Radial temperature difference action model of concrete-filled steel tube in natural environments
-
摘要: 为提出适用于自然环境下钢管混凝土界面应力计算的温度作用模式,制作了4个不同走向和倾角的钢管混凝土构件进行温度场试验;基于实测数据建立精确的温度场数值计算有限元模型,采用实测数据分析了各构件不同方向径向温差分布及变化规律,并结合有限元计算结果对径向温差的径向分布和环向分布进行拟合,提出了简化的二维径向温差作用模式,最后对三维温度场、径向温差作用模式和规范竖向温度梯度模式计算的温度变形和应力进行对比。研究结果表明:径向温差的径向和环向分布均具有明显的非线性分布特征,径向正温差主要受太阳辐射强度的影响,而径向负温差同气温骤降相关,实测径向正温差最大值可达23.16 ℃,径向负温差最小值为-10.43 ℃;径向正温差可采用径向幂函数和环向的改进一维高斯分布之积描述,径向负温差分布可用径向幂函数和径向温差最小值之积表征;相较于规范竖向温度梯度,所提出的径向温差作用模式在钢管混凝土温度效应特别是界面温度应力计算方面更加精确,温度作用下界面法向应力最大值可达0.79 MPa,可能导致钢混界面脱黏甚至脱空。提出的钢管混凝土径向温差作用模式能够准确评估温度的不利影响,为钢管混凝土界面设计提供支持。Abstract: To propose a temperature action model for calculating the interface stress of concrete-filled steel tube (CFST) in natural environments, four CFST components with different orientations and inclinations were fabricated for temperature field tests. Based on the measured data, a refined finite element model (FEM) was established for the numerical calculation of the temperature field. The radial temperature difference distribution and variation in different directions were analyzed using the measured data, and the radial distribution and circumferential distribution of radial temperature difference were fitted by the finite element calculation results and measured data. Finally, a comparison was made on the temperature deformation and stress calculated by the three-dimensional temperature field, radial temperature difference action model, and vertical temperature gradient model in the specification. Research results show that the radial and circumferential distributions of the radial temperature difference exhibit significant nonlinear distribution characteristics. The radial positive temperature difference is mainly influenced by solar radiation intensity, while the radial negative temperature difference is related to abrupt changes in air temperature. The measured maximum radial positive temperature difference can reach 23.16 ℃, and the minimum radial negative temperature difference is -10.43 ℃. The radial positive temperature difference can be described by the product of the radial power function and an improved one-dimensional Gaussian distribution in the circumferential direction, while the distribution of radial negative temperature difference can be characterized by the product of the radial power function and the minimum radial temperature difference. The proposed radial temperature difference action model is more precise than the vertical temperature gradient in the specification in the calculation of temperature effects in CFST, especially in the interface temperature stress. The maximum normal stress at the interface can reach 0.79 MPa under temperature action, which may lead to debonding or void of the steel-concrete interface. The proposed radial temperature difference action model can accurately assess the adverse effects of temperature, which provides support for the design of CFST interfaces.
-
表 1 材料热工参数
Table 1. Thermal parameters of material
热工参数 钢材 混凝土 密度/(kg·m-3) 7 850 2 590 比热容/(J·kg-1·℃-1) 475 898 热传导系数/(W·m-1·℃-1) 55.0 2.9 吸收率 0.6 辐射率 0.8 表 2 实测最大/最小径向温差
Table 2. Measured maximum or minimum radial temperature difference
构件 方位 最大径向正温差 最小径向负温差 日期 时间 实测值/℃ 日期 时间 实测值/℃ C-0-SN 顶部 2017年3月16日 13:00 18.22 2017年8月3日 21:00 -10.20 底部 2018年4月2日 14:00 7.80 2017年8月3日 21:00 -8.45 西侧 2017年2月12日 15:00 16.84 2017年8月3日 21:00 -8.70 东侧 2017年7月11日 12:00 11.84 2017年8月3日 21:00 -9.00 C-45-SN 顶部 2017年3月16日 13:00 23.16 2017年8月3日 20:00 -10.43 底部 2017年5月18日 12:00 5.26 2017年8月3日 20:00 -6.36 西侧 2017年2月12日 16:00 19.94 2017年8月3日 21:00 -8.31 东侧 2017年3月16日 12:00 11.68 2017年8月3日 20:00 -8.68 C-90-SN 顶部 2017年1月24日 13:00 20.17 2017年8月3日 20:00 -8.35 底部 2018年5月14日 17:00 8.01 2018年6月30日 20:00 -7.97 西侧 2017年2月18日 16:00 13.19 2018年6月30日 20:00 -7.65 东侧 2017年3月1日 11:00 9.43 2017年8月3日 21:00 -5.28 C-0-EW 顶部 2018年5月14日 13:00 19.62 2017年8月3日 21:00 -9.69 底部 2018年4月2日 13:00 6.67 2017年8月3日 21:00 -6.70 北侧 2018年6月20日 13:00 6.52 2018年6月30日 20:00 -9.62 南侧 2017年1月24日 13:00 20.67 2017年8月3日 20:00 -9.66 表 3 径向温差径向拟合参数
Table 3. Radial fitting parameters of radial temperature difference
构件 方位 径向正温差 径向负温差 R1, θ/℃ pθ R2 RMSE/℃ R2, θ/℃ nθ $\bar{n}_\theta$ R2 RMSE/℃ C-0-SN 顶部 17.59 2.1 0.993 0.28 -10.20 2.6 2.6 0.996 0.23 底部 7.08 4.1 0.992 0.64 -8.45 2.8 0.999 0.09 东侧 8.09 4.2 0.993 0.32 -8.70 2.7 0.996 0.21 西侧 11.00 1.9 0.991 0.41 -9.00 2.4 0.979 0.48 C-45-SN 顶部 23.11 1.9 0.998 0.10 -10.43 2.1 2.4 0.995 0.27 底部 2.07 5.1 0.994 0.47 -6.17 2.5 0.970 0.39 东侧 9.83 3.0 0.998 0.11 -8.13 2.7 0.961 0.61 西侧 9.62 2.1 0.999 0.21 -8.68 2.2 0.989 0.33 C-90-SN 顶部 19.01 1.8 0.994 0.21 -6.53 2.1 2.1 0.990 0.23 底部 2.16 6.0 0.996 0.58 -5.92 2.7 0.952 0.48 东侧 6.77 2.4 0.997 0.11 -6.21 2.2 0.993 0.19 西侧 7.35 1.9 0.999 0.51 -5.05 1.6 0.995 0.13 C-0-EW 顶部 18.05 2.0 0.994 0.35 -9.69 2.0 2.2 0.984 0.44 底部 6.67 2.9 0.999 0.61 -6.70 2.4 0.994 0.19 北侧 5.00 5.2 0.983 0.12 -8.40 2.5 0.976 0.46 南侧 15.23 1.6 0.998 0.27 -9.08 2.1 0.973 0.55 表 4 径向温差环向拟合参数
Table 4. Circumferential fitting parameters of radial temperature difference
构件 径向正温差 径向负温差 R1, max/℃ R1, min/℃ θmax/(°) a R2 RMSE/℃ R2, min/℃ RMSE/℃ C-0-SN 16.18 0.72 194.1 98.9 0.991 0.52 -2.78 0.10 C-45-SN 16.11 3.06 155.3 89.7 0.988 0.50 -1.92 0.05 C-90-SN 8.96 1.77 251.8 82.4 0.998 0.10 -1.99 0.09 C-0-EW 16.07 0.77 195.5 86.7 0.998 0.25 -2.44 0.45 表 5 钢管混凝土温度试验
Table 5. Temperature test of CFST
表 6 温度效应详细对比结果
Table 6. Detailed comparison results of temperature effect
温度作用 位置/(°) 竖向变形 截面应力 界面法向应力 界面环向应力 界面切向应力 数值/mm 误差/% 数值/MPa 误差/% 数值/MPa 误差/% 数值/MPa 误差/% 数值/MPa 误差/% 三维温度场 0 0.010 -12.10 -0.52 0.38 -0.31 90 0.010 -7.55 -0.59 0.44 -0.09 180 0.035 -15.81 -0.79 -0.77 0.77 270 0.004 -7.46 -0.63 0.35 0.13 径向温差模式 0 0.010 0 -9.56 -21 -0.47 -10 0.26 -32 -0.26 -16 90 0.010 0 -11.10 47 -0.68 15 0.43 -2 -0.13 44 180 0.030 -14 -18.10 14 -0.88 11 -0.85 10 0.86 12 270 0.003 -25 -10.94 47 -0.67 6 0.50 43 0.17 31 规范温度梯度 0 0.005 -50 -4.59 -62 -0.12 -77 0.13 -66 -0.13 -58 90 0.005 -50 1.23 -116 -0.10 -83 0.05 -89 -0.04 -56 180 0.010 -71 -16.92 7 -0.64 -19 -0.01 -99 1.18 53 270 0.005 25 1.23 -116 -0.10 -84 0.05 -86 0.05 -62 -
[1] 姜磊, 刘永健, 周绪红, 等. 钢管混凝土组合结构桥梁设计原理与技术发展综述[J]. 中国公路学报, 2025, 38(3): 278-302.JIANG Lei, LIU Yong-jian, ZHOU Xu-hong, et al. Design principles and technological development of concrete-filled steel tube composite bridges[J]. China Journal of Highway and Transport, 2025, 38 (3): 278-302. [2] 陈宝春, 刘君平. 世界拱桥建设与技术发展综述[J]. 交通运输工程学报, 2020, 20(1): 27-41. doi: 10.19818/j.cnki.1671-1637.2020.01.002CHEN Bao-chun, LIU Jun-ping. Review of construction and technology development of arch bridges in the world[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 27-41. doi: 10.19818/j.cnki.1671-1637.2020.01.002 [3] 廖飞宇, 韩浩, 王宇航. 带环向脱空缺陷的钢管混凝土构件在压弯扭复合受力作用下的滞回性能研究[J]. 土木工程学报, 2019, 52(7): 57-68, 80.LIAO Fei-yu, HAN Hao, WANG Yu-hang. Cyclic behaviour of concrete-filled steel tubular(CFST) members with circumferential gap under combined compression-bending-torsion load[J]. China Civil Engineering Journal, 2019, 52(7): 57-68, 80. [4] LIAO F Y, HAN L H, HE S H. Behavior of CFST short column and beam with initial concrete imperfection: Experiments[J]. Journal of Constructional Steel Research, 2011, 67(12): 1922-1935. doi: 10.1016/j.jcsr.2011.06.009 [5] LIAO F Y, HAN L H, TAO Z. Behaviour of CFST stub columns with initial concrete imperfection: Analysis and calculations[J]. Thin-walled Structures, 2013, 70: 57-69. doi: 10.1016/j.tws.2013.04.012 [6] LIU J, LIU Y J, ZHANG C Y, et al. Temperature action and effect of concrete-filled steel tubular bridges: A review[J]. Journal of Traffic and Transportation Engineering (English Edition), 2020, 7(2): 174-191. doi: 10.1016/j.jtte.2020.03.001 [7] 陈宝春, 刘振宇. 日照作用下钢管混凝土桁拱温度场实测研究[J]. 中国公路学报, 2011, 24(3): 72-79.CHEN Bao-chun, LIU Zhen-yu. Research on thermal field test of concrete filled steel tubular truss arch under solar radiation[J]. China Journal of Highway and Transport, 2011, 24(3): 72-79. [8] 郭增伟, 张亚丽, 杨一帆, 等. 钢管混凝土拱肋日照梯度温度效应研究[J]. 重庆交通大学学报(自然科学版), 2023, 42(5): 16-24.GUO Zeng-wei, ZHANG Ya-li, YANG Yi-fan, et al. Sunshine gradient temperature effect of concrete-filled steel tubular arch rib[J]. Journal of Chongqing Jiaotong University (Natural Science), 2023, 42(5): 16-24. [9] 周大为, 邓年春, 石拓, 等. 大型钢管混凝土拱桥温度梯度试验研究[J]. 铁道科学与工程学报, 2020, 17(8): 2013-2020.ZHOU Da-wei, DENG Nian-chun, SHI Tuo, et al. A large-scale experimental study on temperature gradient of concrete-filled steel tube arch bridge[J]. Journal of Railway Science and Engineering, 2020, 17(8): 2013-2020. [10] LIU J, LIU Y J, YAN X K, et al. Statistical investigation on the temperature actions of CFST truss based on long-term measurement[J]. Journal of Bridge Engineering, 2021, 26(8): 04021045. doi: 10.1061/(ASCE)BE.1943-5592.0001740 [11] LIU J, LIU Y J, ZHANG G J, et al. Prediction formula for temperature gradient of concrete-filled steel tubular member with an arbitrary inclination[J]. Journal of Bridge Engineering, 2020, 25(10): 04020076. doi: 10.1061/(ASCE)BE.1943-5592.0001599 [12] YAN X K, LIU Y J, LIU J, et al. Experimental and numerical investigation on vertical temperature gradient of concrete-filled steel tubular arch under sunlight[J]. Structures, 2024, 70: 107550. doi: 10.1016/j.istruc.2024.107550 [13] YAN X K, LIU Y J, LIU J, et al. Experimental and statistical investigation on temperature gradient of CFST truss chords[J]. Advances in Structural Engineering, 2025, 28(5): 860-878. doi: 10.1177/13694332241298019 [14] LIU J, LIU Y J, ZHANG G J. Experimental analysis of temperature gradient patterns of concrete-filled steel tubular members[J]. Journal of Bridge Engineering, 2019, 24(11): 04019109. doi: 10.1061/(ASCE)BE.1943-5592.0001488 [15] 刘永健, 刘江, 张宁. 桥梁结构日照温度作用研究综述[J]. 土木工程学报, 2019, 52(5): 59-78.LIU Yong-jian, LIU Jiang, ZHANG Ning. Review on solar thermal actions of bridge structures[J]. China Civil Engineering Journal, 2019, 52(5): 59-78. [16] 樊健生, 刘诚, 刘宇飞. 钢-混凝土组合梁桥温度场与温度效应研究综述[J]. 中国公路学报, 2020, 33(4): 1-13.FAN Jian-sheng, LIU Cheng, LIU Yu-fei. Review of temperature distribution and temperature effects of steel-concrete composite girder bridges in China[J]. China Journal of Highway and Transport, 2020, 33(4): 1-13. [17] 刘永健, 刘江, 张宁, 等. 钢-混凝土组合梁温度效应的解析解[J]. 交通运输工程学报, 2017, 17(4): 9-19. https://transport.chd.edu.cn/article/id/201704002LIU Yong-jian, LIU Jiang, ZHANG Ning, et al. Analytical solution of temperature effects of steel-concrete composite girder[J]. Journal of Traffic and Transportation Engineering, 2017, 17(4): 9-19. https://transport.chd.edu.cn/article/id/201704002 [18] 周勇超, 胡圣能, 宋磊, 等. 钢-混凝土组合梁的温度骤变效应分析[J]. 交通运输工程学报, 2013, 13(1): 20-26. doi: 10.19818/j.cnki.1671-1637.2013.01.004ZHOU Yong-chao, HU Sheng-neng, SONG Lei, et al. Effect analysis of steel-concrete composite beam caused by sudden change of temperature[J]. Journal of Traffic and Transportation Engineering, 2013, 13(1): 20-26. doi: 10.19818/j.cnki.1671-1637.2013.01.004 [19] 刘永健, 刘江. 钢-混凝土组合梁桥温度作用与效应综述[J]. 交通运输工程学报, 2020, 20(1): 42-59. doi: 10.19818/j.cnki.1671-1637.2020.01.003LIU Yong-jian, LIU Jiang. Review on temperature action and effect of steel-concrete composite girder bridge[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 42-59. doi: 10.19818/j.cnki.1671-1637.2020.01.003 [20] 任志刚, 胡曙光. 轴对称变温下钢管混凝土平面应变问题解析解[J]. 华中科技大学学报: 自然科学版, 2012, 40(8): 34-38.REN Zhi-gang, HU Shu-guang. Plane strain analytical solutions to concrete-filled steel tube under axisymmetric variable temperature[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2012, 40(8): 34-38. [21] 涂光亚. 脱空对钢管混凝土拱桥受力性能影响研究[D]. 长沙: 湖南大学, 2008.TU Guang-ya. Separation effects on mechanical behavior of concrete-filled steel tubular arch bridge[D]. Changsha: Hunan University, 2008. [22] 刘永健, 闫新凯, 刘江, 等. 钢管混凝土拱温度效应的解析计算方法[J]. 中南大学学报(自然科学版), 2025, 56(1): 283-296.LIU Yong-jian, YAN Xin-kai, LIU Jiang, et al. Analytical methods for thermal effect of concrete-filled steel tubular arch[J]. Journal of Central South University (Science and Technology), 2025, 56(1): 283-296. [23] 徐长武, 任志刚, 霍凯成. 太阳辐射作用下钢管膨胀混凝土界面性能试验与分析[J]. 工程力学, 2015, 32(8): 201-210.XU Chang-wu, REN Zhi-gang, HUO Kai-cheng. Experiment and analysis on interfacial performance of concrete filled steel tubes under solar radiation[J]. Engineering Mechanics, 2015, 32(8): 201-210. [24] 严仁章, 刘佳奇, 刘时龙, 等. 太阳辐射作用下钢管混凝土拱不均匀温度场及其引起的脱空分析与试验研究[J]. 中国公路学报, 2021, 34(1): 79-92.YAN Ren-zhang, LIU Jia-qi, LIU Shi-long, et al. Analysis and experimental study of uneven temperature fields in concrete-filled steel tubular arches under solar radiation and its void effect[J]. China Journal of Highway and Transport, 2021, 34(1): 79-92. [25] 章熙民, 任泽霈, 梅飞鸣. 传热学[M]. 北京: 中国建筑工业出版社, 2007.ZHANG Xi-min, REN Ze-pei, MEI Fei-ming. Heat transfer theory[M]. Beijing: China Architecture & Building Press, 2007. [26] 王壮, 刘永健, 唐志伟, 等. 基于日照阴影识别的桁式拱肋三维温度场模拟方法[J]. 中国公路学报, 2022, 35(12): 91-105.WANG Zhuang, LIU Yong-jian, TANG Zhi-wei, et al. Three-dimensional temperature field simulation method of truss arch rib based on sunshine shadow recognition[J]. China Journal of Highway and Transport, 2022, 35(12): 91-105. [27] LIU B Y H, JORDAN R C. The interrelationship and characteristic distribution of direct, diffuse and total solar radiation[J]. Solar Energy, 1960, 4(3): 1-19. doi: 10.1016/0038-092X(60)90062-1 [28] 赵人达, 王永宝. 日照作用下混凝土箱梁温度场边界条件研究[J]. 中国公路学报, 2016, 29(7): 52-61.ZHAO Ren-da, WANG Yong-bao. Studies on temperature field boundary conditions for concrete box-girder bridges under solar radiation[J]. China Journal of Highway and Transport, 2016, 29(7): 52-61. [29] BAI Y X, LIU Y J, LIU J, et al. Temperature gradient of composite PK girder based on monitoring and long-term simulation[J]. Structures, 2023, 57: 105214. doi: 10.1016/j.istruc.2023.105214 [30] 马志元, 刘江, 刘永健, 等. 钢-混组合梁桥有效温度取值的地域差异性[J]. 浙江大学学报(工学版), 2022, 56(5): 909-919.Ma Zhi-yuan, LIU Jiang, LIU Yong-jian, et al. Regional difference of value taking of effective temperature for steel-concrete composite girder bridges[J]. Journal of Zhejiang University (Engineering Science), 2022, 56(5): 909-919. [31] 范丙臣. 中承式钢管混凝土拱桥的温度评价及试验研究[D]. 哈尔滨: 哈尔滨工业大学, 2001.FAN Bing-chen. Temperature evaluation and experimental study of middle bearing concrete filled steel tube arch bridge[D]. Harbin: Harbin Institute of Technology, 2001. [32] 陈宝春, 刘振宇. 日照作用下钢管混凝土构件温度场实测分析[J]. 公路交通科技, 2008, 25(12): 117-122.CHEN Bao-chun, LIU Zhen-yu. Analysis on temperature field tests of CFST members under solar radiation[J]. Journal of Highway and Transportation Research and Development, 2008, 25(12): 117-122. [33] 陈可, 李亚东. 钢管混凝土拱肋截面日照温度场实测及有限元计算[J]. 公路交通科技, 2012, 29(9): 77-84.CHEN Ke, LI Ya-dong. Test and finite element calculation of solar temperature field of section of CFST arch rib[J]. Journal of Highway and Transportation Research and Development, 2012, 29(9): 77-84. [34] 薛翔, 胡少伟, 齐浩, 等. 钢-混凝土交界面法向粘结性能研究[J]. 工程力学, 2022, 39(5): 65-74.XUE Xiang, HU Shao-wei, QI Hao, et al. Study on the normal bonding performance of the steel-concrete interface[J]. Engineering Mechanics, 2022, 39(5): 65-74. [35] 刘振宇, 陈宝春. 钢管混凝土界面法向粘结强度试验研究[J]. 广西大学学报(自然科学版), 2012, 37(4): 698-705.LIU Zhen-yu, CHEN Bao-chun. An experimental study on interfacial bond strength of concrete filled steel tube[J]. Journal of Guangxi University (Natural Science Edition), 2012, 37(4): 698-705. [36] 刘永健, 池建军. 钢管混凝土界面抗剪粘结性能的试验研究与有限元分析[J]. 工业建筑, 2004, 36(4): 78-80.LIU Yong-Jian, CHI Jian-jun. Push-out test on shear bond strength of CFST[J]. Industrial Construction, 2004, 36(4): 78-80. [37] 王秋维, 王程伟, 刘乐, 等. 钢管混凝土界面粘结性能研究现状与分析进展[J]. 建筑结构, 2021, 51(12): 91-97.WANG Qiu-wei, WANG Cheng-wei, LIU Le, et al. Research status and analysis progress of the interfacial bond performance of concrete-filled steel tubes[J]. Building Structure, 2021, 51(12): 91-97. [38] 薛立红, 蔡绍怀. 钢管混凝土柱组合界面的粘结强度(上)[J]. 建筑科学, 1996, 12(3): 22-28.XUE Li-hong, CAI Shao-huai. Bond strength at the interface of concrete-filled steel tube columns[J]. Building Science, 1996, 12(3): 22-28. [39] 康希良, 程耀芳, 涂昀, 等. 钢管混凝土粘结-滑移性能试验研究及数值分析[J]. 工程力学, 2010, 27(9): 102-106.KANG Xi-liang, CHENG Yao-fang, TU Yun, et al. Experimental study and numerical analysis of bond-slip performance for concrete filled steel tube[J]. Engineering Mechanics, 2010, 27(9): 102-106. -
下载:


