留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钢管约束超高性能混凝土加固RC墩柱抗震性能

罗霞 余昕烨 韦建刚 杨艳 杨毅林

罗霞, 余昕烨, 韦建刚, 杨艳, 杨毅林. 钢管约束超高性能混凝土加固RC墩柱抗震性能[J]. 交通运输工程学报, 2025, 25(5): 234-249. doi: 10.19818/j.cnki.1671-1637.2025.05.016
引用本文: 罗霞, 余昕烨, 韦建刚, 杨艳, 杨毅林. 钢管约束超高性能混凝土加固RC墩柱抗震性能[J]. 交通运输工程学报, 2025, 25(5): 234-249. doi: 10.19818/j.cnki.1671-1637.2025.05.016
LUO Xia, YU Xin-ye, WEI Jian-gang, YANG Yan, YANG Yi-lin. Seismic performance of RC columns strengthened by steel tube-confined ultra-high performance concrete[J]. Journal of Traffic and Transportation Engineering, 2025, 25(5): 234-249. doi: 10.19818/j.cnki.1671-1637.2025.05.016
Citation: LUO Xia, YU Xin-ye, WEI Jian-gang, YANG Yan, YANG Yi-lin. Seismic performance of RC columns strengthened by steel tube-confined ultra-high performance concrete[J]. Journal of Traffic and Transportation Engineering, 2025, 25(5): 234-249. doi: 10.19818/j.cnki.1671-1637.2025.05.016

钢管约束超高性能混凝土加固RC墩柱抗震性能

doi: 10.19818/j.cnki.1671-1637.2025.05.016
基金项目: 

国家自然科学基金项目 52278158

福建省自然科学基金项目 2022J05188

福建理工大学科技项目 GY-Z21220

福建理工大学科技项目 GY-Z20174

详细信息
    作者简介:

    罗霞(1990-),女,福建龙岩人,福建理工大学副教授,工学博士,从事超高性能混凝土与钢-混凝土组合结构受力性能研究

    通讯作者:

    韦建刚(1971-),男,广西上思人,福建理工大学研究员,工学博士

  • 中图分类号: U443.22

Seismic performance of RC columns strengthened by steel tube-confined ultra-high performance concrete

Funds: 

National Natural Science Foundation of China 52278158

Natural Science Foundation of Fujian Province 2022J05188

Science and Technology Projects of Fujian University of Technology GY-Z21220

Science and Technology Projects of Fujian University of Technology GY-Z20174

More Information
    Corresponding author: WEI Jian-gang (1971-), male, professor, PhD, weijg@fzu.edu.cn
Article Text (Baidu Translation)
  • 摘要: 面向高烈度地震区既有钢筋混凝土(RC)桥墩抗震性能不足的加固需求,提出了一种超高性能混凝土(UHPC)的新型钢管约束加固技术;为探究该新型加固墩柱的抗震性能,以加固类型和初始轴压比为研究参数,拟静力试验研究了5根试件的破坏模式、滞回曲线、骨架曲线及抗震性能指标;以试验结果作为验证依据,建立了能准确模拟钢管约束UHPC加固RC柱滞回性能的有限元模型,继而借助有限元对加固层的UHPC厚度、UHPC强度和钢管厚度进行了参数拓展分析。研究结果表明:RC柱经钢管约束UHPC加固后,塑性铰区减小,且集中于柱脚钢管切缝处;与UHPC增大截面加固法相比,同条件下钢管约束UHPC加固柱的位移延性系数、累计滞回耗能和初始刚度均得到更明显提高,残余变形则减小更为显著;随着初始轴压比在0~0.3范围增大,钢管约束UHPC加固柱的破坏模式、承载力和耗能能力等无明显变化,但位移延性系数和初始刚度有所减小,残余位移趋于增大;提高加固层UHPC的强度,可明显提升加固柱的耗能能力;增加加固层钢管的厚度,则有利于显著减小加固柱的残余位移;增大加固层UHPC的厚度,加固柱的承载力、位移延性系数、累计滞回耗能和初始刚度均有明显提高,同时其残余位移显著减小。以上研究成果可为钢管约束UHPC预防性抗震加固既有RC墩柱的应用奠定理论基础。

     

  • 图  1  试件横截面示意(单位:mm)

    Figure  1.  Schematic of cross-section of specimen (unit: mm)

    图  2  基准试件设计尺寸(单位:mm)

    Figure  2.  Design size of standard specimen (unit: mm)

    图  3  钢材材性曲线

    Figure  3.  Steel material curves

    图  4  试件测点布置(单位:mm)

    Figure  4.  Measuring point arrangements of specimens (unit: mm)

    图  5  试验加载装置

    Figure  5.  Test loading setup

    图  6  试验加载制度

    Figure  6.  Experimental loading protocol

    图  7  试件的破坏形态

    Figure  7.  Failure modes of specimens

    图  8  荷载-位移滞回曲线

    Figure  8.  Load-displacement hysteretic curves

    图  9  荷载-位移骨架曲线

    Figure  9.  Load-displacement skeleton curves

    图  10  纵筋应变-位移曲线

    Figure  10.  Strain-displacement curves of longitudinal reinforcement

    图  11  箍筋应变-位移曲线

    Figure  11.  Strain-displacement curves of stirrups

    图  12  钢管应变-位移曲线

    Figure  12.  Strain-displacement curves of steel tubes

    图  13  位移延性系数对比

    Figure  13.  Comparison of displacement ductility coefficients

    图  14  累积滞回耗能对比

    Figure  14.  Comparison of cumulative hysteretic energy dissipation

    图  15  刚度退化

    Figure  15.  Stiffness degradation

    图  16  残余位移与加载位移的关系曲线

    Figure  16.  Relationship curves between residual displacement and loading displacement

    图  17  钢管约束UHPC加固RC柱有限元模型

    Figure  17.  Finite element model of RC columns strengthened by steel tube-confined UHPC

    图  18  有限元模型结果和试验结果的曲线对比

    Figure  18.  Comparison of curves between finite element model results and experimental results

    图  19  模型结果和试验结果的混凝土损伤对比(STURC-0)

    Figure  19.  Comparison of concrete damage between model results and experimental results (STURC-0)

    图  20  UHPC强度对钢管约束UHPC加固柱抗震性能的影响

    Figure  20.  Effect of UHPC strength on seismic performance of steel tube-confined UHPC strengthened columns

    图  21  UHPC厚度对钢管约束UHPC加固柱抗震性能的影响

    Figure  21.  Influence of UHPC thickness on seismic performance of steel tube-confined UHPC strengthened columns

    图  22  钢管厚度对钢管约束UHPC加固柱抗震性能的影响

    Figure  22.  Influence of steel tube thickness on seismic performance of steel tube-confined UHPC strengthened columns

    表  1  试件主要参数

    Table  1.   Main parameters of test specimens

    试件编号 外径/mm fc2/MPa t/mm nl 加载轴压力/kN no 初始轴压力/kN
    RC-0 150 0.3 141 0.00 0
    URC-0 240 128.8 0.3 921 0.00 0
    STURC-0 240 128.8 4 0.3 1 068 0.00 0
    STURC-0.15 240 128.8 4 0.3 1 068 0.15 68
    STURC-0.30 240 128.8 4 0.3 1 068 0.30 148
    下载: 导出CSV

    表  2  混凝土配合比

    Table  2.   Mix design of concrete  kg·m-3

    C30 水泥 粉煤灰 减水剂 石子 机制砂
    360 65 7.5 1 110 365 160
    UHPC 水泥 硅灰 石英砂 高效减水剂 钢纤维
    860 258 1 007 22 179 157
    下载: 导出CSV

    表  3  钢材材性

    Table  3.   Steel material properties

    钢材类型 弹性模量Es/GPa 屈服强度fy/MPa 极限强度fu/MPa 断后伸长率/%
    Q355钢管 208 338 548 22.07
    HRB400纵筋 210 453 595 23.14
    HPB235箍筋 206 238 424 29.81
    下载: 导出CSV

    表  4  混凝土本构相关参数

    Table  4.   Parameters related to concrete constitutive behaviors

    材料类型 塑性参数 受拉本构关系
    膨胀角/(°) 偏心率 fb0/fc0 K 黏性系数 峰值拉应力/MPa 断裂能/(106 J·mm-2)
    C30 41.19 0.1 1.156 0.724 0.005 3.2 0.062 7
    UHPC 41.19 0.1 1.042 0.698 0.005 13.5 0.174 9
    下载: 导出CSV
  • [1] 《中国公路学报》编辑部. 中国桥梁工程学术研究综述·2021[J]. 中国公路学报, 2021, 34(2): 1-97.

    Editorial Department of China Journal of Highway and Transport. Review on China's bridge engineering research: 2021[J]. China Journal of Highway and Transport, 2021, 34(2): 1-97.
    [2] 赵灿晖, 贾宏宇, 岳伟勤, 等. 桥梁抗震2020年度研究进展[J]. 土木与环境工程学报(中英文), 2021, 43(增1): 91-99.

    ZHAO Can-hui, JIA Hong-yu, YUE Wei-qin, et al. State-of-the-art review of seismic design of bridge in 2020[J]. Journal of Civil and Environmental Engineering, 2021, 43(S1): 91-99.
    [3] YUAN W T, WANG X T, GUO A X, et al. Cyclic performance of RC bridge piers retrofitted with UHPC jackets: Experimental investigation[J]. Engineering Structures, 2022, 259: 114139. doi: 10.1016/j.engstruct.2022.114139
    [4] REGGIA A, MORBI A, PLIZZARI G A. Experimental study of a reinforced concrete bridge pier strengthened with HPFRC jacketing[J]. Engineering Structures, 2020, 210: 110355. doi: 10.1016/j.engstruct.2020.110355
    [5] 曹鸿猷, 陈云峰, 李俊, 等. 预制小箱梁UHPC-NC组合负弯矩区抗弯承载能力[J]. 长安大学学报(自然科学版), 2024, 44(6): 59-71.

    CAO Hong-you, CHEN Yun-feng, LI Jun, et al. Bending-bearing capacity of UHPC-NC composite negative bending moment region of small box girder[J]. Journal of Chang'an University (Natural Science Edition), 2024, 44(6): 59-71.
    [6] FAKHARIFAR M, CHEN G D, WU C L, et al. Rapid repair of earthquake-damaged RC columns with prestressed steel jackets[J]. Journal of Bridge Engineering, 2016, 21(4): 04015075. doi: 10.1061/(ASCE)BE.1943-5592.0000840
    [7] YU L F, MA S Q, SUN J F, et al. Seismic analysis of reinforced concrete bridge piers based on ductile reinforcement[J]. KSCE Journal of Civil Engineering, 2023, 27(12): 5216-5230. doi: 10.1007/s12205-023-0845-y
    [8] XIA Z H, LIN L M, ZHANG J H, et al. Seismic performance of underwater RC bridge piers strengthened with self-compacting concrete-filled BFRP jacket[J]. Structures, 2022, 39: 637-652. doi: 10.1016/j.istruc.2022.03.036
    [9] SHAO Y, KUO C W, HUNG C C. Seismic performance of full-scale UHPC-jacket-strengthened RC columns under high axial loads[J]. Engineering Structures, 2021, 243: 112657. doi: 10.1016/j.engstruct.2021.112657
    [10] 张阳玺, 李睿喆, 邓明科, 等. 超高性能混凝土加固钢筋混凝土柱抗震性能试验研究[J]. 建筑结构学报, 2023, 44(8): 88-98.

    ZHANG Yang-xi, LI Rui-zhe, DENG Ming-ke, et al. Experimental study on seismic behavior of RC columns strengthened with ultra-high performance concrete jacket[J]. Journal of Building Structures, 2023, 44(8): 88-98.
    [11] AL-OSTA M A, SHARIF A M, MOHAMED SUHOOTHI A C, et al. Strengthening of axially and eccentrically compression loaded RC columns with UHPC jacketing system: Experimental investigation and finite element modeling[J]. Engineering Structures, 2021, 245: 112850. doi: 10.1016/j.engstruct.2021.112850
    [12] 李送根, 程明明, 晏国泰, 等. 华南大桥墩柱加固设计与施工[J]. 中国港湾建设, 2024, 44(6): 21-27.

    LI Song-gen, CHENG Ming-ming, YAN Guo-tai, et al. Design and construction of reinforcement for pier columns of Huanan Bridge[J]. China Harbour Engineering, 2024, 44(6): 21-27.
    [13] LU C L, OUYANG K, GUO C, et al. Axial compressive performance of RC columns strengthened with prestressed CFRP fabric combined with UHPC jacket[J]. Engineering Structures, 2023, 275: 115113. doi: 10.1016/j.engstruct.2022.115113
    [14] GUAN D Z, CHEN Z X, LIU J B, et al. Seismic performance of precast concrete columns with prefabricated UHPC jackets in plastic hinge zone[J]. Engineering Structures, 2021, 245: 112776. doi: 10.1016/j.engstruct.2021.112776
    [15] TONG T, YUAN S Q, ZHUO W D, et al. Seismic retrofitting of rectangular bridge piers using ultra-high performance fiber reinforced concrete jackets[J]. Composite Structures, 2019, 228: 111367. doi: 10.1016/j.compstruct.2019.111367
    [16] 卢亦焱. 外套钢管混凝土加固RC柱技术研究进展[J]. 建筑结构学报, 2021, 42(12): 90-100.

    LU Yi-yan. Research advances in composite strengthening of RC columns with steel tube and sandwiched concrete jacketing[J]. Journal of Building Structures, 2021, 42(12): 90-100.
    [17] 贾迪. 公路旧桥墩柱抗震加固策略研究[J]. 市政技术, 2017, 35(1): 55-57.

    JIA Di. Study on seismic strengthening strategy of old highway bridge pier columns[J]. Journal of Municipal Technology, 2017, 35(1): 55-57.
    [18] FU T, REN X Q, WANG K, et al. Seismic performance of prefabricated steel tube-confined concrete circular pier[J]. Structures, 2022, 43: 910-925. doi: 10.1016/j.istruc.2022.07.022
    [19] ZHOU X H, WANG H C, WANG X D, et al. Seismic behavior of dumb-bell steel tube confined reinforced concrete piers[J]. Engineering Structures, 2020, 206: 110126. doi: 10.1016/j.engstruct.2019.110126
    [20] 肖岩, 郭玉荣, 何文辉, 等. 局部加劲钢套管加固钢筋混凝土柱的研究[J]. 建筑结构学报, 2003, 24(6): 79-86.

    XIAO Yan, GUO Yu-rong, HE Wen-hui, et al. Retrofit of reinforced concrete columns using partially stiffened steel jackets[J]. Journal of Building Structures, 2003, 24(6): 79-86.
    [21] 郭子雄, 黄群贤, 郝娟, 等. 预应力钢套箍加固RC桥墩轴压性能试验研究[J]. 中南大学学报(自然科学版), 2015, 46(8): 3100-3107.

    GUO Zi-xiong, HUANG Qun-xian, HAO Juan, et al. Experimental study on axial compression behavior of RC circular pier retrofitted by prestressed steel jackets[J]. Journal of Central South University (Science and Technology), 2015, 46(8): 3100-3107.
    [22] HE A, CAI J, CHEN Q J, et al. Seismic behaviour of steel-jacket retrofitted reinforced concrete columns with recycled aggregate concrete[J]. Construction and Building Materials, 2018, 158: 624-639. doi: 10.1016/j.conbuildmat.2017.10.053
    [23] 陈庆军, 梁竣杰, 蔡健, 等. 钢套管再生混凝土加固柱抗震性能及影响参数研究[J]. 工程力学, 2019, 36(12): 206-217, 256.

    CHEN Qing-jun, LIANG Jun-jie, CAI Jian, et al. Investigation on seismic behavior and influencing parameters of steel-jacket strengthened columns with recycled aggregate concrete[J]. Engineering Mechanics, 2019, 36(12): 206-217, 256.
    [24] 殷晓三, 梁鸿骏, 卢亦焱, 等. 钢套管混凝土加固RC柱轴压受力全过程分析[J]. 应用基础与工程科学学报, 2022, 30(3): 566-578.

    YIN Xiao-san, LIANG Hong-jun, LU Yi-yan, et al. Analysis on behavior of square RC columns strengthened with concrete filled steel tube under axial load[J]. Journal of Basic Science and Engineering, 2022, 30(3): 566-578.
    [25] 李哲, 冯学伟, 吕鑫, 等. 圆钢套管-钢纤维水泥砂浆加固预损RC柱轴压性能研究[J]. 应用力学学报, 2022, 39(2): 336-341.

    LI Zhe, FENG Xue-wei, LV Xin, et al. Axial compression performance of pre-cracked RC columns strengthened by round steel casing and steel fiber cement mortar[J]. Chinese Journal of Applied Mechanics, 2022, 39(2): 336-341.
    [26] PRION H G L, BOEHME J. Beam-column behaviour of steel tubes filled with high-strength concrete[J]. Canadian Journal of Civil Engineering, 1994, 21(2): 207-218. doi: 10.1139/l94-024
    [27] LAHLOU K, LACHEMI M, AÏTCIN P C. Confined high-strength concrete under dynamic compressive loading[J]. Journal of Structural Engineering, 1999, 125(10): 1100-1108. doi: 10.1061/(ASCE)0733-9445(1999)125:10(1100)
    [28] GAN D, GUO L H, LIU J P, et al. Seismic behavior and moment strength of tubed steel reinforced-concrete (SRC) beam-columns[J]. Journal of Constructional Steel Research, 2011, 67(10): 1516-1524. doi: 10.1016/j.jcsr.2011.03.025
    [29] 周绪红, 刘界鹏, 张素梅. 方钢管约束钢筋高强混凝土超短柱抗震性能试验研究[J]. 土木工程学报, 2010, 43(8): 1-10.

    ZHOU Xu-hong, LIU Jie-peng, ZHANG Su-mei. Seismic behavior of ultra short columns of square tubed high strength reinforced concrete[J]. China Civil Engineering Journal, 2010, 43(8): 1-10.
    [30] BU S S, YU F, CHEN T Y, et al. Experimental study on seismic behavior of circular steel tube confined reinforced self-stressing steel slag concrete columns[J]. Structural Concrete, 2023, 24(1): 1102-1117. doi: 10.1002/suco.202200036
    [31] CHOI E, YOUN H, CHO B S. Probabilistic seismic performance assessment of lap-spliced RC columns retrofitted by steel wrapping jackets[J]. Earthquake Engineering and Engineering Vibration, 2016, 15(2): 223-238. doi: 10.1007/s11803-016-0318-0
    [32] 石若利, 罗靓, 潘志成, 等. 钢管约束钢筋混凝土柱抗震设计方法及塑性铰[J]. 西北工业大学学报, 2021, 39(6): 1320-1330.

    SHI Ruo-li, LUO Liang, PAN Zhi-cheng, et al. Seismic design method and plastic hinge of square steel tube confined reinforced concrete (STRC) columns[J]. Journal of Northwestern Polytechnical University, 2021, 39(6): 1320-1330.
    [33] 韦建刚, 谢志涛, 罗霞, 等. 圆钢管约束超高性能混凝土短柱轴压受力性能研究[J]. 建筑结构学报, 2022, 43(6): 34-42.

    WEI Jian-gang, XIE Zhi-tao, LUO Xia, et al. Mechanical behavior of circular steel tube confined ultra high performance concrete stub columns under axial compressive loading[J]. Journal of Building Structures, 2022, 43(6): 34-42.
    [34] HOANG A L, FEHLING E, LAI B L, et al. Experimental study on structural performance of UHPC and UHPFRC columns confined with steel tube[J]. Engineering Structures, 2019, 187: 457-477. doi: 10.1016/j.engstruct.2019.02.063
    [35] 欧智菁, 俞杰. 钢管约束超高性能混凝土柱的抗震性能[J]. 扬州大学学报(自然科学版), 2020, 23(2): 52-56.

    OU Zhi-jing, YU Jie. Seismic behavior of steel tube confined UHPC columns[J]. Journal of Yangzhou University (Natural Science Edition), 2020, 23(2): 52-56.
    [36] SU R K L, WANG L. Axial strengthening of preloaded rectangular concrete columns by precambered steel plates[J]. Engineering Structures, 2012, 38: 42-52. doi: 10.1016/j.engstruct.2012.01.003
    [37] WANG L, SU R K L. Theoretical and experimental study of plate-strengthened concrete columns under eccentric compression loading[J]. Journal of Structural Engineering, 2013, 139(3): 350-359. doi: 10.1061/(ASCE)ST.1943-541X.0000659
    [38] 卢亦焱, 易斯, 李杉, 等. 圆钢管自密实混凝土加固钢筋混凝土柱抗震性能试验研究[J]. 建筑结构学报, 2018, 39(10): 65-74.

    LU Yi-yan, YI Si, LI Shan, et al. Experimental research on seismic performance of circular RC column strengthened with self-compacting concrete filled circular steel tube[J]. Journal of Building Structures, 2018, 39(10): 65-74.
    [39] 冯鹏, 强翰霖, 叶列平. 材料、构件、结构的"屈服点"定义与讨论[J]. 工程力学, 2017, 34(3): 36-46.

    FENG Peng, QIANG Han-lin, YE Lie-ping. Discussion and definition on yield points of materials, members and structures[J]. Engineering Mechanics, 2017, 34(3): 36-46.
    [40] CHEN Z P, JING C G, XU J J, et al. Seismic performance of recycled concrete-filled square steel tube columns[J]. Earthquake Engineering and Engineering Vibration, 2017, 16(1): 119-130. doi: 10.1007/s11803-017-0372-2
    [41] ZHAO P T, HUANG Y, LIU Z Z, et al. Experimental research on seismic performance of steel fiber-reinforced recycled concrete-filled circular steel tube columns[J]. Journal of Building Engineering, 2022, 54: 104683. doi: 10.1016/j.jobe.2022.104683
    [42] CHU Y P, ZHONG Y, SHI B X, et al. Experimental study on seismic performance of seismic-damaged RC frames strengthened by different strengthening methods[J]. Structures, 2022, 41: 1475-1487. doi: 10.1016/j.istruc.2022.05.103
    [43] TAO Z, WANG Z B, YU Q. Finite element modelling of concrete-filled steel stub columns under axial compression[J]. Journal of Constructional Steel Research, 2013, 89: 121-131. doi: 10.1016/j.jcsr.2013.07.001
    [44] BIRTEL V, MARK P. Parameterized finite element modeling of RC beam shear failure[C]//ABAQUS. Proceedings of the 19th Annual International ABAQUS Users' Conference. Boston: ABAQUS, 2006: 95-108.
    [45] LAI Z C, VARMA A H. High-strength rectangular CFT members: Database, modeling, and design of short columns[J]. Journal of Structural Engineering, 2018, 144(5): 04018036. doi: 10.1061/(ASCE)ST.1943-541X.0002026
    [46] CHEN Z P, XU R T, NING F, et al. Compression behaviour and bearing capacity calculation of concrete filled double skin square steel columns[J]. Journal of Building Engineering, 2021, 42: 103022. doi: 10.1016/j.jobe.2021.103022
    [47] HU J Y, HUANG Y F, LI W J, et al. Compressive behaviour of UHPC-filled square high-strength steel tube stub columns under eccentric loading[J]. Journal of Constructional Steel Research, 2022, 198: 107558. doi: 10.1016/j.jcsr.2022.107558
    [48] ZHANG R, CHEN S M, GU P, et al. Structural behavior of UHPC filled steel tubular columns under eccentric loading[J]. Thin-walled Structures, 2020, 156: 106959. doi: 10.1016/j.tws.2020.106959
  • 加载中
图(22) / 表(4)
计量
  • 文章访问数:  56
  • HTML全文浏览量:  29
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-30
  • 录用日期:  2025-04-02
  • 修回日期:  2025-02-28
  • 刊出日期:  2025-10-28

目录

    /

    返回文章
    返回