Study on fatigue performance of steel-AAUHPC composite bridge deck
-
摘要: 为改善正交异性钢桥面板疲劳性能,提高钢-混组合桥面板的综合性能,在正交异性钢桥面板上铺设具有绿色低碳优势的碱激发超高性能混凝土(AAUHPC),形成钢-AAUHPC组合桥面板;设计开口T肋和闭口U肋2种加劲肋形式的钢-AAUHPC组合桥面板;利用有限元软件ABAQUS建立2种组合桥面板节段模型,分析组合桥面板疲劳性能;研究不同弹性模量、不同加劲肋形式、不同铺装层厚度、不同钢顶板厚度对五类常见的疲劳构造细节疲劳性能的影响;利用S-N曲线法对组合桥面板进行疲劳性能评估。分析结果表明:两类钢-AAUHPC组合桥面板较正交异性钢桥面板疲劳性能均有较大程度改善,在开口T肋组合桥面板中,疲劳应力降幅最大的是疲劳构造细节①,降幅为75.66%,疲劳应力降幅最小的是疲劳构造细节③,降幅为42.88%;在闭口U肋组合桥面板中,疲劳应力降幅最大的是疲劳构造细节④,降幅为68.49%,疲劳应力降幅最小的是疲劳构造细节⑤,降幅为26.92%;AAUHPC层厚度在30 mm的基础上加厚10 mm后,各疲劳构造细节最不利应力均有降低,且基本呈线性关系递减;当钢顶板厚度从18 mm分别减小到16、14 mm后,2种组合桥面板各疲劳构造细节最不利应力均增大,在闭口U肋组合桥面板中,疲劳构造细节②处应力增幅最大,分别为4.30、9.20 MPa,但在疲劳构造细节③、④、⑤处的最不利应力增幅基本可忽略不计;在开口T肋组合桥面板中,疲劳构造细节①处最不利应力增幅最大,分别为3.13、4.08 MPa;采用热点应力对组合桥面板的疲劳性能进行评估,各疲劳构造细节处的应力幅均小于其对应的疲劳截止限。Abstract: To improve the fatigue performance of orthotropic steel bridge decks and enhance the overall performance of steel-concrete composite bridge decks, alkali-activated ultra-high performance concrete (AAUHPC)—a material with green and low-carbon advantages, was applied over an orthotropic steel bridge deck to form a steel-AAUHPC composite bridge deck. Two types of stiffening ribs for the steel-AAUHPC composite bridge deck were designed: open T-ribs and closed U-ribs. Segment models of the two composite bridge decks were established using the finite element software ABAQUS to analyze their fatigue performance. The influence of different elastic moduli, different stiffening rib forms, different paving layer thicknesses, and different steel top plate thicknesses on the fatigue performance of five common types of structural details was studied. The fatigue performance of the composite bridge decks was evaluated using the S-N curve method. Analysis results show that both types of steel-AAUHPC composite bridge decks exhibit significantly improved fatigue performance compared to the conventional orthotropic steel bridge deck. In the deck with open T-ribs, the maximum stress reduction occurs at fatigue structural detail ①, with a magnitude of 75.66%, while the minimum reduction occurs at fatigue structural detail ③, with a magnitude of 42.88%. In the deck with closed U-ribs, the maximum reduction occurs at fatigue structural detail ④, with an amplitude of 68.49%, and the minimum reduction occurs at fatigue structural detail ⑤, with an amplitude of 26.92%. Increasing the AAUHPC layer thickness by 10 mm from the base 30 mm reduces the most unfavorable stress at each fatigue structural detail, following an approximately linear trend. When the steel top plate thickness is reduced from 18 to 16 and 14 mm, the most unfavorable stress of each fatigue increases at the structural detail in both types of composite bridge decks. In the closed U-rib composite bridge deck, the stress increase at fatigue structural detail ② is the largest, with values of 4.30 MPa and 9.20 MPa, respectively, while increases in the most unfavorable stresses at fatigue structural details ③, ④, and ⑤ are negligible. In the open T-rib composite bridge deck, the increase in the most unfavorable stress at fatigue structural detail ① is the largest, with values of 3.13 MPa and 4.08 MPa, respectively. Fatigue performance evaluation using the hot spot stress method shows that the stress amplitudes at each fatigue structural detail are below the corresponding fatigue cutoff limits.
-
表 1 不同混凝土力学性能对比
Table 1. Comparison of mechanical properties of different types of concrete
项目 AAUHPC UHPC 普通混凝土 UHPC/普通混凝土 AAUHPC/普通混凝土 抗压强度/MPa 65~160 120~230 20~50 约5.0倍 约3倍 抗折强度/MPa 30~60 2~5 约10.0倍 弹性模量/GPa 30.4~32.5 40~60 30~40 约1.2倍 约1倍 劈裂抗拉强度/MPa 7.6~15.4 15 2~5 约4.0倍 约4倍 表 2 正交异性钢桥面板疲劳构造细节
Table 2. Fatigue structural details of orthotropic steel bridge decks
细节 位置 疲劳构造细节 ① 2#和3#横隔板中间位置 顶板与纵肋焊缝 ② 2#横隔板位置 顶板与纵肋焊缝 ③ 顶板与横隔板焊缝 ④ 纵肋与横隔板焊缝 ⑤ 纵肋与横隔板底部过焊孔焊缝 表 3 各疲劳细节最不利应力幅变化
Table 3. Variation of the most unfavorable stress amplitude of each fatigue detail
加劲肋形式 疲劳构造细节 最不利荷载工况 应力方向 正交异性钢桥面板应力幅/MPa 钢-AAUHPC组合桥面板应力幅/MPa 应力幅降幅/% 开口T肋 ① 1 横 19.68 4.79 -75.66% ② 3 横 7.63 3.23 -57.67% ③ 1 垂 7.79 4.45 -42.88% ④ 3 横 5.27 3.00 -43.07% ⑤ 2 横 9.70 5.39 -44.43% 闭口U肋 ① 1 横 27.55 11.66 -57.68% ② 3 横 18.35 9.95 -45.78% ③ 3 纵 8.86 4.69 -47.07% ④ 3 纵 8.22 2.59 -68.49% ⑤ 2 垂 13.30 9.72 -26.92% 表 4 热点应力幅S-N曲线相关参数
Table 4. Related parameters in hot spot stress range S-N curve
疲劳构造细节类别ΔσC /MPa N≤107 N>107 常幅疲劳极限ΔσD/MPa 疲劳强度门槛值ΔσL/MPa m1 lg(A1) m2 lg(A2) 90 3.0 12.164 5.0 15.606 52.6 33.2 71 3.0 11.855 5.0 15.091 41.5 28.7 表 5 各疲劳细节疲劳性能评估结果
Table 5. Fatigue performance evaluation results of each fatigue detail
加劲肋形式 疲劳构造细节 疲劳荷载效应/MPa 疲劳强度门槛值ΔσL/MPa 疲劳抗力/ MPa 开口T肋 ① 11.26 33.2 66.67 ② 5.66 ③ 7.11 ④ 10.72 28.7 52.59 ⑤ 12.39 闭口U肋 ① 24.31 33.2 66.67 ② 22.35 ③ 9.70 ④ 6.10 28.7 52.59 ⑤ 21.86 -
[1] 张清华, 卜一之, 李乔. 正交异性钢桥面板疲劳问题的研究进展[J]. 中国公路学报, 2017, 30(3): 14-30, 39.ZHANG Qing-hua, BU Yi-zhi, LI Qiao. Review on fatigue problems of orthotropic steel bridge deck[J]. China Journal of Highway and Transport, 2017, 30(3): 14-30, 39. [2] 王春生, 翟慕赛, 王雨竹. 钢桥疲劳研究进展[J]. 交通运输工程学报, 2024, 24(1): 9-42. doi: 10.19818/j.cnki.1671-1637.2024.01.002WANG Chun-sheng, ZHAI Mu-sai, WANG Yu-zhu. Research progresses on fatigue in steel bridges[J]. Journal of Traffic and Transportation Engineering, 2024, 24(1): 9-42. doi: 10.19818/j.cnki.1671-1637.2024.01.002 [3] 张清华, 李明哲, 李俊, 等. 在役钢桥面板纵肋与顶板焊根疲劳裂纹内焊加固方法[J]. 交通运输工程学报, 2024, 24(1): 85-99. doi: 10.19818/j.cnki.1671-1637.2024.01.005ZHANG Qing-hua, LI Ming-zhe, LI Jun, et al. Internal welding reinforcement method for fatigue crack at weld root on rib-to-deck of in-service steel bridge deck[J]. Journal of Traffic and Transportation Engineering, 2024, 24(1): 85-99. doi: 10.19818/j.cnki.1671-1637.2024.01.005 [4] 赵秋, 唐琨, 李英豪, 等. 钢桥面板U肋-盖板焊缝疲劳裂纹萌生仿真[J]. 交通运输工程学报, 2024, 24(1): 131-145. doi: 10.19818/j.cnki.1671-1637.2024.01.008ZHAO Qiu, TANG Kun, LI Ying-hao, et al. Simulation on fatigue crack initiation at U rib-cover plate welded joints of steel bridge decks[J]. Journal of Traffic and Transportation Engineering, 2024, 24(1): 131-145. doi: 10.19818/j.cnki.1671-1637.2024.01.008 [5] 刘汉勇, 代希华, 程寿山. 大跨径钢箱梁桥正交异性板疲劳裂纹发展规律及处置措施[J]. 公路交通科技, 2022, 39(8): 32-38.LIU Han-yong, DAI Xi-hua, CHENG Shou-shan. Propaga-tion rule and treatment measures of fatigue crack in ortho-tropic deck of long-span steel box girder bridge[J]. Journal of Highway and Transportation Research and Development, 2022, 39(8): 32-38. [6] 张清华, 李俊, 崔闯, 等. 钢桥面板疲劳开裂加固处治关键问题研究进展[J]. 中国公路学报, 2024, 37(5): 246-266.ZHANG Qing-hua, LI Jun, CUI Chuang, et al. Reinforce-ment and treatment of fatigue cracking in orthotropic steel bridge decks: A review[J]. China Journal of Highway and Transport, 2024, 37(5): 246-266. [7] 孟凡超, 张清华, 谢红兵, 等. 钢桥面板抗疲劳关键技术[M]. 北京: 人民交通出版社, 2018.MENG Fan-chao, ZHANG Qing-hua, XIE Hong-bing, et al. Key technology for anti-fatigue of orthotropic steel bridge deck[M]. Beijing: China Communications Press, 2018. [8] JONG D. Renovation Techniques for fatigue cracked ortho-tropic steel bridge decks[D]. Delft: Delft University of Tech-nology, 2007. [9] MURAKOSHI J, YANADOPI N, ISHII H. Research on steel fiber reinforced concrete pavement for orthotropic steel bridge deck[J]. Journal of Bridge Engineering, 2011, 16(4): 492-499. doi: 10.1061/(ASCE)BE.1943-5592.0000181 [10] YA S, YAMADA K, ISHIKAWA T. Fatigue evaluation of rib-to-deck welded joints of orthotropic steel bridge deck[J]. Journal of Bridge Engineering, 2011, 16(4): 492-499. doi: 10.1061/(ASCE)BE.1943-5592.0000181 [11] SHAO X D, YI D T, HUANG Z Y, et al. Basic perfor-mance of the composite deck system composed of orthotropic steel deck and ultrathin RPC layer[J]. Journal of Bridge Engineering, 2013, 18(5): 417-428. doi: 10.1061/(ASCE)BE.1943-5592.0000348 [12] 黎维良. 超高性能混凝土材料在桥梁工程中的应用[J]. 合成材料老化与应用, 2023, 52(1): 147-149.LI Wei-liang. Application of super performance concrete ma-terials in bridge engineering[J]. Synthetic Materials Aging and Application, 2023, 52(1): 147-149. [13] 顾萍, 鲁凡, 张志强, 等. 钢-UHPC组合桥面的疲劳性能研究[J]. 沈阳建筑大学学报(自然科学版), 2021, 37(1): 1-8.GU Ping, LU Fan, ZHANG Zhi-qiang, et al. Fatigue perfor-mance of steel-UHPC composite bridge deck[J]. Journal of Shenyang Jianzhu University (Natural Science), 2021, 37(1): 1-8. [14] 田启贤, 高立强, 周尚猛. 超高性能混凝土-钢正交异性板组合桥面受力性能研究[J]. 桥梁建设, 2017, 47(3): 13-18.TIAN Qi-xian, GAO Li-qiang, ZHOU Shang-meng. Study of mechanical behavior of composite bridge deck with ultra high performance concrete and orthotropic steel plate[J]. Bridge Construction, 2017, 47(3): 13-18. [15] 李传习, 贺龙飞, 谭珂, 等. 平钢板-UHPC组合桥面板疲劳性能与疲劳损伤机理[J]. 土木工程学报, 2023, 56(9): 39-53.LI Chuan-xi, HE Long-fei, TAN Ke, et al. Fatigue perfor-mance and fatigue damage mechanism of steel plate-UHPC composite bridge deck[J]. China Civil Engineering Journal, 2023, 56(9): 39-53. [16] 丁楠, 邵旭东. 轻型组合桥面板的疲劳性能研究[J]. 土木工程学报, 2015, 48(1): 74-81.DING Nan, SHAO Xu-dong. Study on fatigue performance of light-weighted composite bridge deck[J]. China Civil Engi-neering Journal, 2015, 48(1): 74-81. [17] 邵旭东, 张松涛, 张良, 等. 钢-超薄UHPC层轻型组合桥面性能研究[J]. 重庆交通大学学报(自然科学版), 2016, 35(1): 22-27, 75.SHAO Xu-dong, ZHANG Song-tao, ZHANG Liang, et al. Performance of light-type composite bridge deck system with steel and ultra-thin UHPC layer[J]. Journal of Chongqing Jiaotong University (Natural Science), 2016, 35(1): 22-27, 75. [18] 王立国, 邵旭东, 曹君辉, 等. 基于超短栓钉的钢-超薄UHPC组合桥面性能[J]. 浙江大学学报(工学版), 2020, 54(10): 2027-2037.WANG Li-guo, SHAO Xu-dong, CAO Jun-hui, et al. Per-formance of steel-ultrathin UHPC composite bridge deck based on ultra-short headed studs[J]. Journal of Zhejiang University (Engineering Science), 2020, 54(10): 2027-2037. [19] 向泽, 祝志文. 钢-UHPC组合桥面闭口纵肋-横隔板接头疲劳性能[J]. 铁道科学与工程学报, 2021, 18(7): 1798-1807.XIANG Ze, ZHU Zhi-wen. Fatigue behavior of closed rib-to-floor beam joint in steel-UHPC composite bridge decks[J]. Journal of Railway Science and Engineering, 2021, 18(7): 1798-1807. [20] 邓露, 鲜亚兰, 邵旭东. 轻型钢-UHPC组合桥面板的疲劳可靠性评估[J]. 中南大学学报: 自然科学版, 2018, 49(3): 711-717.DENG Lu, XIAN Ya-lan, SHAO Xu-dong. Fatigue reliabi-lity assessment of light-weighted steel-UHPC composite bri-dge deck[J]. Journal of Central South University: Science and Technology, 2018, 49(3): 711-717. [21] 祝志文, 黄炎, 文鹏翔, 等. 随机车流下钢-UHPC组合正交异性桥面疲劳性能研究[J]. 中国公路学报, 2017, 30(3): 200-209.ZHU Zhi-wen, HUANG Yan, WEN Peng-xiang, et al. Investigation on fatigue performance of orthotropic bridge deck with steel-UHPC composite system under random traffic flows[J]. China Journal of Highway and Transport, 2017, 30(3): 200-209. [22] 祝志文, 文鹏翔, 李健朋, 等. UHPC铺装正交异性钢桥面板纵肋-面板焊缝构造细节的疲劳研究[J]. 铁道科学与工程学报, 2018, 15(4): 926-932.ZHU Zhi-wen, WEN Peng-xiang, LI Jian-peng, et al. Fati-gue evaluation of rib-to-deck welding detail on orthotropic steel bridge deck with UHPC overlay[J]. Journal of Railway Science and Engineering, 2018, 15(4): 926-932. [23] 孙璇, 邵旭东, 邹德强. 型钢开口肋-UHPC轻型组合桥面新结构静力与疲劳性能[J]. 中国公路学报, 2024, 37(4): 252-262.SUN Xuan, SHAO Xu-dong, ZOU De-qiang. Research on static and fatigue properties of new structure of section steel-UHPC lightweight composite deck with open rib[J]. China Journal of Highway and Transport, 2024, 37(4): 252-262. [24] HOU M J, LI Z R, LI V C. Green and durable engineered cementitious composites (GD-ECC) with recycled PE fiber, desert sand, and carbonation curing: Mixture design, dura-bility performance, and life-cycle analysis[J]. Construction and Building Materials, 2024, 414: 134984. doi: 10.1016/j.conbuildmat.2024.134984 [25] 谭弘, 孙林柱. 地质聚合物混凝土原材料研究进展[J]. 化工新型材料, 2021, 49(增1): 256-259.TAN Hong, SUN Lin-zhu. Research progress on raw mate-rial of geopolymer concrete[J]. New Chemical Materials, 2021, 49(S1): 256-259. [26] 张大旺, 王栋民. 地质聚合物混凝土研究现状[J]. 材料导报, 2018, 32(9): 1519-1527, 1540.ZHANG Da-wang, WANG Dong-min. Research status of geopolymer concrete[J]. Materials Review, 2018, 32(9): 1519-1527, 1540. [27] PU B C, LIU B, LI L, et al. Using rice husk ash in alkali-activated ultra-high-performance concrete: Flowability, early age strength and elasticity modulus[J]. Construction and Building Materials, 2024, 443: 137771. doi: 10.1016/j.conbuildmat.2024.137771 [28] 邵旭东, 樊伟, 黄政宇. 超高性能混凝土在结构中的应用[J]. 土木工程学报, 2021, 54(1): 1-13.SHAO Xu-dong, FAN Wei, HUANG Zheng-yu. Application of ultra-high-performance concrete in engineering structures[J]. China Civil Engineering Journal, 2021, 54(1): 1-13. [29] LIU Y W, SHI C J, ZHANG Z H, et al. Mechanical and fracture properties of ultra-high performance geopolymer concrete: Effects of steel fiber and silica fume[J]. Cement and Concrete Composites, 2020, 112: 103665. doi: 10.1016/j.cemconcomp.2020.103665 [30] DU J, LIU Z, CHRISTODOULATOS C, et al. Utilization of off-specification fly ash in preparing ultra-high-performance concrete (UHPC): Mixture design, characterization, and life-cycle assessment[J]. Resources, Conservation and Recycling, 2022, 180: 106136. doi: 10.1016/j.resconrec.2021.106136 [31] SHI Y, LONG G C, MA C, et al. Design and preparation of ultra-high performance concrete with low environmental impact[J]. Journal of Cleaner Production, 2019, 214: 633-643. doi: 10.1016/j.jclepro.2018.12.318 [32] 欧阳嵩, 李娟. 波折钢+UHPC组合桥面板的抗疲劳性能研究[J]. 公路, 2022, 67(12): 153-158.OUYANG Song, LI Juan. Study on fatigue resistance of corrugated steel+UHPC composite bridge deck[J]. High-way, 2022, 67(12): 153-158. [33] 刘扬, 曾丹, 曹磊, 等. 钢-UHPC组合结构桥梁研究进展[J]. 材料导报, 2021, 35(3): 3104-3113.LIU Yang, ZENG Dan, CAO Lei, et al. Advances of steel-UHPC composite bridge[J]. Materials Reports, 2021, 35(3): 3104-3113. [34] 姜磊, 元敏, 邹博文, 等. 开口T形加劲肋正交异性钢桥面板疲劳性能研究[J]. 东南大学学报(自然科学版), 2025, 55(1): 78-88.JIANG Lei, YUAN Min, ZOU Bo-wen, et al. Study on the fatigue behaviour of orthotropic steel bridge deck with open T-shaped stiffeners[J]. Journal of Southeast University (Natural Science Edition), 2025, 55(1): 78-88. [35] 翟慕赛, 王春生, 瞿天宇, 等. ERS铺装对钢桥面板疲劳应力影响的测试与分析[J]. 公路交通科技, 2017, 34(2): 68-74, 92.ZHAI Mu-sai, WANG Chun-sheng, QU Tian-yu, et al. Test and analysis of influence of ERS pavement on fatigue stress of steel bridge deck[J]. Journal of Highway and Transportation Research and Development, 2017, 34(2): 68-74, 92. [36] 王佐才, 赵玺, 王均义, 等. 钢-PPUC组合正交异性钢桥面板疲劳性能[J]. 建筑科学与工程学报, 2024, 41(5): 131-141.WANG Zuo-cai, ZHAO Xi, WANG Jun-yi, et al. Fatigue performance of steel-PPUC composite orthotropic steel bridge deck[J]. Journal of Architecture and Civil Engineering, 2024, 41(5): 131-141. [37] 高立强, 余丽辉, 王康宁, 等. 钢-UHPC组合桥面疲劳评估方法中外规范对比[J]. 桥梁建设, 2023, 53(5): 74-82.GAO Li-qiang, YU Li-hui, WANG Kang-ning, et al. Com-parison of methods to evaluate fatigue of steel-UHPC com-posite deck in multiple specifications[J]. Bridge Construc-tion, 2023, 53(5): 74-82. [38] 于丰菘, 周洪福, 姜磊, 等. 钢桁桥节点构造演变及其疲劳评估热点应力法[J]. 公路交通科技, 2023, 40(6): 126-139.YU Feng-song, ZHOU Hong-fu, JIANG Lei, et al. Joint structure evolution and a hot stress method for assessing fatigue of steel truss bridge[J]. Journal of Highway and Transportation Research and Development, 2023, 40(6): 126-139. [39] 商淑杰, 姜磊, 岳秀鹏, 等. 钢桁梁全焊整体节点应力集中系数研究[J]. 公路交通科技, 2023, 40(10): 137-152.SHANG Shu-jie, JIANG Lei, YUE Xiu-peng, et al. Study on stress concentration factor of full-welded integral joint in steel truss bridge[J]. Journal of Highway and Transportation Research and Development, 2023, 40(10): 137-152. [40] 姜磊, 刘永健, 刘彬, 等. 基于热点应力法的钢管混凝土桁式拱桥节点疲劳评估[J]. 桥梁建设, 2022, 52(3): 69-76.JIANG Lei, LIU Yong-jian, LIU Bin, et al. Joint fatigue assessment of concrete-filled steel tubular arch bridge based on hot spot stress method[J]. Bridge Construction, 2022, 52(3): 69-76. [41] 姜磊, 刘永健, 龙辛, 等. 基于热点应力法的矩形钢管混凝土组合桁梁桥节点疲劳评估[J]. 交通运输工程学报, 2020, 20(6): 104-116. doi: 10.19818/j.cnki.1671-1637.2020.06.009JIANG Lei, LIU Yong-jian, LONG Xin, et al. Fatigue asse-ssment of joints in concrete-filled rectangular hollow section composite truss bridges based on hot spot stress method[J]. Journal of Traffic and Transportation Engineering, 2020, 20(6): 104-116. doi: 10.19818/j.cnki.1671-1637.2020.06.009 [42] 周列茅, 马海峰, 宣寿通, 等. 基于热点应力法的正交异性钢桥面板疲劳分析及验算[J]. 结构工程师, 2021, 37(6): 10-17.ZHOU Lie-mao, MA Hai-feng, XUAN Shou-tong, et al. Fatigue analysis and assessment of orthotropic steel bridge deck based on hot spot stress method[J]. Structural Engineers, 2021, 37(6): 10-17. [43] 张清华, 崔闯, 卜一之, 等. 正交异性钢桥面板足尺节段疲劳模型试验研究[J]. 土木工程学报, 2015, 48(4): 72-83.ZHANG Qing-hua, CUI Chuang, BU Yi-zhi, et al. Experi-mental study on fatigue features of orthotropic bridge deck through full-scale segment models[J]. China Civil Engi-neering Journal, 2015, 48(4): 72-83. [44] 祝志文, 黄炎, 李健朋, 等. 正交异性钢桥面板横隔板弧形切口疲劳评价的热点应力法[J]. 交通运输工程学报, 2018, 18(5): 25-34. doi: 10.19818/j.cnki.1671-1637.2018.05.003ZHU Zhi-wen, HUANG Yan, LI Jian-peng, et al. Fatigue assessment of floorbeam cutout in orthotropic steel bridge deck based on hot-spot stress method[J]. Journal of Traffic and Transportation Engineering, 2018, 18(5): 25-34. doi: 10.19818/j.cnki.1671-1637.2018.05.003 [45] BHARGAVA A. Fatigue analysis of steel bridge details: Hot spot stress approach[D]. Washington DC: The George Washington University, 2010. [46] 崔闯, 卜一之, 张清华, 等. 基于热点应力法的正交异性钢桥面板疲劳寿命评估[J]. 桥梁建设, 2014, 44(4): 62-67.CUI Chuang, BU Yi-zhi, ZHANG Qing-hua, et al. Fatigue life assessment of orthotropic steel deck plate based on hot spot stress method[J]. Bridge Construction, 2014, 44(4): 62-67. -
下载: