留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

全固废煤矸石集料LUHPC外包钢管推移试验与黏结性能

付军 杨淼 邱鸿安 孙钊 丁庆军 张高展

付军, 杨淼, 邱鸿安, 孙钊, 丁庆军, 张高展. 全固废煤矸石集料LUHPC外包钢管推移试验与黏结性能[J]. 交通运输工程学报, 2025, 25(5): 250-262. doi: 10.19818/j.cnki.1671-1637.2025.05.017
引用本文: 付军, 杨淼, 邱鸿安, 孙钊, 丁庆军, 张高展. 全固废煤矸石集料LUHPC外包钢管推移试验与黏结性能[J]. 交通运输工程学报, 2025, 25(5): 250-262. doi: 10.19818/j.cnki.1671-1637.2025.05.017
FU Jun, YANG Miao, QIU Hong-an, SUN Zhao, DING Qing-jun, ZHANG Gao-zhan. Pushing test and bonding performance of LUHPC outsourcing steel tube with all-solid waste coal gangue aggregate[J]. Journal of Traffic and Transportation Engineering, 2025, 25(5): 250-262. doi: 10.19818/j.cnki.1671-1637.2025.05.017
Citation: FU Jun, YANG Miao, QIU Hong-an, SUN Zhao, DING Qing-jun, ZHANG Gao-zhan. Pushing test and bonding performance of LUHPC outsourcing steel tube with all-solid waste coal gangue aggregate[J]. Journal of Traffic and Transportation Engineering, 2025, 25(5): 250-262. doi: 10.19818/j.cnki.1671-1637.2025.05.017

全固废煤矸石集料LUHPC外包钢管推移试验与黏结性能

doi: 10.19818/j.cnki.1671-1637.2025.05.017
基金项目: 

国家自然科学基金项目 U21A20149

详细信息
    作者简介:

    付军(1972-),男,湖北武汉人,武汉理工大学教授,工学博士,从事基础设施新材料与新结构研究

    通讯作者:

    FU Jun (1972-), male, professor, PhD, fjgrant@whut.edu.cn

  • 中图分类号: U444

Pushing test and bonding performance of LUHPC outsourcing steel tube with all-solid waste coal gangue aggregate

Funds: 

National Natural Science Foundation of China U21A20149

Article Text (Baidu Translation)
  • 摘要: 利用全固废煤矸石集料制备出密度低于2 100 kg·m-3的轻质超高性能混凝土(LUHPC),并对LUHPC进行力学性能测试,分析了其损伤本构模型并测得其准静态及动态抗压强度,研究了钢管与外包LUHPC的界面黏结与抗推移性能;按1∶6的比例制备与工程原型结构相同的缩尺模型,并在缩尺形式下进行全固废煤矸石集料LUHPC钢管混凝土推移试验,观察缩尺模型的加载过程和破坏形态,整理了试验数据并绘制了荷载-滑移曲线进行界面抗剪黏结强度分析;采用ABAQUS建立了LUHPC-钢管混凝土有限元模型,通过有限元对试验进行多参数分析。测试结果表明:制备出含全固废煤矸石集料的LUHPC,其准静态加载强度为92.20 MPa,动态抗压强度相比准静态增加13%~40%;通过分析损伤本构模型得出其中峰值应力取109 MPa,应变取3.4×10-3,弹性模量取37.5 GPa;LUHPC-钢管混凝土中,LUHPC低水胶比胶凝材料提供了较高强度的黏结效应,协同钢纤维有效增强了钢管界面黏结性能,其黏结强度达1.96 MPa,远高于普通混凝土,有利于提升结构的安全性与完整性;通过考虑混凝土塑性损伤和钢材延性损伤的有限元模拟分析,得到推移试件模型加载全过程的荷载-滑移曲线,与试验曲线相吻合;可通过调节LUHPC外包钢管的相关设计参数,提升试件抗推移与黏结性能。

     

  • 图  1  LUHPC单轴受压应力-应变曲线

    Figure  1.  Uniaxial compressive stress-strain curve of LUHPC

    图  2  抗压强度平均值与应变率关系

    Figure  2.  Relationship between average value of compressive strength and strain rate

    图  3  Weibull分布模型与试验数据对比

    Figure  3.  Comparison of Weibull distribution model and experimental data

    图  4  推移试件构造(单位:mm)

    Figure  4.  Structure of pushing specimen (unit: mm)

    图  5  推移试件制作流程

    Figure  5.  Production process of pushing specimen

    图  6  试验装置

    Figure  6.  Test setup

    图  7  试件整体破坏

    Figure  7.  Overall failure of specimen

    图  8  试件加载端及破坏细节

    Figure  8.  Loading end and failure detail of specimen

    图  9  试件自由端及破坏细节

    Figure  9.  Details of free end and failure detail of specimen

    图  10  荷载-滑移曲线

    Figure  10.  Load-slip curves

    图  11  LUHPC试件及普通混凝土损伤

    Figure  11.  Damage of LUHPC specimen and ordinary concrete

    图  12  试件有限元模型

    Figure  12.  Finite element model of specimen

    图  13  荷载-滑移曲线试验值与有限元模拟值

    Figure  13.  Test values and finite element simulation values of load-slip curves

    图  14  试件剖面

    Figure  14.  Section view of specimen

    图  15  不同收缩情况下最大竖向荷载

    Figure  15.  Maximum vertical load under different degrees of self-shrinkage

    图  16  不同LUHPC厚度下最大竖向力

    Figure  16.  Maximum vertical force at different thicknesses of LUHPC

    图  17  不同LUHPC弹性模量下最大竖向力

    Figure  17.  Maximum vertical force under different elastic moduli of LUHPC

    表  1  LUHPC基本配合比

    Table  1.   LUHPC basic mix proportion  kg·m-3

    水泥 微珠 硅灰 固废煤矸石集料 钢纤维 减水剂
    710~713 148~150 184~185 900~903 130~132 187~189 21~23
    下载: 导出CSV

    表  2  煤矸石主要化学成分

    Table  2.   Main chemical composition of coal gangue  %

    化学成分 SiO2 Al2O3 Fe2O3 CaO MgO Na2O K2O Loi
    质量百分比 59.78 29.35 1.44 0.68 0.51 0.08 1.76 0.76
    下载: 导出CSV

    表  3  煤矸石的物理性质

    Table  3.   Physical properties of coal gangue

    物理性质 粒径/mm 吸水率/ % 筒压强度/ MPa 堆积密度/ (kg·m-3)
    数值 0.15~4.75 ≥10 ≥10 ≤1 100
    下载: 导出CSV
  • [1] 郑皆连. 我国大跨径混凝土拱桥的发展新趋势[J]. 重庆交通大学学报(自然科学版), 2016, 35(增1): 8-11.

    ZHENG Jie-lian. New development trend of long-span con-crete arch bridge in China[J]. Journal of Chongqing Jiaotong University (Natural Science), 2016, 35(S1): 8-11.
    [2] 丁庆军, 曹健, 牟廷敏. C55低收缩抗裂钢管外包混凝土的制备与应用[J]. 混凝土, 2015(5): 96-99.

    DING Qing-jun, CAO Jian, MOU Ting-min. Preparation and engineering application of C55 low-shrinkage and cracking resistance steel tube-encased concrete[J]. Concrete, 2015(5): 96-99.
    [3] PARK H G, LEE H J, CHOI I R, et al. Concrete-filled steel tube columns encased with thin precast concrete[J]. Journal of Structural Engineering, 2015, 141(12): 04015056. doi: 10.1061/(ASCE)ST.1943-541X.0001303
    [4] 李传习, 聂洁, 潘仁胜, 等. 水胶比对超高性能混凝土施工与力学性能的影响[J]. 土木与环境工程学报(中英文), 2020, 42(4): 164-174.

    LI Chuan-xi, NIE Jie, PAN Ren-sheng, et al. Effect of wa-ter-to-binder ratio on construction and mechanical properties of ultra-high performance concrete[J]. Journal of Civil and Environmental Engineering, 2020, 42(4): 164-174.
    [5] 徐梁晋, 王义博, 张志刚, 等. 预制ECC管混凝土桥墩拟静力试验研究[J]. 工程力学, 2021, 38(5): 229-238.

    XU Liang-jin, WANG Yi-bo, ZHANG Zhi-gang, et al. Qua-si-static test study on precast ECC concrete-filled tubular bridge piers[J]. Engineering Mechanics, 2021, 38(5): 229-238.
    [6] 周孝军, 牟廷敏, 庞帅, 等. 高程泵送低收缩高抗裂钢管外包混凝土制备研究[J]. 混凝土, 2022(2): 127-130, 135.

    ZHOU Xiao-jun, MOU Ting-min, PANG Shuai, et al. Stu-dy on preparation of high-elevation pumping low-shrinkage high-crack-resistant steel pipe enclosure[J]. Concrete, 2022(2): 127-130, 135.
    [7] 何越骁, 黄维蓉, 唐喜, 等. C60细石自密实混凝土耐久性能影响因素试验研究[J]. 湖南大学学报(自然科学版), 2023, 50(12): 92-101.

    HE Yue-xiao, HUANG Wei-rong, TANG Xi, et al. Experi-mental study on affecting factors on durability performance of C60 fine stone self-compacting concrete[J]. Journal of Hunan University (Natural Sciences), 2023, 50(12): 92-101.
    [8] 吴彰钰, 佘伟, 缪昌文. 仿生高韧水泥基复合材料制备技术及增韧机理[J]. 东南大学学报: 自然科学版, 2024, 54(1): 1-8.

    WU Zhang-yu, SHE Wei, MIAO Chang-wen. Preparation technology and toughening mechanism of a bionic high-toughness cement-based composite[J]. Journal of Southeast University: Natural Science Edition, 2024, 54(1): 1-8.
    [9] 杨俊, 周建庭, 程俊, 等. 基于断裂力学的UHPC复合拱圈加固效率研究[J]. 桥梁建设, 2018, 48(4): 74-78.

    YANG Jun, ZHOU Jian-ting, CHENG Jun, et al. Study of reinforcement efficiency of UHPC composite arch ring based on fracture mechanics[J]. Bridge Construction, 2018, 48(4): 74-78.
    [10] DENG N C, ZHAO H, YAO D R, et al. Bond-slip perfor-mances of ultra-high performance concrete steel tube columns made of a large-diameter steel tube with internally welded steel bars[J]. Materials, 2023, 16(10): 3836. doi: 10.3390/ma16103836
    [11] 邵旭东, 蔡文涌, 曹君辉, 等. 型钢-UHPC轻型组合桥面板及其抗弯性能研究[J]. 土木工程学报, 2024, 57(6): 152-168.

    SHAO Xu-dong, CAI Wen-yong, CAO Jun-hui, et al. Research on flexural performance of section steel-UHPC lightweight composite bridge deck[J]. China Civil Engineering Journal, 2024, 57(6): 152-168.
    [12] TAO Z, SONG T Y, UY B, et al. Bond behavior in con-crete-filled steel tubes[J]. Journal of Constructional Steel Research, 2016, 120: 81-93. doi: 10.1016/j.jcsr.2015.12.030
    [13] 王秋维, 梁林, 史庆轩, 等. 方钢管超高性能混凝土界面黏结滑移性能[J]. 湖南大学学报(自然科学版), 2022, 49(11): 116-125.

    WANG Qiu-wei, LIANG Lin, SHI Qing-xuan, et al. Study on interface bond-slip behavior of ultra-high performance concrete-filled square steel tube[J]. Journal of Hunan Uni-versity (Natural Sciences), 2022, 49(11): 116-125.
    [14] CAO X, XIE X D, ZHANG T Y, et al. Bond-slip behavior between high-strength steel tube and UHPC[J]. Structures, 2023, 47: 1498-1510. doi: 10.1016/j.istruc.2022.11.052
    [15] ZOU Y, ZHOU H Y, YANG J, et al. Mechanical behavior of natural bonding interface in hollow steel-UHPC composite bridge deck[J]. Journal of Constructional Steel Research, 2023, 210: 108093. doi: 10.1016/j.jcsr.2023.108093
    [16] 杨俊, 李克阳, 周建庭, 等. 钢-UHPC结合段PBL连接件和钢梁端面承压联合作用研究[J]. 重庆交通大学学报(自然科学版), 2024, 43(5): 1-8, 16.

    YANG Jun, LI Ke-yang, ZHOU Jian-ting, et al. Joint action of PBL connectors and steel beam end bearing in steel-UHPC joint section[J]. Journal of Chongqing Jiaotong University (Natural Science), 2024, 43(5): 1-8, 16.
    [17] 武芳文, 左剑, 樊州, 等. 钢-ECC/UHPC组合梁负弯矩区力学性能研究[J]. 交通运输工程学报, 2024, 24(1): 218-231. doi: 10.19818/j.cnki.1671-1637.2024.01.014

    WU Fang-wen, ZUO Jian, FAN Zhou, et al. Investigation on mechanical properties of steel-ECC/UHPC composite gir-ders in negative moment regions[J]. Journal of Traffic and Transportation Engineering, 2024, 24(1): 218-231. doi: 10.19818/j.cnki.1671-1637.2024.01.014
    [18] 许志海. 钢管RPC短柱轴压性能和推出试验研究[D]. 长沙: 湖南大学, 2016.

    XU Zhi-hai. Experimental study on axial compression beha-vior and push-out of RPC short columns of steel tubes[D]. Changsha: Hunan University, 2016.
    [19] 黄文金, 盛叶, 张正宾, 等. 钢管-钢纤维活性粉末混凝土界面黏结强度试验研究[J]. 建筑结构学报, 2017, 38(增1): 502-507, 514.

    HUANG Wen-jin, SHENG Ye, ZHANG Zheng-bin, et al. Experimental study on bond strength of interface between steel fiber reinforced reactive powder concrete and steel tube[J]. Journal of Building Structures, 2017, 38(S1): 502-507, 514.
    [20] 魏科丰, 贾善坡, 高源. 钢管RPC界面粘结强度试验研究[J]. 建筑结构, 2019, 49(22): 101-107.

    WEI Ke-feng, JIA Shan-po, GAO Yuan. Experimental study on interfacial bond strength of reactive powder concrete-filled steel tube[J]. Building Structure, 2019, 49(22): 101-107.
    [21] 姜磊, 刘永健, 周绪红, 等. 钢管混凝土组合结构桥梁设计原理与技术发展综述[J]. 中国公路学报, 2025, 38(3): 278-302.

    JIANG Lei, LIU Yong-jian, ZHOU Xu-hong, et al. Design principles and technological development of concrete-filled steel tube composite bridges[J]. China Journal of Highway and Transport, 2025, 38(3): 278-302.
    [22] 王秋维, 刘乐, 史庆轩, 等. 钢管活性粉末混凝土界面粘结强度计算方法研究[J]. 工程力学, 2020, 37(4): 41-50.

    WANG Qiu-wei, LIU Le, SHI Qing-xuan, et al. A calcula-tion method of the interface bond strength of reactive powder concrete filled in steel tubes[J]. Engineering Mechanics, 2020, 37(4): 41-50.
    [23] 刘彬, 刘永健, 姜磊, 等. 新型矩形钢管混凝土组合桁梁桥结构形式与绿色建造[J]. 中国公路学报, 2023, 36(9): 20-33.

    LIU Bin, LIU Yong-jian, JIANG Lei, et al. New RCFST composite truss bridge structural types and green construction[J]. China Journal of Highway and Transport, 2023, 36(9): 20-33.
    [24] 韦建刚, 罗霞, 陈宝春, 等. 圆高强钢管UHPC梁抗弯性能研究[J]. 工程力学, 2021, 38(1): 183-194.

    WEI Jian-gang, LUO Xia, CHEN Bao-chun, et al. Study on bending behavior of circular uhpc filled high strength steel tube beams[J]. Engineering Mechanics, 2021, 38(1): 183-194.
    [25] 王秋维, 王福星, 梁林. 方钢管UHPC短柱轴压力学性能及承载力计算研究[J]. 西安建筑科技大学学报(自然科学版), 2022, 54(2): 298-305.

    WANG Qiu-wei, WANG Fu-xing, LIANG Lin. Mechanical properties of square steel UHPC short column in axial com-pression and bearing capacity calculation study[J]. Journal of Xi'an University of Architecture & Technology (Natural Science Edition), 2022, 54(2): 298-305.
    [26] LI W, WANG Z X, WU W J, et al. Axial compressive per-formance of hybrid fiber cementitious composite-encased CFST columns[J]. Materials Today Communications, 2023, 35: 106044. doi: 10.1016/j.mtcomm.2023.106044
    [27] 缪昌文, 穆松. "双碳"目标下水泥基材料绿色低碳路径思考与展望[J]. 未来城市设计与运营, 2022(2): 10-16.

    MIAO Chang-wen, MU Song. Thinking and prospect of green low-carbon path of cement-based materials under the "double carbon" goal[J]. Future City Studies, 2022(2): 10-16.
    [28] ZHU K. Study on performance of lightweight aggregate con-crete with fly ash and gangue[J]. Railway Engineering, 2014, 3: 118-121.
    [29] 郑保才, 周华强, 何荣军. 煤矸石膏体充填材料的试验研究[J]. 采矿与安全工程学报, 2006, 23(4): 460-463.

    ZHENG Bao-cai, ZHOU Hua-qiang, HE Rong-jun. Experi-mental research on coal gangue paste filling material[J]. Journal of Mining & Safety Engineering, 2006, 23(4): 460-463.
    [30] ZHANG D W, WANG D M, LIU Z, et al. Rheology, agg-lomerate structure, and particle shape of fresh geopolymer pastes with different NaOH activators content[J]. Construc-tion and Building Materials, 2018, 187: 674-680. doi: 10.1016/j.conbuildmat.2018.07.205
    [31] MOGHADAM M J, AJALLOEIAN R, HAJIANNIA A. Pre-paration and application of alkali-activated materials based on waste glass and coal gangue: A review[J]. Construction and Building Materials, 2019, 221: 84-98. doi: 10.1016/j.conbuildmat.2019.06.071
    [32] MA X W, LIU J H, SHI C J. A review on the use of LWA as an internal curing agent of high performance cement-based materials[J]. Construction and Building Materials, 2019, 218: 385-393. doi: 10.1016/j.conbuildmat.2019.05.126
    [33] WANG Z S, ZHAO N. Influence of coal gangue aggregate grading on strength properties of concrete[J]. Wuhan Uni-versity Journal of Natural Sciences, 2015, 20(1): 66-72. doi: 10.1007/s11859-015-1060-6
    [34] QI T Y, FENG G R, LI Y R, et al. Effects of fine gangue on strength, resistivity, and microscopic properties of cemented coal gangue backfill for coal mining[J]. Shock and Vibration, 2015, 2015(1): 752678.
    [35] WANG Z S, ZHAO N. Properties of steel fiber reinforced co-al gangue coarse aggregate concrete[J]. Wuhan University Journal of Natural Sciences, 2014, 19(3): 262-268. doi: 10.1007/s11859-014-1011-7
    [36] SALGUERO F, GRANDE J A, VALENTE T, et al. Recyc-ling of manganese gangue materials from waste-dumps in the Iberian Pyrite Belt — Application as filler for concrete production[J]. Construction and Building Materials, 2014, 54: 363-368. doi: 10.1016/j.conbuildmat.2013.12.082
    [37] HUANG Y L, ZHOU A. Study on mechanical properties of PET fiber-reinforced coal gangue fine aggregate concrete[J]. Geofluids, 2021, 2021(1): 6627447.
    [38] YAZCŞ, GÖZDE I, TABAK V. Effect of aspect ratio and volume fraction of steel fiber on the mechanical properties of SFRC[J]. Construction and Building Materials, 2007, 21(6): 1250-1253. doi: 10.1016/j.conbuildmat.2006.05.025
    [39] ZHANG J, YAN C W, JIA J Q. Compressive strength and splitting tensile strength of steel fiber reinforced ultra high strength concrete (SFRC)[J]. Applied Mechanics and Materials, 2010, 34/35: 1441-1444. doi: 10.4028/www.scientific.net/AMM.34-35.1441
    [40] QU X S, CHEN Z H, NETHERCOT D A, et al. Load-reversed push-out tests on rectangular CFST columns[J]. Journal of Constructional Steel Research, 2013, 81: 35-43. doi: 10.1016/j.jcsr.2012.11.003
    [41] 钱稼茹, 赵作周, 纪晓东. 钢管与管外混凝土界面粘结抗剪能力试验研究[J]. 建筑结构, 2015, 45(3): 12-16.

    QIAN Jia-ru, ZHAO Zuo-zhou, JI Xiao-dong. Test study on shear-bond capacity of steel tube-out of tube concrete inter-face[J]. Building Structure, 2015, 45(3): 12-16.
    [42] YUN X, GARDNER L. Stress-strain curves for hot-rolled steels[J]. Journal of Constructional Steel Research, 2017, 133: 36-46. doi: 10.1016/j.jcsr.2017.01.024
    [43] 曹鸿猷, 陈云峰, 李俊, 等. 预制小箱梁UHPC-NC组合负弯矩区抗弯承载能力[J]. 长安大学学报(自然科学版), 2024, 44(6): 59-71.

    CAO Hong-you, CHEN Yun-feng, LI Jun, et al. Bending-bearing capacity of UHPC-NC composite negative bending moment region of small box girder[J]. Journal of Chang'an University (Natural Science Edition), 2024, 44(6): 59-71.
    [44] 付军, 徐梦豪, 王哲世, 等. 低收缩LUHPC钢桥面铺装组合基本性能试验研究[J]. 公路交通科技, 2023, 40(8): 89-95.

    FU Jun, XU Meng-hao, WANG Zhe-shi, et al. Experimen-tal study on basic performance of low shrinkage LUHPC steel bridge deck pavement[J]. Journal of Highway and Trans-portation Research and Development, 2023, 40(8): 89-95.
  • 加载中
图(17) / 表(3)
计量
  • 文章访问数:  49
  • HTML全文浏览量:  16
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-19
  • 录用日期:  2025-03-15
  • 修回日期:  2024-11-10
  • 刊出日期:  2025-10-28

目录

    /

    返回文章
    返回