Research on bending capacity of new steel-concrete composite girders in negative moment region
-
摘要: 为解决传统简支转连续组合梁桥负弯矩区处混凝土桥面板易开裂的问题,提出了一种在主梁翼缘增设开孔钢板的新型构造形式;通过静力试验与有限元模拟相结合的方法,系统研究了该类新型结构形式负弯矩区的受力行为与其裂缝发展规律,并基于试验结果与参数分析数据,建立了相应的抗弯承载力计算方法,提出了针对该新型结构简支转连续组合梁中支座截面的抗弯承载力计算公式。试验结果表明:相较于普通构件,开孔钢板构件的极限承载力提高了71%;在相同荷载作用下,开孔钢板构件的跨中滑移小于普通构件,且外荷载卸载时跨中滑移出现了一定量的回缩,表明开孔钢板在一定程度上提高了结构的延性;在负弯矩加载过程中,开孔钢板构件的裂缝发展速率相较于普通构件较缓,且裂缝数量较少;通过对比理论与试验结果可知,该计算公式可用于预测开孔钢板简支转连续组合梁的极限承载能力;开孔钢板能在很大程度上改善组合梁负弯矩区的极限承载力和抗裂能力,并在一定程度上能提升结构的延性。此项研究能为未来相关构造的设计提供参考。Abstract: An innovative structure with perforated steel plates integrated into the main girder flanges of traditional simply-supported-to-continuous composite girder bridges was proposed to address the issue of their concrete decks in the negative moment regions being prone to cracking. Through static tests and finite element simulation, the mechanical behavior and crack development law in the negative moment regions of the novel structural form were studied systematically. Based on test results and parametric analysis data, the corresponding calculation method of bending capacity was established. A calculation formula of the bending capacity was proposed for the middle bearing section in this novel structure simply-supported-to-continuous composite girder. Test results show that the ultimate bearing capacity of perforated steel plate components is increased by 71% compared with that of ordinary components. The mid-span slip of perforated steel plate components is smaller than that of ordinary components under the same load. A certain amount of retraction of mid-span slip occurs during unloading, suggesting that perforated steel plates contribute to enhancing ductility of the structure. During the negative moment loading process, the perforated steel plate components show a slower crack development rate and fewer cracks than ordinary components. By comparing the theoretical and test results, the calculation formula can be used to predict the ultimate bearing capacity of simply-supported-to-continuous composite girders with perforated steel plate components. The perforated steel plate significantly enhances the ultimate bearing capacity and crack resistance in the negative moment region, while also improving ductility of the structure to a certain extent. Reference can be provided by this study for the design of similar structures in the future.
-
表 1 钢材材性指标
Table 1. Steel material property indicators
部件 屈服强度/MPa 弹性模量/105 MPa 泊松比 8 mm钢筋 448 2.00 0.30 12 mm钢筋 451 2.00 0.30 Q345钢板 446 2.06 0.30 Q420钢板 465 2.06 0.30 焊钉 320 2.00 0.29 表 2 C50材性指标
Table 2. C50 material property indicators
材料 立方体抗压强度/MPa 轴心抗压强度/MPa 弹性模量/MPa 泊松比 C50 69.5 53.9 35.4×103 0.20 表 3 不同荷载下试验梁中性轴位置
Table 3. Neutral axis positions of test girders under different loads
梁号 极限荷载的倍数 实测位置/mm 模拟位置/mm 相对误差/% SKCB-1 0.18 500 500 0.00 0.75 621 627 0.97 0.88 634 644 1.58 SKCB-2 0.18 500 500 0.00 0.75 593 598 0.84 0.88 601 610 1.50 表 4 试验与有限元法极限承载力对比
Table 4. Comparison of ultimate bearing capacity between test and finite element method
加载方式 梁号 试验值/kN 模拟值/kN 相对误差/% 双点加载 SKCB-1 634 636 0.3 SKCB-2 1 084 1 094 0.9 表 5 组合梁塑性抗弯承载力规范值与试验值对比
Table 5. Comparison of normative values and test values of plastic bending capacity of composite girder
构件编号 试验值/(kN·m) 规范值/(kN·m) Mc/Ms SKCB-1 760.8 1 008.3 1.325 SKCB-2 1 300.8 1 531.7 1.178 表 6 组合梁塑性抗弯承载力计算值与试验值对比
Table 6. Comparison of calculated values and experimental values of plastic bending bearing capacity
构件编号 试验值/(kN·m) 本文计算值/(kN·m) Mu/Ms SKCB-1 760.8 663.3 0.872 SKCB-2 1 300.8 1 195.8 0.919 -
[1] 《中国公路学报》编辑部. 中国桥梁工程学术研究综述·2021[J]. 中国公路学报, 2021, 34(2): 1-97.Editorial Department of China Journal of Highway and Transport. Review on China's bridge engineering research·2021[J]. China Journal of Highway and Transport, 2021, 34(2): 1-97. [2] 卫星, 肖林, 温宗意, 等. 钢混组合结构桥梁2020年度研究进展[J]. 土木与环境工程学报(中英文), 2021, 43(增1): 107-119.WEI Xing, XIAO Lin, WEN Zong-yi, et al. State-of-the art review of steel-concrete composite bridges in 2020[J]. Journal of Civil and Environmental Engineering, 2021, 43(S1): 107-119 [3] 高光彬, 华正阳. 钢-混组合结构桥梁的技术特点与应用[J]. 公路, 2017, 62(1): 112-115.GAO Guang-bin, HUA Zheng-yang. Technical characteristics and application of steel-concrete composite structure bridges[J]. Highway, 2017, 62(1): 112-115. [4] 李志栋. 简支钢混组合梁在京秦高速公路桥梁上的应用[J]. 公路, 2021, 66(3): 145-147.LI Zhi-dong. Application of simply supported steel-concrete composite girders on Beijing-Qinhuangdao expressway bridges[J]. Highway, 2021, 66(3): 145-147. [5] 邵旭东, 孔小璇, 邱明红, 等. 先简支后连续混凝土梁负弯矩区UHPC"T形"湿接缝试验研究[J]. 湖南大学学报(自然科学版), 2021, 48(3): 1-13.SHAO Xu-dong, KONG Xiao-xuan, QIU Ming-hong, et al. Experimental study on UHPC "T-shaped" wet joints in the negative moment zone of continuous concrete beams after simple support[J]. Journal of Hunan University(Natural Sciences), 2021, 48 (3): 1-13. [6] 郑文海. 简支转连续梁桥新型结构型式研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.ZHENG Wen-hai. Research on new structural type of simply-supported-continuous girder bridges[D]. Harbin: Harbin Institute of Technology, 2010. [7] 武芳文, 左剑, 樊州, 等. 钢-ECC/UHPC组合梁负弯矩区力学性能研究[J]. 交通运输工程学报, 2024, 24(1): 218-231. doi: 10.19818/j.cnki.1671-1637.2024.01.014WU Fang-wen, ZUO Jian, FAN Zhou, et al. Investigation on mechanical properties of steel-ECC/UHPC composite girders in negative moment regions[J]. Journal of Traffic and Transportation Engineering, 2024, 24(1): 218-231. doi: 10.19818/j.cnki.1671-1637.2024.01.014 [8] 江大全, 朱宝君, 张苗, 等. 简支转连续桥梁结构施工控制技术[J]. 施工技术, 2017, 46(增1): 970-972.JIANG Da-quan, ZHU Bao-jun, ZHANG Miao, et al. Construction control technology of simply supported to continuous bridge structure[J]. Construction Technology, 2017, 46(S1): 970-972. [9] LIN W W, YODA T, TANIGUCHI N, et al. Mechanical performance of steel-concrete composite beams subjected to a hogging moment[J]. Journal of Structural Engineering, 2014, 140(1): 04013031. doi: 10.1061/(ASCE)ST.1943-541X.0000800 [10] 张鑫. 钢板-混凝土组合梁桥模拟方法与负弯矩区桥面板应力改善方法探究[D]. 西安: 长安大学, 2019.ZHANG Xin. Investigation of simulation method and stress improvement method of bridge deck slab in negative moment zone for steel plate-concrete combination girder bridge[D]. Xi'an: Chang'an University, 2019. [11] 戴金希. 基于界面滑移的钢-混凝土组合连续梁负弯矩区抗裂方法[D]. 南京: 东南大学, 2021.DAI Jin-xi. Interface slip-based crack resistance method for steel-concrete composite continuous beams in negative moment zone[D]. Nanjing: Southeast University, 2021. [12] 俞弘志, 宁文伟. 钢-混组合连续梁桥负弯矩区混凝土开裂研究[J]. 公路, 2018, 63(3): 131-134.YU Hong-zhi, NING Wen-wei. Research on concrete cracking in negative moment zone of combination continuous girder bridge[J]. Highway, 2018, 63(3): 131-134. [13] 刘永健, 刘江, 周绪红, 等. 桥梁长寿命设计理论综述[J]. 交通运输工程学报, 2024, 24(3): 1-24. doi: 10.19818/j.cnki.1671-1637.2024.03.001LIU Yong-jian, LIU Jiang, ZHOU Xu-hong, et al. Review on long-life design theory for bridges[J]. Journal of Traffic and Transportation Engineering, 2024, 24(3): 1-24. doi: 10.19818/j.cnki.1671-1637.2024.03.001 [14] WU W Q, DAI J X, CHEN L, et al. Experiment analysis on crack resistance in negative moment zone of steel-concrete composite continuous girder improved by interfacial slip[J]. Materials, 2022, 15(23): 8319. doi: 10.3390/ma15238319 [15] 李强兴. 简支转连续梁桥施工过程中常见病害对结构力学性能影响研究[D]. 兰州: 兰州交通大学, 2016.LI Qiang-xing. Study on the influence of common diseases on structural mechanical performance during the construction of simply supported to continuous girder bridge[D]. Lanzhou: Lanzhou Jiaotong University, 2016. [16] 张彦玲. 钢-混凝土组合梁负弯矩区受力性能及开裂控制的试验及理论研究[D]. 北京: 北京交通大学, 2009.ZHANG Yan-ling. Experimental and theoretical study on force performance and cracking control in negative moment zone of steel-concrete composite beams[D]. Beijing: Beijing Jiaotong University, 2009. [17] 宋建嫱. 钢混组合连续梁负弯矩区抗裂设计方法浅析[J]. 辽宁省交通高等专科学校学报, 2012, 14(6): 8-11.SONG Jian-qiang. Study on designing method of crack resistance in the negative moment area of prestressed steel-concrete composite continuous beam[J]. Journal of Liaoning Provincial College of Communications, 2012, 14(6): 8-11. [18] 刘新华, 周聪, 张建仁, 等. 钢-UHPC组合梁负弯矩区受力性能试验[J]. 中国公路学报, 2020, 33(5): 110-121.LIU Xin-hua, ZHOU Cong, ZHANG Jian-ren, et al. Stress Performance Test of Steel-UHPC Combined Beam in Negative Moment Zone[J]. China Journal of Highway and Transport, 2020, 33(5): 110-121. [19] AGNIESZKA S. VFT-Prefabricated composite construction method[D]. Barcelona: Universitat Politecnica de Catalunya, 2009. [20] 肖海珠, 胡文军. 多主梁钢混工字结合梁城市快速路高架桥设计[J]. 世界桥梁, 2019, 47(1): 6-9.XIAO Hai-Zhu, HU Wen-Jun. Design of Multi-Main Girder Expressway viaduct with steel-concrete composite Ⅰ girder[J]. World Bridge, 2019, 47(1): 6-9. [21] 杨耀, 周姝. 新型预制装配式钢混组合梁桥关键施工技术研究[J]. 钢结构(中英文), 2021, 36(4): 20-25.YANG Yao, ZHOU Shu. Research on key construction technology of new prefabricated assembled combined girder bridge[J]. Steel Structure, 2021, 36(4): 20-25. [22] 贺耀北, 方博夫, 刘榕, 等. 中小跨整体预制Π形钢板组合梁力学与经济性研究[J]. 公路交通科技, 2019, 36(12): 62-68.HE Yao-bei, FANG Bo-fu, LIU Rong, et al. Mechanical and economic research on small and medium span integral prefabricated Π-shaped steel plate combination beam[J]. Highway Transportation Science and Technology, 2019, 36(12): 62-68. [23] 陈宝春, 黄福云, 薛俊青, 等. 无伸缩缝桥梁研究综述[J]. 交通运输工程学报, 2022, 22(5): 1-40.CHEN Bao-chun, HUANG Fu-yun, XUE Jun-qing, et al. Review on research of jointless bridges[J]. Journal of Traffic and Transportation Engineering, 2022, 22(5): 1-40. [24] 杨建. 简支变结构连续梁桥体系转换受力研究[D]. 长沙: 长沙理工大学, 2016.YANG Jian. Research on transformation stress of simply supported variable structure continuous girder bridge system[D]. Changsha: Changsha University of Science and Technology, 2016. [25] 聂鑫, 薛志超, 庄亮东, 等. 大跨钢-混组合连续梁桥负弯矩区桥面板抗裂技术研究[J]. 桥梁建设, 2022, 52(4): 24-31.NIE Xin, XUE Zhi-chao, ZHUANG Liang-dong, et al. Research on anti-cracking techniques for deck in negative bending moment zone of long-span continuous steel-concrete composite girder bridge[J]. Bridge Construction, 2022, 52(4): 24-31. [26] 李聪, 聂建国, 周心怡, 等. 钢-混凝土连续组合梁桥负弯矩区抗裂设计[J]. 建筑结构学报, 2022, 43(3): 172-178.LI Cong, NIE Jian-guo, ZHOU Xin-yi, et al. Anti-cracking design for hogging moment regions of steel-concrete continuous composite beam bridges[J]. Journal of Building Structures, 2022, 43(3): 172-178. [27] 盛可鉴. 简支转连续梁桥的几个关键问题研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.SHENG Ke-jian. Research on several key problems of simply supported to continuous girder bridge[D]. Harbin: Harbin Institute of Technology, 2013. [28] 骆炜然, 李春. 关于钢混组合梁负弯矩区设计的研究[J]. 公路交通科技(应用技术版), 2017, 13(11): 49-51.LUO Wei-ran, LI Chun. Study on the design of negative moment zone of steel-hybrid composite beams[J]. Journal of Highway and Transportation Research and Development, 2017, 13(11): 49-51. [29] 陈正星, 刘甜甜. 钢-混凝土组合梁负弯矩区设计方法的国内外规范对比分析[J]. 公路, 2020, 65(8): 203-206.CHEN Zheng-xing, LIU Tian-tian. Comparative analysis of design methods for negative bending moment zone of steel-concrete composite beams in domestic and foreign standards[J]. Highway, 2020, 65 (8): 203-206. [30] 成子满. 简支转连续钢-混组合梁负弯矩区连接构造受力性能试验研究[J]. 建筑结构, 2024, 54(1): 34-40.CHENG Zi-man. Experimental study on mechanical properties of joint structures in negative moment zone of simply supported to continuous steel-concrete composite beam[J]. Building Structure, 2024, 54(1): 34-40. [31] 田连波, 侯建国. ABAQUS中混凝土塑性损伤因子的合理取值研究[J]. 湖北大学学报(自然科学版), 2015, 37(4): 340-345, 358.TIAN Lian-bo, HOU Jian-guo. Reasonable plastic damaged factor of concrete damaged plastic model of ABAQUS[J]. Journal of Hubei University (Natural Science Edition), 2015, 37(4): 340-345, 358. [32] 刘玉擎, 周伟翔, 蒋劲松. 开孔板连接件抗剪性能试验研究[J]. 桥梁建设, 2006(6): 1-4, 43.LIU Yu-qing, ZHOU Wei-xiang, JIANG Jin-song. Experimental study of shearing behavior of perforated plate connector[J]. Bridge Construction, 2006(6): 1-4, 43. -
下载: