct.2021.112777 [164] 班慧勇, 罗家伟, 王元清, 等. 可拆卸钢-混凝土组合梁抗剪连接件的受力性能研究[J]. 建筑钢结构进展, 2022, 24(8): 35-46.BAN Hui-yong, LUO Jia-wei, WANG Yuan-qing, et al. Research on mechanical behavior of shear connectors in deconstructable steel-concrete composite beams[J]. Progress in Steel Building Structures, 2022, 24(8): 35-46. -
下载: