Reliability analysis of RC arch bridge during cantilever casting construction based on improved SO
-
摘要: 为提高大跨钢筋混凝土(RC)拱桥悬臂浇筑施工期可靠度计算的精度和效率, 提出了一种基于改进蛇优化算法(SO)的可靠度分析方法;为提高标准SO的寻优性能, 引入了Tent混沌映射生成初始种群, 同时对迭代过程中的最优蛇个体进行高斯差分变异, 并采用了常用测试函数验证改进算法的有效性;基于试验实测数据和已有研究建立C80混凝土强度随时间发展模型, 采用了拉丁超立方法生成各随机变量的设计样本点, 基于有限元模型求解对应样本点处的目标响应值;在此基础上, 通过改进SO为支持向量机(SVM)参数寻优构建设计样本点与目标响应值之间的最优响应面, 利用该响应面结合蒙特卡洛法(MC)建立了悬臂浇筑RC拱桥施工期可靠度分析模型;采用提出的方法计算了某实桥施工期全过程的2种典型失效模式下的可靠度, 并进行了参数敏感性分析。分析结果表明:改进SO较对比算法具有明显优势, 将某实桥悬臂浇筑施工期主拱圈应力和扣索应力预测精度分别提升至0.994 5和0.986 2, 从而提高了悬臂浇筑RC拱桥施工期可靠度分析的精度;大跨RC拱桥悬臂浇筑施工过程中对主拱圈应力可靠度影响较大的随机变量为扣索初拉力、主拱圈弹性模量和重度, 扣塔、扣索的弹性模量和重度为不敏感因素。Abstract: To improve the reliability calculation accuracy and efficiency of long-span reinforced concrete (RC) arch bridges during cantilever casting construction, a reliability analysis method based on an improved snake optimizer (SO) was proposed. In order to improve the optimization performance of the standard SO, Tent chaotic mapping was introduced to generate the initial population. Gaussian difference variation was performed on the optimal snake individuals in the iterative process, and the effectiveness of the improved algorithm was verified by common test functions. A C80 concrete strength development model with time was established based on the experimental data and existing studies. The design sample points of each random variable were generated by the Latin hypervertical method, and the target response values at the corresponding sample points were solved based on the finite element model. On this basis, the optimal response surface between the design sample points and the target response values was constructed by using the improved SO to optimize the parameters of the support vector machine (SVM), and the reliability analysis model of the RC arch bridge during cantilever casting construction was established by combining the response surface with the Monte Carlo (MC) method. The reliability of two typical failure modes during the whole construction of a real bridge was calculated by using the method proposed in this paper, and the sensitivity of the parameters was analyzed. Analysis results show that the improved SO has obvious advantages over the comparison algorithm. In a case study of a certain actual bridge during cantilever casting construction, it has enhanced the prediction accuracy of the main arch ring stress to 0.994 5 and that of the stay cable stress to 0.986 2, thereby enhancing the precision of reliability analysis for cantilever-cast RC arch bridges during construction. In the cantilever casting construction of long-span RC arch bridges, the initial tension of temporary cables, elastic modulus, and unit weight of the main arch ring are identified as the most significant stochastic variables affecting stress reliability. In contrast, the elastic modulus and unit weight of the cable tower and temporary cables are insensitive factors.
-
表 1 测试函数
Table 1. Test function
函数名称 函数表达式 取值范围 F1 $\sum\limits_{i=1}^n x_i^2$ [-100, 100] F2 $\sum\limits_{i=1}^{n}\left|x_{i}\right|+\prod\limits_{i=1}^{n}\left|x_{i}\right|$ [-10, 10] F3 $\sum\limits_{i=1}^{n}\left(\sum\limits_{j=1}^{i} x_{j}\right)^{2}$ [-100, 100] F4 $\max _{i}\left\{\left|x_{i}\right|, 1 \leqslant i \leqslant n\right\}$ [-100, 100] F5 $\sum\limits_{i=1}^{n} i x_{i}^{4}+\operatorname{random}[0, 1]$ [-1.28, 1.28] 表 2 优化算法测试结果比较
Table 2. Comparison of test results of optimization algorithms
函数名称 优化算法 最小值 平均值 标准差 F1 TGSO 0 2.929 8×10-123 1.306 3×10-122 SO 3.754 5×10-100 6.547 7×10-95 3.487 7×10-94 WOA 5.460 3×10-95 9.814 6×10-85 3.614 0×10-84 GWO 6.856 4×10-35 3.927 3×10-33 5.055 9×10-33 PSO 1.960 4×10-7 6.849 6×10-6 8.517 8×10-6 F2 TGSO 0 3.049 8×10-67 1.118 8×10-66 SO 4.582 5×10-48 2.990 3×10-45 8.969 6×10-45 WOA 2.165 4×10-59 1.032 7×10-53 4.730 3×10-53 GWO 9.971 2×10-21 8.772 8×10-20 6.929 5×10-20 PSO 1.042 1×10-3 6.135 3×10-3 5.705 3×10-3 F3 TGSO 0 1.173 0×10-84 6.300 2×10-84 SO 4.319 8×10-70 1.221 1×10-60 3.552 8×10-60 WOA 2.744 7×103 2.575 3×104 1.042 9×104 GWO 8.957 7×10-11 4.930 1×10-8 9.917 8×10-8 PSO 1.969 7×101 4.393 6×101 1.534 1×101 F4 TGSO 0 1.188 2×10-57 5.974 0×10-57 SO 8.212 3×10-45 2.369 8×10-41 5.564 6×10-41 WOA 2.586 3×10-3 3.463 2×101 2.337 6×101 GWO 4.035 1×10-9 2.656 8×10-8 2.699 4×10-8 PSO 4.593 1×10-1 8.488 8×10-1 2.115 7×10-1 F5 TGSO 1.314 6×10-5 2.015 1×10-4 1.234 0×10-4 SO 2.943 3×10-5 2.155 9×104 1.520 1×10-4 WOA 3.547 1×10-5 1.946 7×10-3 3.073 4×10-3 GWO 3.348 8×10-4 1.129 0×10-3 5.565 8×10-4 PSO 3.853 0×10-2 1.103 9×10-1 3.908 9×10-2 表 3 C80混凝土fcu曲线拟合结果
Table 3. fcu curves fitting results of C80 concrete
函数类型 函数表达式 a b c R2 和方差 指数函数 $f_{\text {cu }}=a \mathrm{e}^{b /\left(t^{\prime}+c\right)}$ 97.98 -1.159 0.367 4 0.971 0 6.852 2 幂函数 $f_{\mathrm{cu}}=a\left(t^{\prime}+b\right)^{c}$ 62.60 0.000 0.130 1 0.922 9 27.751 6 对数函数 $f_{\mathrm{cu}}=a+b \ln \left(t^{\prime}+c\right)$ 59.34 11.120 0.000 0 0.940 9 21.270 9 表 4 施工阶段划分
Table 4. Division of construction stages
施工阶段 施工内容 1 激活拱圈1#、2#节段,张拉2#扣索和锚索 2 安装3#挂篮,激活拱圈3#节段 3 张拉3#扣索和锚索 4~35 4#~19#节段拱圈浇筑,对应扣索和锚索张拉 36 拆除2#扣索和锚索 37 挂篮前移,激活拱圈20#节段 38 张拉20#扣索和锚索 39 拆除3#扣索和锚索 40 挂篮前移,激活拱圈21#节段 41 张拉21#扣索和锚索 42 拆除4#、5#扣索和锚索 43 挂篮前移,激活拱圈22#节段 44 张拉22#扣索和锚索(拱圈合龙前最大悬臂状态) 表 5 随机变量统计特征
Table 5. Statistical characteristics of random variables
变量类别 变量名称 对应构件 分布类型 均值 变异系数 弹性模量/GPa E1 主拱圈 正态分布 41.8 0.07 E2 扣塔 正态分布 206 0.05 E3 扣锚索 正态分布 195 0.05 重度/(kN·m-3) γ1 主拱圈 正态分布 26 0.05 γ2 扣塔 正态分布 78.5 0.05 γ3 扣锚索 正态分布 78.5 0.05 扣索初拉力/kN T2 2#扣索 正态分布 250 0.05 T3 3#扣索 正态分布 170 0.05 T4 4#扣索 正态分布 320 0.05 T5 5#扣索 正态分布 750 0.05 T6 6#扣索 正态分布 800 0.05 T7 7#扣索 正态分布 1 050 0.03 T8 8#扣索 正态分布 1 070 0.03 T9 9#扣索 正态分布 1 050 0.03 T10 10#扣索 正态分布 1 070 0.03 T11 11#扣索 正态分布 1 320 0.03 T12 12#扣索 正态分布 1 370 0.03 T13 13#扣索 正态分布 1 480 0.03 T14 14#扣索 正态分布 1 560 0.02 T15 15#扣索 正态分布 1 720 0.02 T16 16#扣索 正态分布 1 550 0.02 T17 17#扣索 正态分布 1 750 0.02 T18 18#扣索 正态分布 1 770 0.02 T19 19#扣索 正态分布 1 860 0.02 T20 20#扣索 正态分布 1 890 0.02 T21 21#扣索 正态分布 1 800 0.02 T22 22#扣索 正态分布 1 550 0.02 表 6 各算法SVM的寻优结果R2
Table 6. R2 of SVM optimization results of various algorithms
失效模式 TGSO SO WOA GWO PSO 主拱圈应力失效 0.994 5 0.963 0 0.948 4 0.938 6 0.940 6 扣索应力失效 0.986 2 0.952 5 0.944 6 0.941 8 0.932 7 -
[1] 陈宝春, 何福云, 李聪, 等. 美兰法与美兰拱桥技术发展综述[J]. 交通运输工程学报, 2022, 22(6): 1-24. doi: 10.19818/j.cnki.1671-1637.2022.06.001 CHEN Bao-chun, HE Fu-yun, LI Cong, et al. Review on technical development of Melan method and Melan arch bridges[J]. Journal of Traffic and Transportation Engineering, 2022, 22(6): 1-24. doi: 10.19818/j.cnki.1671-1637.2022.06.001 [2] 郑皆连. 大跨径拱桥的发展及展望[J]. 中国公路, 2017(13): 40-42.ZHENG Jie-lian. Development and prospect of long-span arch bridge[J]. China Highway, 2017(13): 40-42. [3] TIAN Z C, PENG W P, ZHANG J R, et al. Determination of initial cable force of cantilever casting concrete arch bridge using stress balance and influence matrix methods[J]. Journal of Central South University, 2019, 26(11): 3140-3155. doi: 10.1007/s11771-019-4242-0 [4] 《中国公路学报》编辑部. 中国桥梁工程学术研究综述·2021[J]. 中国公路学报, 2021, 34(2): 1-97.Editorial Department of China Journal of Highway and Transport. Review on China's bridge engineering research·2021[J]. China Journal of Highway and Transport, 2021, 34(2): 1-97. [5] 贡金鑫, 仲伟秋, 赵国藩. 工程结构可靠性基本理论的发展与应用(3)[J]. 建筑结构学报, 2002, 23(6): 2-9.GONG Jin-xin, ZHONG Wei-qiu, ZHAO Guo-fan. Developments and applications of reliability theories for engineering structures (3)[J]. Journal of Building Structures, 2002, 23(6): 2-9. [6] 刘扬, 张建仁, 李传习. 混凝土斜拉桥施工期的时变可靠度计算[J]. 中国公路学报, 2004, 17(3): 31-35.LIU Yang, ZHANG Jian-ren, LI Chuan-xi. Calculation of time-variant reliability for concrete cable-stayed bridges during construction[J]. China Journal of Highway and Transport, 2004, 17(3): 31-35. [7] 孙传智, 李爱群, 缪长青, 等. 大跨混凝土刚构桥参数识别和标高控制动态可靠度评估[J]. 东南大学学报(自然科学版), 2012, 42(1): 104-108.SUN Chuan-zhi, LI Ai-qun, MIAO Chang-qing, et al. Parameter identification and dynamic reliability evaluation of elevation control for long-span concrete rigid bridge[J]. Journal of Southeast University (Natural Science Edition), 2012, 42(1): 104-108. [8] 余晓琳, 杨勇, 贾布裕, 等. 斜拉桥施工阶段标高控制模糊随机可靠度分析[J]. 桥梁建设, 2014, 44(5): 112-117.YU Xiao-lin, YANG Yong, JIA Bu-yu, et al. Analysis of fuzzy random reliability of elevation control of cable-stayed bridge at construction stage[J]. Bridge Construction, 2014, 44(5): 112-117. [9] ZHANG T, CUI X J, GUO W W, et al. Static wind reliability analysis of long-span highway cable-stayed bridge in service[J]. Applied Sciences, 2023, 13(2): 749. doi: 10.3390/app13020749 [10] 白冰, 李乔, 张清华. 结构系统可靠度分析的SVC抽样迁移算法[J]. 西南交通大学学报, 2014, 49(6): 987-994.BAI Bing, LI Qiao, ZHANG Qing-hua. Support vector classification algorithm by migration sampling for structural system reliability evaluation[J]. Journal of Southwest Jiaotong University, 2014, 49(6): 987-994. [11] SHI Z Y, LU Z Z, ZHANG X B, et al. A novel adaptive support vector machine method for reliability analysis[J]. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 2021, 235(5): 896-908. doi: 10.1177/1748006X211003371 [12] 陈立家, 周欣蔚, 杨沛艺, 等. 面向环境不确定性的船舶操纵运动建模与预报方法[J]. 交通运输工程学报, 2024, 24(3): 279-295.CHEN Li-jia, ZHOU Xin-wei, YANG Pei-yi, et al. Modeling and prediction method of ship maneuvering motion facing environmental uncertainty[J]. Journal of Traffic and Transportation Engineering, 2024, 24(3): 279-295. [13] 韩彦彬, 白广忱, 李晓颖, 等. 基于SVM回归柔性机构的动态可靠性研究[J]. 工程力学, 2014, 31(12): 208-216.HAN Yan-bin, BAI Guang-chen, LI Xiao-ying, et al. Dynamic reliability research of flexible mechanism based on support vector machine regression[J]. Engineering Mechanics, 2014, 31(12): 208-216. [14] LI X K, GUO Y C, LI Y M. Particle swarm optimization-based SVM for classification of cable surface defects of the cable-stayed bridges[J]. IEEE Access, 2019, 8: 44485-44492. [15] MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67. doi: 10.1016/j.advengsoft.2016.01.008 [16] MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61. doi: 10.1016/j.advengsoft.2013.12.007 [17] LIU W B, WANG Z D, ZENG N Y, et al. A novel randomised particle swarm optimizer[J]. International Journal of Machine Learning and Cybernetics, 2021, 12(2): 529-540. doi: 10.1007/s13042-020-01186-4 [18] HASHIM F A, HUSSIEN A G. Snake Optimizer: A novel meta-heuristic optimization algorithm[J]. Knowledge-based Systems, 2022, 242: 108320. doi: 10.1016/j.knosys.2022.108320 [19] 滕志军, 吕金玲, 郭力文, 等. 一种基于Tent映射的混合灰狼优化的改进算法[J]. 哈尔滨工业大学学报, 2018, 50(11): 40-49.TENG Zhi-jun, LV Jin-ling, GUO Li-wen, et al. An improved hybrid gray wolf optimization algorithm based on Tent mapping[J]. Journal of Harbin Institute of Technology, 2018, 50(11): 40-49. [20] 展广涵, 王雨虹, 刘昊. 混合策略改进的哈里斯鹰优化算法及其应用[J]. 传感技术学报, 2022, 35(10): 1394-1403.ZHAN Guang-han, WANG Yu-hong, LIU Hao. Improved Harris Hawks optimization algorithm with hybrid strategy and its application[J]. Chinese Journal of Sensors and Actuators, 2022, 35(10): 1394-1403. [21] 陈雷, 尹钧圣. 高斯差分变异和对数惯性权重优化的鲸群算法[J]. 计算机工程与应用, 2021, 57(2): 77-90.CHEN Lei, YIN Jun-sheng. Whale swarm optimization algorithm based on Gaussian difference mutation and logarithmic inertia weight[J]. Computer Engineering and Applications, 2021, 57(2): 77-90. [22] TIAN Z C, ZHANG Z J, NING C, et al. Multi-objective optimization of cable force of arch bridge constructed by cable-stayed cantilever cast-in-situ method based on improved NSGA-Ⅱ[J]. Structures, 2024, 59: 105782. doi: 10.1016/j.istruc.2023.105782 [23] 刘扬, 张建仁. 混凝土斜拉桥施工阶段的体系可靠度[J]. 中国公路学报, 2006, 19(5): 53-58.LIU Yang, ZHANG Jian-ren. System reliability for concrete cable-stayed bridges during construction[J]. China Journal of Highway and Transport, 2006, 19(5): 53-58. [24] 余志武, 丁发兴. 混凝土受压力学性能统一计算方法[J]. 建筑结构学报, 2003, 24(4): 41-46.YU Zhi-wu, DING Fa-xing. Unified calculation method of compressive mechanical properties of concrete[J]. Journal of Building Structures, 2003, 23(4): 41-46. [25] 李国友, 杨梦琪, 杭丙鹏, 等. 基于模糊粗糙集和鲸鱼优化支持向量机的化工过程故障诊断[J]. 振动与冲击, 2022, 41(2): 177-184.LI Guo-you, YANG Meng-qi, HANG Bing-peng, et al. Fault diagnosis of chemical processes based on the SVM optimized by fuzzy rough sets and a whale optimization algorithm[J]. Journal of Vibration and Shock, 2022, 41(2): 177-184. [26] 胡欣, 熊帮彬, 肖剑, 等. 基于SVM-BP降雨型黄土滑坡灾害安全评价模型研究[J]. 中国公路学报, 2023, 36(4): 68-80.HU Xin, XIONG Bang-bin, XIAO Jian, et al. Safety evaluation model of rainfall-type loess landslide disaster based on SVM-BP[J]. China Journal of Highway and Transport, 2023, 36(4): 68-80. [27] 李昕燃, 靳伍银. 基于改进麻雀算法优化支持向量机的滚动轴承故障诊断研究[J]. 振动与冲击, 2023, 42(6): 106-114.LI Xin-ran, JIN Wu-yin. Fault diagnosis of rolling bearings based on ISSA-SVM[J]. Journal of Vibration and Shock, 2023, 42(6): 106-114. [28] 刘维桢, 秦航远, 刘金朝, 等. 基于广义解调和SSA-SVM模型的高速道岔区晃车诊断方法[J]. 中国铁道科学, 2024, 45(3): 1-11.LIU Wei-zhen, QIN Hang-yuan, LIU Jin-zhao, et al. A diagnosis method for vehicle shaking in high-speed turnout area based on generalized demodulation and SSA-SVM[J]. China Railway Science, 2024, 45(3): 1-11. [29] 任娟娟, 杜威, 叶文龙, 等. 基于PSO-SVM的板式无砟轨道CA砂浆脱空损伤识别[J]. 中南大学学报(自然科学版), 2021, 52(11): 4021-4031.REN Juan-juan, DU Wei, YE Wen-long, et al. Contact loss identification of CA mortar in prefabricated slab track based on PSO-SVM[J]. Journal of Central South University(Science and Technology), 2021, 52(11): 4021-4031. [30] 朱剑锋, 汪正清, 陶燕丽, 等. 电石渣-草木灰复合固化剂固化废弃软土微观特性研究[J]. 土木工程学报, 2023, 56(10): 180-189.ZHU Jian-feng, WANG Zheng-qing, TAO Yan-li, et al. Study on micro characteristics of waste soft soil solidified by calcium carbide slag plant ash composite curing agent[J]. China Civil Engineering Journal, 2023, 56(10): 180-189. -
下载: