Pushing test and bonding performance of LUHPC outsourcing steel tube with all-solid waste coal gangue aggregate
-
摘要: 利用全固废煤矸石集料制备出密度低于2 100 kg·m-3的轻质超高性能混凝土(LUHPC),并对LUHPC进行力学性能测试,分析了其损伤本构模型并测得其准静态及动态抗压强度,研究了钢管与外包LUHPC的界面黏结与抗推移性能;按1∶6的比例制备与工程原型结构相同的缩尺模型,并在缩尺形式下进行全固废煤矸石集料LUHPC钢管混凝土推移试验,观察缩尺模型的加载过程和破坏形态,整理了试验数据并绘制了荷载-滑移曲线进行界面抗剪黏结强度分析;采用ABAQUS建立了LUHPC-钢管混凝土有限元模型,通过有限元对试验进行多参数分析。测试结果表明:制备出含全固废煤矸石集料的LUHPC,其准静态加载强度为92.20 MPa,动态抗压强度相比准静态增加13%~40%;通过分析损伤本构模型得出其中峰值应力取109 MPa,应变取3.4×10-3,弹性模量取37.5 GPa;LUHPC-钢管混凝土中,LUHPC低水胶比胶凝材料提供了较高强度的黏结效应,协同钢纤维有效增强了钢管界面黏结性能,其黏结强度达1.96 MPa,远高于普通混凝土,有利于提升结构的安全性与完整性;通过考虑混凝土塑性损伤和钢材延性损伤的有限元模拟分析,得到推移试件模型加载全过程的荷载-滑移曲线,与试验曲线相吻合;可通过调节LUHPC外包钢管的相关设计参数,提升试件抗推移与黏结性能。Abstract: Lightweight ultra-high performance concrete (LUHPC) with a density lower than 2 100 kg·m-3 was prepared by using all-solid waste coal gangue aggregates. The mechanical properties of LUHPC were tested. Its damage constitutive model was analyzed, and the quasi-static and dynamic compressive strengths were measured. The interface bonding and pushing resistance performance between the steel tubes and the encased LUHPC were investigated. A scaled-down model of the engineering prototype structure in a 1∶6 ratio was prepared. A pushing test on the all-solid waste coal gangue aggregate LUHPC concrete was conducted using the scaled-down model in the reduced scale. The loading process and failure modes of the scaled-down model were observed. The interface shear adhesion strength was analyzed by compiling and drawing the load-slip curve diagram. The ABAQUS was employed to establish a finite element model of LUHPC-steel pipe concrete. A multi-parameter analysis of the test was carried out using finite element method. Test results show that the quasi-static loading strength of LUHPC containing waste coal gangue aggregate is 92.20 MPa. The dynamic compressive strength increases by 13%~40% compared with the quasi-static strength. Based on the damage constitutive model analysis, the peak stress is 109 MPa, the strain is 3.4×10-3, and the elastic modulus is 37.5 GPa. For the LUHPC-steel tube concrete, the low water-binder ratio in the LUHPC binder material provides a strong bonding effect, and the inclusion of steel fibers effectively enhances the bond performance at the steel tube interface. The bonding strength reaches 1.96 MPa, significantly higher than that of ordinary concrete, which contributes to improved structural safety and integrity. The finite element simulation analysis, considering concrete plastic damage and steel ductile damage, yields a load-slip curve for the entire loading process of the pushing specimen model, which aligns with the experimental curve. The pushing resistance and bonding performance of the specimen can be improved by adjusting the design parameters of the LUHPC-encased steel tube.
-
表 1 LUHPC基本配合比
Table 1. LUHPC basic mix proportion
kg·m-3 水泥 微珠 硅灰 固废煤矸石集料 钢纤维 水 减水剂 710~713 148~150 184~185 900~903 130~132 187~189 21~23 表 2 煤矸石主要化学成分
Table 2. Main chemical composition of coal gangue
% 化学成分 SiO2 Al2O3 Fe2O3 CaO MgO Na2O K2O Loi 质量百分比 59.78 29.35 1.44 0.68 0.51 0.08 1.76 0.76 表 3 煤矸石的物理性质
Table 3. Physical properties of coal gangue
物理性质 粒径/mm 吸水率/ % 筒压强度/ MPa 堆积密度/ (kg·m-3) 数值 0.15~4.75 ≥10 ≥10 ≤1 100 -
[1] 郑皆连. 我国大跨径混凝土拱桥的发展新趋势[J]. 重庆交通大学学报(自然科学版), 2016, 35(增1): 8-11.ZHENG Jie-lian. New development trend of long-span con-crete arch bridge in China[J]. Journal of Chongqing Jiaotong University (Natural Science), 2016, 35(S1): 8-11. [2] 丁庆军, 曹健, 牟廷敏. C55低收缩抗裂钢管外包混凝土的制备与应用[J]. 混凝土, 2015(5): 96-99.DING Qing-jun, CAO Jian, MOU Ting-min. Preparation and engineering application of C55 low-shrinkage and cracking resistance steel tube-encased concrete[J]. Concrete, 2015(5): 96-99. [3] PARK H G, LEE H J, CHOI I R, et al. Concrete-filled steel tube columns encased with thin precast concrete[J]. Journal of Structural Engineering, 2015, 141(12): 04015056. doi: 10.1061/(ASCE)ST.1943-541X.0001303 [4] 李传习, 聂洁, 潘仁胜, 等. 水胶比对超高性能混凝土施工与力学性能的影响[J]. 土木与环境工程学报(中英文), 2020, 42(4): 164-174.LI Chuan-xi, NIE Jie, PAN Ren-sheng, et al. Effect of wa-ter-to-binder ratio on construction and mechanical properties of ultra-high performance concrete[J]. Journal of Civil and Environmental Engineering, 2020, 42(4): 164-174. [5] 徐梁晋, 王义博, 张志刚, 等. 预制ECC管混凝土桥墩拟静力试验研究[J]. 工程力学, 2021, 38(5): 229-238.XU Liang-jin, WANG Yi-bo, ZHANG Zhi-gang, et al. Qua-si-static test study on precast ECC concrete-filled tubular bridge piers[J]. Engineering Mechanics, 2021, 38(5): 229-238. [6] 周孝军, 牟廷敏, 庞帅, 等. 高程泵送低收缩高抗裂钢管外包混凝土制备研究[J]. 混凝土, 2022(2): 127-130, 135.ZHOU Xiao-jun, MOU Ting-min, PANG Shuai, et al. Stu-dy on preparation of high-elevation pumping low-shrinkage high-crack-resistant steel pipe enclosure[J]. Concrete, 2022(2): 127-130, 135. [7] 何越骁, 黄维蓉, 唐喜, 等. C60细石自密实混凝土耐久性能影响因素试验研究[J]. 湖南大学学报(自然科学版), 2023, 50(12): 92-101.HE Yue-xiao, HUANG Wei-rong, TANG Xi, et al. Experi-mental study on affecting factors on durability performance of C60 fine stone self-compacting concrete[J]. Journal of Hunan University (Natural Sciences), 2023, 50(12): 92-101. [8] 吴彰钰, 佘伟, 缪昌文. 仿生高韧水泥基复合材料制备技术及增韧机理[J]. 东南大学学报: 自然科学版, 2024, 54(1): 1-8.WU Zhang-yu, SHE Wei, MIAO Chang-wen. Preparation technology and toughening mechanism of a bionic high-toughness cement-based composite[J]. Journal of Southeast University: Natural Science Edition, 2024, 54(1): 1-8. [9] 杨俊, 周建庭, 程俊, 等. 基于断裂力学的UHPC复合拱圈加固效率研究[J]. 桥梁建设, 2018, 48(4): 74-78.YANG Jun, ZHOU Jian-ting, CHENG Jun, et al. Study of reinforcement efficiency of UHPC composite arch ring based on fracture mechanics[J]. Bridge Construction, 2018, 48(4): 74-78. [10] DENG N C, ZHAO H, YAO D R, et al. Bond-slip perfor-mances of ultra-high performance concrete steel tube columns made of a large-diameter steel tube with internally welded steel bars[J]. Materials, 2023, 16(10): 3836. doi: 10.3390/ma16103836 [11] 邵旭东, 蔡文涌, 曹君辉, 等. 型钢-UHPC轻型组合桥面板及其抗弯性能研究[J]. 土木工程学报, 2024, 57(6): 152-168.SHAO Xu-dong, CAI Wen-yong, CAO Jun-hui, et al. Research on flexural performance of section steel-UHPC lightweight composite bridge deck[J]. China Civil Engineering Journal, 2024, 57(6): 152-168. [12] TAO Z, SONG T Y, UY B, et al. Bond behavior in con-crete-filled steel tubes[J]. Journal of Constructional Steel Research, 2016, 120: 81-93. doi: 10.1016/j.jcsr.2015.12.030 [13] 王秋维, 梁林, 史庆轩, 等. 方钢管超高性能混凝土界面黏结滑移性能[J]. 湖南大学学报(自然科学版), 2022, 49(11): 116-125.WANG Qiu-wei, LIANG Lin, SHI Qing-xuan, et al. Study on interface bond-slip behavior of ultra-high performance concrete-filled square steel tube[J]. Journal of Hunan Uni-versity (Natural Sciences), 2022, 49(11): 116-125. [14] CAO X, XIE X D, ZHANG T Y, et al. Bond-slip behavior between high-strength steel tube and UHPC[J]. Structures, 2023, 47: 1498-1510. doi: 10.1016/j.istruc.2022.11.052 [15] ZOU Y, ZHOU H Y, YANG J, et al. Mechanical behavior of natural bonding interface in hollow steel-UHPC composite bridge deck[J]. Journal of Constructional Steel Research, 2023, 210: 108093. doi: 10.1016/j.jcsr.2023.108093 [16] 杨俊, 李克阳, 周建庭, 等. 钢-UHPC结合段PBL连接件和钢梁端面承压联合作用研究[J]. 重庆交通大学学报(自然科学版), 2024, 43(5): 1-8, 16.YANG Jun, LI Ke-yang, ZHOU Jian-ting, et al. Joint action of PBL connectors and steel beam end bearing in steel-UHPC joint section[J]. Journal of Chongqing Jiaotong University (Natural Science), 2024, 43(5): 1-8, 16. [17] 武芳文, 左剑, 樊州, 等. 钢-ECC/UHPC组合梁负弯矩区力学性能研究[J]. 交通运输工程学报, 2024, 24(1): 218-231. doi: 10.19818/j.cnki.1671-1637.2024.01.014WU Fang-wen, ZUO Jian, FAN Zhou, et al. Investigation on mechanical properties of steel-ECC/UHPC composite gir-ders in negative moment regions[J]. Journal of Traffic and Transportation Engineering, 2024, 24(1): 218-231. doi: 10.19818/j.cnki.1671-1637.2024.01.014 [18] 许志海. 钢管RPC短柱轴压性能和推出试验研究[D]. 长沙: 湖南大学, 2016.XU Zhi-hai. Experimental study on axial compression beha-vior and push-out of RPC short columns of steel tubes[D]. Changsha: Hunan University, 2016. [19] 黄文金, 盛叶, 张正宾, 等. 钢管-钢纤维活性粉末混凝土界面黏结强度试验研究[J]. 建筑结构学报, 2017, 38(增1): 502-507, 514.HUANG Wen-jin, SHENG Ye, ZHANG Zheng-bin, et al. Experimental study on bond strength of interface between steel fiber reinforced reactive powder concrete and steel tube[J]. Journal of Building Structures, 2017, 38(S1): 502-507, 514. [20] 魏科丰, 贾善坡, 高源. 钢管RPC界面粘结强度试验研究[J]. 建筑结构, 2019, 49(22): 101-107.WEI Ke-feng, JIA Shan-po, GAO Yuan. Experimental study on interfacial bond strength of reactive powder concrete-filled steel tube[J]. Building Structure, 2019, 49(22): 101-107. [21] 姜磊, 刘永健, 周绪红, 等. 钢管混凝土组合结构桥梁设计原理与技术发展综述[J]. 中国公路学报, 2025, 38(3): 278-302.JIANG Lei, LIU Yong-jian, ZHOU Xu-hong, et al. Design principles and technological development of concrete-filled steel tube composite bridges[J]. China Journal of Highway and Transport, 2025, 38(3): 278-302. [22] 王秋维, 刘乐, 史庆轩, 等. 钢管活性粉末混凝土界面粘结强度计算方法研究[J]. 工程力学, 2020, 37(4): 41-50.WANG Qiu-wei, LIU Le, SHI Qing-xuan, et al. A calcula-tion method of the interface bond strength of reactive powder concrete filled in steel tubes[J]. Engineering Mechanics, 2020, 37(4): 41-50. [23] 刘彬, 刘永健, 姜磊, 等. 新型矩形钢管混凝土组合桁梁桥结构形式与绿色建造[J]. 中国公路学报, 2023, 36(9): 20-33.LIU Bin, LIU Yong-jian, JIANG Lei, et al. New RCFST composite truss bridge structural types and green construction[J]. China Journal of Highway and Transport, 2023, 36(9): 20-33. [24] 韦建刚, 罗霞, 陈宝春, 等. 圆高强钢管UHPC梁抗弯性能研究[J]. 工程力学, 2021, 38(1): 183-194.WEI Jian-gang, LUO Xia, CHEN Bao-chun, et al. Study on bending behavior of circular uhpc filled high strength steel tube beams[J]. Engineering Mechanics, 2021, 38(1): 183-194. [25] 王秋维, 王福星, 梁林. 方钢管UHPC短柱轴压力学性能及承载力计算研究[J]. 西安建筑科技大学学报(自然科学版), 2022, 54(2): 298-305.WANG Qiu-wei, WANG Fu-xing, LIANG Lin. Mechanical properties of square steel UHPC short column in axial com-pression and bearing capacity calculation study[J]. Journal of Xi'an University of Architecture & Technology (Natural Science Edition), 2022, 54(2): 298-305. [26] LI W, WANG Z X, WU W J, et al. Axial compressive per-formance of hybrid fiber cementitious composite-encased CFST columns[J]. Materials Today Communications, 2023, 35: 106044. doi: 10.1016/j.mtcomm.2023.106044 [27] 缪昌文, 穆松. "双碳"目标下水泥基材料绿色低碳路径思考与展望[J]. 未来城市设计与运营, 2022(2): 10-16.MIAO Chang-wen, MU Song. Thinking and prospect of green low-carbon path of cement-based materials under the "double carbon" goal[J]. Future City Studies, 2022(2): 10-16. [28] ZHU K. Study on performance of lightweight aggregate con-crete with fly ash and gangue[J]. Railway Engineering, 2014, 3: 118-121. [29] 郑保才, 周华强, 何荣军. 煤矸石膏体充填材料的试验研究[J]. 采矿与安全工程学报, 2006, 23(4): 460-463.ZHENG Bao-cai, ZHOU Hua-qiang, HE Rong-jun. Experi-mental research on coal gangue paste filling material[J]. Journal of Mining & Safety Engineering, 2006, 23(4): 460-463. [30] ZHANG D W, WANG D M, LIU Z, et al. Rheology, agg-lomerate structure, and particle shape of fresh geopolymer pastes with different NaOH activators content[J]. Construc-tion and Building Materials, 2018, 187: 674-680. doi: 10.1016/j.conbuildmat.2018.07.205 [31] MOGHADAM M J, AJALLOEIAN R, HAJIANNIA A. Pre-paration and application of alkali-activated materials based on waste glass and coal gangue: A review[J]. Construction and Building Materials, 2019, 221: 84-98. doi: 10.1016/j.conbuildmat.2019.06.071 [32] MA X W, LIU J H, SHI C J. A review on the use of LWA as an internal curing agent of high performance cement-based materials[J]. Construction and Building Materials, 2019, 218: 385-393. doi: 10.1016/j.conbuildmat.2019.05.126 [33] WANG Z S, ZHAO N. Influence of coal gangue aggregate grading on strength properties of concrete[J]. Wuhan Uni-versity Journal of Natural Sciences, 2015, 20(1): 66-72. doi: 10.1007/s11859-015-1060-6 [34] QI T Y, FENG G R, LI Y R, et al. Effects of fine gangue on strength, resistivity, and microscopic properties of cemented coal gangue backfill for coal mining[J]. Shock and Vibration, 2015, 2015(1): 752678. [35] WANG Z S, ZHAO N. Properties of steel fiber reinforced co-al gangue coarse aggregate concrete[J]. Wuhan University Journal of Natural Sciences, 2014, 19(3): 262-268. doi: 10.1007/s11859-014-1011-7 [36] SALGUERO F, GRANDE J A, VALENTE T, et al. Recyc-ling of manganese gangue materials from waste-dumps in the Iberian Pyrite Belt — Application as filler for concrete production[J]. Construction and Building Materials, 2014, 54: 363-368. doi: 10.1016/j.conbuildmat.2013.12.082 [37] HUANG Y L, ZHOU A. Study on mechanical properties of PET fiber-reinforced coal gangue fine aggregate concrete[J]. Geofluids, 2021, 2021(1): 6627447. [38] YAZCŞ, GÖZDE I, TABAK V. Effect of aspect ratio and volume fraction of steel fiber on the mechanical properties of SFRC[J]. Construction and Building Materials, 2007, 21(6): 1250-1253. doi: 10.1016/j.conbuildmat.2006.05.025 [39] ZHANG J, YAN C W, JIA J Q. Compressive strength and splitting tensile strength of steel fiber reinforced ultra high strength concrete (SFRC)[J]. Applied Mechanics and Materials, 2010, 34/35: 1441-1444. doi: 10.4028/www.scientific.net/AMM.34-35.1441 [40] QU X S, CHEN Z H, NETHERCOT D A, et al. Load-reversed push-out tests on rectangular CFST columns[J]. Journal of Constructional Steel Research, 2013, 81: 35-43. doi: 10.1016/j.jcsr.2012.11.003 [41] 钱稼茹, 赵作周, 纪晓东. 钢管与管外混凝土界面粘结抗剪能力试验研究[J]. 建筑结构, 2015, 45(3): 12-16.QIAN Jia-ru, ZHAO Zuo-zhou, JI Xiao-dong. Test study on shear-bond capacity of steel tube-out of tube concrete inter-face[J]. Building Structure, 2015, 45(3): 12-16. [42] YUN X, GARDNER L. Stress-strain curves for hot-rolled steels[J]. Journal of Constructional Steel Research, 2017, 133: 36-46. doi: 10.1016/j.jcsr.2017.01.024 [43] 曹鸿猷, 陈云峰, 李俊, 等. 预制小箱梁UHPC-NC组合负弯矩区抗弯承载能力[J]. 长安大学学报(自然科学版), 2024, 44(6): 59-71.CAO Hong-you, CHEN Yun-feng, LI Jun, et al. Bending-bearing capacity of UHPC-NC composite negative bending moment region of small box girder[J]. Journal of Chang'an University (Natural Science Edition), 2024, 44(6): 59-71. [44] 付军, 徐梦豪, 王哲世, 等. 低收缩LUHPC钢桥面铺装组合基本性能试验研究[J]. 公路交通科技, 2023, 40(8): 89-95.FU Jun, XU Meng-hao, WANG Zhe-shi, et al. Experimen-tal study on basic performance of low shrinkage LUHPC steel bridge deck pavement[J]. Journal of Highway and Trans-portation Research and Development, 2023, 40(8): 89-95. -
下载: