Seismic performance of RC columns strengthened by steel tube-confined ultra-high performance concrete
-
摘要: 面向高烈度地震区既有钢筋混凝土(RC)桥墩抗震性能不足的加固需求,提出了一种超高性能混凝土(UHPC)的新型钢管约束加固技术;为探究该新型加固墩柱的抗震性能,以加固类型和初始轴压比为研究参数,拟静力试验研究了5根试件的破坏模式、滞回曲线、骨架曲线及抗震性能指标;以试验结果作为验证依据,建立了能准确模拟钢管约束UHPC加固RC柱滞回性能的有限元模型,继而借助有限元对加固层的UHPC厚度、UHPC强度和钢管厚度进行了参数拓展分析。研究结果表明:RC柱经钢管约束UHPC加固后,塑性铰区减小,且集中于柱脚钢管切缝处;与UHPC增大截面加固法相比,同条件下钢管约束UHPC加固柱的位移延性系数、累计滞回耗能和初始刚度均得到更明显提高,残余变形则减小更为显著;随着初始轴压比在0~0.3范围增大,钢管约束UHPC加固柱的破坏模式、承载力和耗能能力等无明显变化,但位移延性系数和初始刚度有所减小,残余位移趋于增大;提高加固层UHPC的强度,可明显提升加固柱的耗能能力;增加加固层钢管的厚度,则有利于显著减小加固柱的残余位移;增大加固层UHPC的厚度,加固柱的承载力、位移延性系数、累计滞回耗能和初始刚度均有明显提高,同时其残余位移显著减小。以上研究成果可为钢管约束UHPC预防性抗震加固既有RC墩柱的应用奠定理论基础。Abstract: To address the seismic retrofitting demand for existing reinforced concrete (RC) bridge piers in high-intensity seismic regions, a novel strengthening technique using steel tube-confined ultra-high performance concrete (UHPC) was proposed. To investigate the seismic performance of the newly strengthened piers, quasi-static tests were conducted on five specimens, with strengthening type and initial axial load ratio as parameters. Failure modes, hysteretic curves, skeleton curves, and seismic performance indices were measured. Then, based on the experimental results, a finite element model was built to accurately simulate the quasi-static behavior of the strengthened columns. Subsequently, parametric analyses were carried out using finite element simulations, considering the UHPC layer thickness, UHPC strength, and steel tube thickness. Research results show that after strengthening with steel tube-confined UHPC, the plastic hinge region of the RC columns was reduced and concentrated near the cut in the steel tube at the column base. Compared with the UHPC section enlargement method, the steel tube-confined UHPC strengthening technique provides greater improvement in displacement ductility coefficient, cumulative hysteretic energy dissipation, and initial stiffness, along with a more significant reduction in residual deformation under the same conditions. As the initial axial load ratio increases within the range of 0 - 0.3, the failure mode, bearing capacity, and energy dissipation capacity remain largely unchanged. However, displacement ductility and initial stiffness decrease, and residual displacement tends to increase. Increasing the UHPC strength in the strengthening layer significantly improves the energy dissipation capacity. Increasing the thickness of the steel tube in the strengthening layer significantly reduces the residual displacement. Increasing the UHPC thickness in the strengthening layer enhances bearing capacity, displacement ductility, cumulative hysteretic energy dissipation, and initial stiffness, while also markedly reducing residual displacement. These findings are expected to provide a theoretical basis for the application of steel tube-confined UHPC in the preventive seismic strengthening of existing RC bridge piers.
-
表 1 试件主要参数
Table 1. Main parameters of test specimens
试件编号 外径/mm fc2/MPa t/mm nl 加载轴压力/kN no 初始轴压力/kN RC-0 150 0.3 141 0.00 0 URC-0 240 128.8 0.3 921 0.00 0 STURC-0 240 128.8 4 0.3 1 068 0.00 0 STURC-0.15 240 128.8 4 0.3 1 068 0.15 68 STURC-0.30 240 128.8 4 0.3 1 068 0.30 148 表 2 混凝土配合比
Table 2. Mix design of concrete
kg·m-3 C30 水泥 粉煤灰 减水剂 石子 机制砂 水 360 65 7.5 1 110 365 160 UHPC 水泥 硅灰 石英砂 高效减水剂 水 钢纤维 860 258 1 007 22 179 157 表 3 钢材材性
Table 3. Steel material properties
钢材类型 弹性模量Es/GPa 屈服强度fy/MPa 极限强度fu/MPa 断后伸长率/% Q355钢管 208 338 548 22.07 HRB400纵筋 210 453 595 23.14 HPB235箍筋 206 238 424 29.81 表 4 混凝土本构相关参数
Table 4. Parameters related to concrete constitutive behaviors
材料类型 塑性参数 受拉本构关系 膨胀角/(°) 偏心率 fb0/fc0 K 黏性系数 峰值拉应力/MPa 断裂能/(106 J·mm-2) C30 41.19 0.1 1.156 0.724 0.005 3.2 0.062 7 UHPC 41.19 0.1 1.042 0.698 0.005 13.5 0.174 9 -
[1] 《中国公路学报》编辑部. 中国桥梁工程学术研究综述·2021[J]. 中国公路学报, 2021, 34(2): 1-97.Editorial Department of China Journal of Highway and Transport. Review on China's bridge engineering research: 2021[J]. China Journal of Highway and Transport, 2021, 34(2): 1-97. [2] 赵灿晖, 贾宏宇, 岳伟勤, 等. 桥梁抗震2020年度研究进展[J]. 土木与环境工程学报(中英文), 2021, 43(增1): 91-99.ZHAO Can-hui, JIA Hong-yu, YUE Wei-qin, et al. State-of-the-art review of seismic design of bridge in 2020[J]. Journal of Civil and Environmental Engineering, 2021, 43(S1): 91-99. [3] YUAN W T, WANG X T, GUO A X, et al. Cyclic performance of RC bridge piers retrofitted with UHPC jackets: Experimental investigation[J]. Engineering Structures, 2022, 259: 114139. doi: 10.1016/j.engstruct.2022.114139 [4] REGGIA A, MORBI A, PLIZZARI G A. Experimental study of a reinforced concrete bridge pier strengthened with HPFRC jacketing[J]. Engineering Structures, 2020, 210: 110355. doi: 10.1016/j.engstruct.2020.110355 [5] 曹鸿猷, 陈云峰, 李俊, 等. 预制小箱梁UHPC-NC组合负弯矩区抗弯承载能力[J]. 长安大学学报(自然科学版), 2024, 44(6): 59-71.CAO Hong-you, CHEN Yun-feng, LI Jun, et al. Bending-bearing capacity of UHPC-NC composite negative bending moment region of small box girder[J]. Journal of Chang'an University (Natural Science Edition), 2024, 44(6): 59-71. [6] FAKHARIFAR M, CHEN G D, WU C L, et al. Rapid repair of earthquake-damaged RC columns with prestressed steel jackets[J]. Journal of Bridge Engineering, 2016, 21(4): 04015075. doi: 10.1061/(ASCE)BE.1943-5592.0000840 [7] YU L F, MA S Q, SUN J F, et al. Seismic analysis of reinforced concrete bridge piers based on ductile reinforcement[J]. KSCE Journal of Civil Engineering, 2023, 27(12): 5216-5230. doi: 10.1007/s12205-023-0845-y [8] XIA Z H, LIN L M, ZHANG J H, et al. Seismic performance of underwater RC bridge piers strengthened with self-compacting concrete-filled BFRP jacket[J]. Structures, 2022, 39: 637-652. doi: 10.1016/j.istruc.2022.03.036 [9] SHAO Y, KUO C W, HUNG C C. Seismic performance of full-scale UHPC-jacket-strengthened RC columns under high axial loads[J]. Engineering Structures, 2021, 243: 112657. doi: 10.1016/j.engstruct.2021.112657 [10] 张阳玺, 李睿喆, 邓明科, 等. 超高性能混凝土加固钢筋混凝土柱抗震性能试验研究[J]. 建筑结构学报, 2023, 44(8): 88-98.ZHANG Yang-xi, LI Rui-zhe, DENG Ming-ke, et al. Experimental study on seismic behavior of RC columns strengthened with ultra-high performance concrete jacket[J]. Journal of Building Structures, 2023, 44(8): 88-98. [11] AL-OSTA M A, SHARIF A M, MOHAMED SUHOOTHI A C, et al. Strengthening of axially and eccentrically compression loaded RC columns with UHPC jacketing system: Experimental investigation and finite element modeling[J]. Engineering Structures, 2021, 245: 112850. doi: 10.1016/j.engstruct.2021.112850 [12] 李送根, 程明明, 晏国泰, 等. 华南大桥墩柱加固设计与施工[J]. 中国港湾建设, 2024, 44(6): 21-27.LI Song-gen, CHENG Ming-ming, YAN Guo-tai, et al. Design and construction of reinforcement for pier columns of Huanan Bridge[J]. China Harbour Engineering, 2024, 44(6): 21-27. [13] LU C L, OUYANG K, GUO C, et al. Axial compressive performance of RC columns strengthened with prestressed CFRP fabric combined with UHPC jacket[J]. Engineering Structures, 2023, 275: 115113. doi: 10.1016/j.engstruct.2022.115113 [14] GUAN D Z, CHEN Z X, LIU J B, et al. Seismic performance of precast concrete columns with prefabricated UHPC jackets in plastic hinge zone[J]. Engineering Structures, 2021, 245: 112776. doi: 10.1016/j.engstruct.2021.112776 [15] TONG T, YUAN S Q, ZHUO W D, et al. Seismic retrofitting of rectangular bridge piers using ultra-high performance fiber reinforced concrete jackets[J]. Composite Structures, 2019, 228: 111367. doi: 10.1016/j.compstruct.2019.111367 [16] 卢亦焱. 外套钢管混凝土加固RC柱技术研究进展[J]. 建筑结构学报, 2021, 42(12): 90-100.LU Yi-yan. Research advances in composite strengthening of RC columns with steel tube and sandwiched concrete jacketing[J]. Journal of Building Structures, 2021, 42(12): 90-100. [17] 贾迪. 公路旧桥墩柱抗震加固策略研究[J]. 市政技术, 2017, 35(1): 55-57.JIA Di. Study on seismic strengthening strategy of old highway bridge pier columns[J]. Journal of Municipal Technology, 2017, 35(1): 55-57. [18] FU T, REN X Q, WANG K, et al. Seismic performance of prefabricated steel tube-confined concrete circular pier[J]. Structures, 2022, 43: 910-925. doi: 10.1016/j.istruc.2022.07.022 [19] ZHOU X H, WANG H C, WANG X D, et al. Seismic behavior of dumb-bell steel tube confined reinforced concrete piers[J]. Engineering Structures, 2020, 206: 110126. doi: 10.1016/j.engstruct.2019.110126 [20] 肖岩, 郭玉荣, 何文辉, 等. 局部加劲钢套管加固钢筋混凝土柱的研究[J]. 建筑结构学报, 2003, 24(6): 79-86.XIAO Yan, GUO Yu-rong, HE Wen-hui, et al. Retrofit of reinforced concrete columns using partially stiffened steel jackets[J]. Journal of Building Structures, 2003, 24(6): 79-86. [21] 郭子雄, 黄群贤, 郝娟, 等. 预应力钢套箍加固RC桥墩轴压性能试验研究[J]. 中南大学学报(自然科学版), 2015, 46(8): 3100-3107.GUO Zi-xiong, HUANG Qun-xian, HAO Juan, et al. Experimental study on axial compression behavior of RC circular pier retrofitted by prestressed steel jackets[J]. Journal of Central South University (Science and Technology), 2015, 46(8): 3100-3107. [22] HE A, CAI J, CHEN Q J, et al. Seismic behaviour of steel-jacket retrofitted reinforced concrete columns with recycled aggregate concrete[J]. Construction and Building Materials, 2018, 158: 624-639. doi: 10.1016/j.conbuildmat.2017.10.053 [23] 陈庆军, 梁竣杰, 蔡健, 等. 钢套管再生混凝土加固柱抗震性能及影响参数研究[J]. 工程力学, 2019, 36(12): 206-217, 256.CHEN Qing-jun, LIANG Jun-jie, CAI Jian, et al. Investigation on seismic behavior and influencing parameters of steel-jacket strengthened columns with recycled aggregate concrete[J]. Engineering Mechanics, 2019, 36(12): 206-217, 256. [24] 殷晓三, 梁鸿骏, 卢亦焱, 等. 钢套管混凝土加固RC柱轴压受力全过程分析[J]. 应用基础与工程科学学报, 2022, 30(3): 566-578.YIN Xiao-san, LIANG Hong-jun, LU Yi-yan, et al. Analysis on behavior of square RC columns strengthened with concrete filled steel tube under axial load[J]. Journal of Basic Science and Engineering, 2022, 30(3): 566-578. [25] 李哲, 冯学伟, 吕鑫, 等. 圆钢套管-钢纤维水泥砂浆加固预损RC柱轴压性能研究[J]. 应用力学学报, 2022, 39(2): 336-341.LI Zhe, FENG Xue-wei, LV Xin, et al. Axial compression performance of pre-cracked RC columns strengthened by round steel casing and steel fiber cement mortar[J]. Chinese Journal of Applied Mechanics, 2022, 39(2): 336-341. [26] PRION H G L, BOEHME J. Beam-column behaviour of steel tubes filled with high-strength concrete[J]. Canadian Journal of Civil Engineering, 1994, 21(2): 207-218. doi: 10.1139/l94-024 [27] LAHLOU K, LACHEMI M, AÏTCIN P C. Confined high-strength concrete under dynamic compressive loading[J]. Journal of Structural Engineering, 1999, 125(10): 1100-1108. doi: 10.1061/(ASCE)0733-9445(1999)125:10(1100) [28] GAN D, GUO L H, LIU J P, et al. Seismic behavior and moment strength of tubed steel reinforced-concrete (SRC) beam-columns[J]. Journal of Constructional Steel Research, 2011, 67(10): 1516-1524. doi: 10.1016/j.jcsr.2011.03.025 [29] 周绪红, 刘界鹏, 张素梅. 方钢管约束钢筋高强混凝土超短柱抗震性能试验研究[J]. 土木工程学报, 2010, 43(8): 1-10.ZHOU Xu-hong, LIU Jie-peng, ZHANG Su-mei. Seismic behavior of ultra short columns of square tubed high strength reinforced concrete[J]. China Civil Engineering Journal, 2010, 43(8): 1-10. [30] BU S S, YU F, CHEN T Y, et al. Experimental study on seismic behavior of circular steel tube confined reinforced self-stressing steel slag concrete columns[J]. Structural Concrete, 2023, 24(1): 1102-1117. doi: 10.1002/suco.202200036 [31] CHOI E, YOUN H, CHO B S. Probabilistic seismic performance assessment of lap-spliced RC columns retrofitted by steel wrapping jackets[J]. Earthquake Engineering and Engineering Vibration, 2016, 15(2): 223-238. doi: 10.1007/s11803-016-0318-0 [32] 石若利, 罗靓, 潘志成, 等. 钢管约束钢筋混凝土柱抗震设计方法及塑性铰[J]. 西北工业大学学报, 2021, 39(6): 1320-1330.SHI Ruo-li, LUO Liang, PAN Zhi-cheng, et al. Seismic design method and plastic hinge of square steel tube confined reinforced concrete (STRC) columns[J]. Journal of Northwestern Polytechnical University, 2021, 39(6): 1320-1330. [33] 韦建刚, 谢志涛, 罗霞, 等. 圆钢管约束超高性能混凝土短柱轴压受力性能研究[J]. 建筑结构学报, 2022, 43(6): 34-42.WEI Jian-gang, XIE Zhi-tao, LUO Xia, et al. Mechanical behavior of circular steel tube confined ultra high performance concrete stub columns under axial compressive loading[J]. Journal of Building Structures, 2022, 43(6): 34-42. [34] HOANG A L, FEHLING E, LAI B L, et al. Experimental study on structural performance of UHPC and UHPFRC columns confined with steel tube[J]. Engineering Structures, 2019, 187: 457-477. doi: 10.1016/j.engstruct.2019.02.063 [35] 欧智菁, 俞杰. 钢管约束超高性能混凝土柱的抗震性能[J]. 扬州大学学报(自然科学版), 2020, 23(2): 52-56.OU Zhi-jing, YU Jie. Seismic behavior of steel tube confined UHPC columns[J]. Journal of Yangzhou University (Natural Science Edition), 2020, 23(2): 52-56. [36] SU R K L, WANG L. Axial strengthening of preloaded rectangular concrete columns by precambered steel plates[J]. Engineering Structures, 2012, 38: 42-52. doi: 10.1016/j.engstruct.2012.01.003 [37] WANG L, SU R K L. Theoretical and experimental study of plate-strengthened concrete columns under eccentric compression loading[J]. Journal of Structural Engineering, 2013, 139(3): 350-359. doi: 10.1061/(ASCE)ST.1943-541X.0000659 [38] 卢亦焱, 易斯, 李杉, 等. 圆钢管自密实混凝土加固钢筋混凝土柱抗震性能试验研究[J]. 建筑结构学报, 2018, 39(10): 65-74.LU Yi-yan, YI Si, LI Shan, et al. Experimental research on seismic performance of circular RC column strengthened with self-compacting concrete filled circular steel tube[J]. Journal of Building Structures, 2018, 39(10): 65-74. [39] 冯鹏, 强翰霖, 叶列平. 材料、构件、结构的"屈服点"定义与讨论[J]. 工程力学, 2017, 34(3): 36-46.FENG Peng, QIANG Han-lin, YE Lie-ping. Discussion and definition on yield points of materials, members and structures[J]. Engineering Mechanics, 2017, 34(3): 36-46. [40] CHEN Z P, JING C G, XU J J, et al. Seismic performance of recycled concrete-filled square steel tube columns[J]. Earthquake Engineering and Engineering Vibration, 2017, 16(1): 119-130. doi: 10.1007/s11803-017-0372-2 [41] ZHAO P T, HUANG Y, LIU Z Z, et al. Experimental research on seismic performance of steel fiber-reinforced recycled concrete-filled circular steel tube columns[J]. Journal of Building Engineering, 2022, 54: 104683. doi: 10.1016/j.jobe.2022.104683 [42] CHU Y P, ZHONG Y, SHI B X, et al. Experimental study on seismic performance of seismic-damaged RC frames strengthened by different strengthening methods[J]. Structures, 2022, 41: 1475-1487. doi: 10.1016/j.istruc.2022.05.103 [43] TAO Z, WANG Z B, YU Q. Finite element modelling of concrete-filled steel stub columns under axial compression[J]. Journal of Constructional Steel Research, 2013, 89: 121-131. doi: 10.1016/j.jcsr.2013.07.001 [44] BIRTEL V, MARK P. Parameterized finite element modeling of RC beam shear failure[C]//ABAQUS. Proceedings of the 19th Annual International ABAQUS Users' Conference. Boston: ABAQUS, 2006: 95-108. [45] LAI Z C, VARMA A H. High-strength rectangular CFT members: Database, modeling, and design of short columns[J]. Journal of Structural Engineering, 2018, 144(5): 04018036. doi: 10.1061/(ASCE)ST.1943-541X.0002026 [46] CHEN Z P, XU R T, NING F, et al. Compression behaviour and bearing capacity calculation of concrete filled double skin square steel columns[J]. Journal of Building Engineering, 2021, 42: 103022. doi: 10.1016/j.jobe.2021.103022 [47] HU J Y, HUANG Y F, LI W J, et al. Compressive behaviour of UHPC-filled square high-strength steel tube stub columns under eccentric loading[J]. Journal of Constructional Steel Research, 2022, 198: 107558. doi: 10.1016/j.jcsr.2022.107558 [48] ZHANG R, CHEN S M, GU P, et al. Structural behavior of UHPC filled steel tubular columns under eccentric loading[J]. Thin-walled Structures, 2020, 156: 106959. doi: 10.1016/j.tws.2020.106959 -
下载: