留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电加热道岔融雪系统传热方式优化

贺清 李宗霖 王晓光 李飞

贺清, 李宗霖, 王晓光, 李飞. 电加热道岔融雪系统传热方式优化[J]. 交通运输工程学报, 2025, 25(6): 23-35. doi: 10.19818/j.cnki.1671-1637.2025.06.003
引用本文: 贺清, 李宗霖, 王晓光, 李飞. 电加热道岔融雪系统传热方式优化[J]. 交通运输工程学报, 2025, 25(6): 23-35. doi: 10.19818/j.cnki.1671-1637.2025.06.003
HE Qing, LI Zong-lin, WANG Xiao-guang, LI Fei. Optimization of heat transfer in electric heating snow melting systems for turnout[J]. Journal of Traffic and Transportation Engineering, 2025, 25(6): 23-35. doi: 10.19818/j.cnki.1671-1637.2025.06.003
Citation: HE Qing, LI Zong-lin, WANG Xiao-guang, LI Fei. Optimization of heat transfer in electric heating snow melting systems for turnout[J]. Journal of Traffic and Transportation Engineering, 2025, 25(6): 23-35. doi: 10.19818/j.cnki.1671-1637.2025.06.003

电加热道岔融雪系统传热方式优化

doi: 10.19818/j.cnki.1671-1637.2025.06.003
基金项目: 

甘肃省自然科学基金项目 23JRRA876

中国高校产学研创新基金——新一代信息技术创新项目 2023IT186

甘肃省重点研发计划 22YF7GA141

详细信息
    作者简介:

    贺清(1973-),女,山西屯留人,兰州交通大学副教授,从事交通信息工程与控制研究

    通讯作者:

    HE Qing (1973-), female, associate professor, 1900309985@qq.com

  • 中图分类号: U213.6

Optimization of heat transfer in electric heating snow melting systems for turnout

Funds: 

Natural Science Foundation of Gansu Province 23JRRA876

China Higher Education Institution Industry-University-Research Innovation Fund — New Generation Information Technology Innovation Project 2023IT186

Gansu Provincial Key Research and Development Program 22YF7GA141

Article Text (Baidu Translation)
  • 摘要:

    为解决道岔电加热元件能耗高、热效率低、融雪不彻底的问题,以60 kg·m-1钢轨18号道岔为研究对象,基于有限元和固体流体传热物理场分析方法,构建了“道岔-加热元件-积雪-空气”的物理模型。模型表面定义为开放边界,底部定义为热绝缘,在相同初始条件下,对比了轨腰、轨坡、轨腰加轨坡3种加热方式的仿真效果,提出了在滑床台侧面加装导热板的优化方法,并在不同温度和不同风速风向情况下进行了仿真分析。分析结果表明:在控制总功率的前提下,轨坡加热方式较另外2种加热方式的滑床台温度上升更明显;安装导热板后,由于导热板热响应速度更高,使加热元件产生的热量向滑床台传递;在-5 ℃和-15 ℃的环境温度以及无积雪的情况下,有导热板相较于无导热板的一般情况,加热元件升温到相应温度的时间缩短了40%,增加20 mm的积雪后,较一般情况也缩短了20%以上;基本轨近端积雪融化速度低于一般情况,之后速度升高,对远端积雪的融化更快且更为彻底;不同风向作用于道岔部分的不同位置,产生不同的升温抑制效果,风速越高,使得温度上升越缓慢,越快到达吸收热量与散失热量基本一致的平衡状态;建立的道岔尖轨部分导热板传热模型可为不同地区现场优化功率,加热元件功率选择和精准控制加热时间提供理论依据。

     

  • 图  1  道岔尖轨结构

    Figure  1.  Structure of turnout tip rail

    图  2  18号道岔尖轨部分工程(单位: mm)

    Figure  2.  Engineering of No. 18 turnout tip rail section (unit: mm)

    图  3  三种加热方式位置示意

    Figure  3.  Schematic of the position of the three types of heating

    图  4  加热元件类型

    Figure  4.  Heating element types

    图  5  道岔部分几何模型

    Figure  5.  Geometric model of turnout section

    图  6  网格划分

    Figure  6.  Grid division

    图  7  测温点选取

    Figure  7.  Temperature measurement point selection

    图  8  三种加热方式温度分布

    Figure  8.  Temperature distribution of three heating methods

    图  9  测温点温度变化

    Figure  9.  Temperature variation of temperature measurement point

    图  10  导热板位置

    Figure  10.  Conducting plate position

    图  11  温度分布(条件1)

    Figure  11.  Temperature distribution (condition 1)

    图  12  温度分布切面(条件1)

    Figure  12.  Temperature distribution cross-section (condition 1)

    图  13  温度分布(条件2)

    Figure  13.  Temperature distribution (condition 2)

    图  14  环境温度为-5 ℃时各测温点的温度变化

    Figure  14.  Temperature changes at each measurement point when the ambient temperature is -5 ℃

    图  15  积雪相变分布(条件2)

    Figure  15.  Distribution of snowpack phase change (condition 2)

    图  16  积雪相变程度变化(条件2)

    Figure  16.  Variation in the degree of snow phase transition (condition 2)

    图  17  温度分布(条件3)

    Figure  17.  Temperature distribution (condition 3)

    图  18  温度分布切面(条件3)

    Figure  18.  Temperature distribution cross-section (condition 3)

    图  19  温度分布(条件4)

    Figure  19.  Temperature distribution (condition 4)

    图  20  环境温度为-15 ℃时各测温点的温度变化

    Figure  20.  Temperature changes at each measurement point when the ambient temperature is -15 ℃

    图  21  积雪相变分布(条件4)

    Figure  21.  Distribution of snow phase change (condition 4)

    图  22  积雪相变程度变化(条件4)

    Figure  22.  Variation in the degree of snow phase transition (condition 4)

    图  23  风向选取示意

    Figure  23.  Schematic of wind direction selection

    图  24  不同风速下温度变化趋势

    Figure  24.  Trend of temperature change at different wind speeds

    图  25  不同风向下温度变化趋势

    Figure  25.  Trend of temperature change at different wind directions

    表  1  常用电加热元件规格型号

    Table  1.   Commonly used electric heating element specifications and models

    类型 长度/mm 功率/W
    直把手直型 5 200 2 400
    直把手直型 4 700 2 650
    直把手直型 3 720 2 250
    直把手直型 2 880 1 750
    直把手直型 1 680 1 050
    U把手直型 5 200 2 400
    U把手直型 4 700 2 650
    U把手直型 3 720 2 250
    U把手直型 2 880 1 750
    U把手直型 1 680 1 050
    下载: 导出CSV

    表  2  部分道岔材料的物理参数

    Table  2.   Physical parameters of some turnout materials

    材料 材质 密度/ (kg·m-3) 比热容/[J· (kg·K)-1] 热导率/[W· (m·K)-1]
    钢轨 U75V 7 850 475 44.5
    滑床板 Q235钢 7 850 500 53.0
    滑床台 Q235钢 7 850 500 53.0
    加热元件 镍铬合金 7 800 470 57.0
    垫板 橡胶 1 350 1 700 0.2
    下载: 导出CSV

    表  3  试验初始条件

    Table  3.   Initial conditions of the test

    加热方式 功率配置/kW 初始温度/℃ 加热时长/min 风速/ (m·s-1) 相对湿度
    轨腰 2 -5 90 0.2 0.6
    轨腰加轨坡 1+1
    轨坡 2
    下载: 导出CSV

    表  4  导热板物理属性

    Table  4.   Physical properties of thermally conductive plates

    导热板材质 密度/ (kg·m-3) 比热容/[J· (kg·K)-1] 热导率/[W· (m·K)-1]
    氧化铝陶瓷 3 850 900 30
    石墨 2 100 700 500
    8 960 385 400
    2 800 939 205
    不锈钢 7 900 500 15
    下载: 导出CSV

    表  5  试验初始条件

    Table  5.   Initial conditions of the test

    条件 环境温度/℃ 是否有积雪 是否安装导热板 加热元件功率/kW 相对湿度
    1 -5 无积雪 2 0.6
    2 0.7
    2 -5 有积雪 2 0.6
    2 0.7
    3 -15 无积雪 2 0.6
    2 0.7
    4 -15 有积雪 2 0.6
    2 0.7
    下载: 导出CSV
  • [1] SZYCHTA E, SZYCHTA L. Comparative analysis of effec-tiveness of resistance and induction turnout heating[J]. Energies, 2020, 13(20): 5262. doi: 10.3390/en13205262
    [2] SZYCHTA E, SZYCHTA L. Testing of turnout resistance and induction heating in climatic chamber[C]//IEEE. 2021 IEEE 19th International Power Electronics and Motion Control Conference (PEMC). New York: IEEE, 2021: 629-634.
    [3] OH H S, LEE J, LEE S H, et al. Parasitic capacitance analysis of PCB-type induction heating coil and LCCC/S matching network design for railway turnouts[J]. Journal of Electrical Engineering & Technology, 2023, 18(4): 3311-3320.
    [4] OH H S, KIM D K, HONG S M, et al. Anti-icing system on railway turnouts using induction heating technology for energy saving[C]//IEEE. 2022 IEEE 21st Mediterranean Electrotechnical Conference (MELECON). New York: IEEE, 2022: 342-347.
    [5] FLIS M. Energy efficiency analysis of railway turnout heating system with a melting snow model heated by classic and contactless heating method[J]. Archives of Electrical Engineering, 2019, 68(3): 511-520.
    [6] FLIS M. Contactless turnouts' heating for energy consumption optimization[J]. Archives of Electrical Engineering, 2020, 69(1): 133-145.
    [7] BRODOWSKI D, FLIS M. Experimental verification of contactless heating method in railway turnouts heating system[J]. Problemy Kolejnictwa-Railway Reports, 2022, 66(194): 73-79. doi: 10.36137/1941E
    [8] 陈新. 电加热道岔融雪系统加热功率配置方案探讨[J]. 铁路通信信号工程技术, 2019, 16(1): 14-17.

    CHEN Xin. Discussion on heating power configuration scheme of electric heating switch snow-melting system[J]. Railway Signalling & Communication Engineering, 2019, 16(1): 14-17.
    [9] 丁闪峰, 满开泉, 王婷婷. 冰雪天气对高速铁路转辙设备的影响及对策[J]. 铁路通信信号工程技术, 2020, 17(10): 76-79, 82.

    DING Shan-feng, MAN Kai-quan, WANG Ting-ting. Influence and countermeasures of snow and ice weather on switch equipment of high-speed railway[J]. Railway Signalling & Communication Engineering, 2020, 17(10): 76-79, 82.
    [10] NORDLUND E. Inductive railway switch point heating: Improved control algorithm and phase compensation analysis for an inductive turnout heating system, and comparison with a resistive heating system[D]. Eskilstuna: Mälardalen University, 2023.
    [11] WANG S, SUN G, LI Y, et al. A study on electromagnetic inductive heating unit for railway turnout[C]//Springer. Developments and Applications in SmartRail, Traffic, and Transportation Engineering. Berlin: Springer, 2024: 509-517.
    [12] HONG S Y, KIM D K, OH H S, et al. Development of PFC converter for induction heating system in railway[C]//IEEE. 2022 25th International Conference on Electrical Machines and Systems (ICEMS). New York: IEEE, 2022: 1-4.
    [13] 余冠华, 卫旭初. 张吉怀高铁智能道岔融雪系统方案探讨[J]. 铁路通信信号工程技术, 2022, 19(2): 15-17, 34.

    YU Guan-hua, WEI Xu-chu. scheme of intelligent point heating system for Zhangjiajie-Jishou-Huaihua High Speed Railway[J]. Railway Signalling & Communication Engi-neering, 2022, 19(2): 15-17, 34.
    [14] 邱战国, 安岩, 杨俊, 等. 电加热道岔融雪设备节能控制方案探讨[J]. 铁道通信信号, 2022, 58(9): 46-49.

    QIU Zhan-guo, AN Yan, YANG Jun, et al. Discussion on energy-saving control scheme of equipment for electric point heating system[J]. Railway Signalling & Communication, 2022, 58(9): 46-49.
    [15] 邱战国. 电加热道岔融雪系统设备的智能化控制[J]. 铁道通信信号, 2022, 58(2): 15-18.

    QIU Zhan-guo. Intelligent control of electric heating switch snowmelt system[J]. Railway Signalling & Communication, 2022, 58(2): 15-18.
    [16] 王嵩. 道岔融雪装置智能控制方案研究[J]. 铁路工程技术与经济, 2023, 38(5): 27-30.

    WANG Song. Research on intelligent control scheme of snow melting devices for turnouts[J]. Railway Engineering Technology and Economy, 2023, 38(5): 27-30.
    [17] 黄译锐. 基于过滤算法的电加热道岔融雪系统的分析与优化[D]. 大连: 大连交通大学, 2020.

    HUANG Yi-rui. Analysis and optimisation of electrically heated turnout snow melting system based on filtering algorithm[D]. Dalian: Dalian Jiaotong University, 2020.
    [18] 赵康效. 基于COMSOL的道岔融雪系统电加热元件配置优化研究[D]. 兰州: 兰州交通大学, 2023.

    ZHAO Kang-xiao. Optimisation of electric heating element configuration for turnout snow melting system based on COMSOL[D]. Lanzhou: Lanzhou Jiaotong University, 2023.
    [19] 安岩. 提高电加热道岔融雪系统热效率的研究[J]. 铁道通信信号, 2024, 60(2): 88-94.

    AN Yan. Research on improving the thermal efficiency of equipment for electric point heating system[J]. Railway Signalling & Communication, 2024, 60(2): 88-94.
    [20] 袁玉卿, 张永健, 蔚旭灿. 沥青混凝土预埋碳纤维绳发热升温试验[J]. 长安大学学报(自然科学版), 2015, 35(1): 49-55.

    YUAN Yu-qing, ZHANG Yong-jian, YU Xu-can. Experi-ments on heating and warming of carbon fibers ropes embedded in asphalt concrete[J]. Journal of Chang'an University (Natural Science Edition), 2015, 35(1): 49-55.
    [21] 宋世德, 周卫杰. 格栅增强沥青混凝土电热性能数值模拟[J]. 铁道科学与工程学报, 2016, 13(8): 1515-1521.

    SONG Shi-de, ZHOU Wei-jie. Numerical simulation on electrothermal properties of geogrid reinforced asphalt concrete[J]. Journal of Railway Science and Engineering, 2016, 13(8): 1515-1521.
    [22] VAJDI M, SADEGH MOGHANLOU F, SHARIFIANJAZI F, et al. A review on the Comsol Multiphysics studies of heat transfer in advanced ceramics[J]. Journal of Composites and Compounds, 2019, 2(1): 35-44.
    [23] 曾姝, 闫振国, 张正威, 等. 基于浅层地热能流体加热技术的机场道面融雪方案[J]. 太阳能学报, 2022, 43(11): 376-382.

    ZENG Shu, YAN Zhen-guo, ZHANG Zheng-wei, et al. Research of novelty airport runways snow-melting system based on shallow geothermal hydronic heating technology[J]. Acta Energiae Solaris Sinica, 2022, 43(11): 376-382.
    [24] HU T F, ZHAO L Q, WANG T F, et al. Field evaluation of a novel thermally controlled subgrade for mitigating frost heave[J]. International Journal of Rail Transportation, 2025, 13(6): 1114-1134. doi: 10.1080/23248378.2024.2443978
    [25] HUANG C P, TAN J J, GAN S K, et al. Experimental study and numerical simulation of sidewalk electrical heating for deicing and snow melting[J]. International Journal of Pavement Engineering, 2023, 24(2): 2088752. doi: 10.1080/10298436.2022.2088752
    [26] WANG F, FU C L, LIU K, et al. Experimental study and numerical simulation of concrete pavement electrical heating for snow melting[J]. Construction and Building Materials, 2024, 442: 137611. doi: 10.1016/j.conbuildmat.2024.137611
    [27] STYPUŁKOWSKI K, KUKULSKI J. The use of thermal imaging studies in the diagnosis of railroad infrastructure elements[J]. Pojazdy Szynowe, 2023(3/4): 40-46.
    [28] ZHOU L, DING L, YI X. A review of snow melting and de-icing technologies for trains[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2022, 236(8): 877-886. doi: 10.1177/09544097211059631
    [29] 周清跃, 张银花, 刘丰收, 等. 高速铁路道岔钢轨材质及强度等级选用研究[J]. 中国铁路, 2017(8): 5-9.

    ZHOU Qing-yue, ZHANG Yin-hua, LIU Feng-shou, et al. Study on selection of rail material and strength level for HSR turnout[J]. China Railway, 2017(8): 5-9.
    [30] HE Q, ZHAO K X, DU Y F. Frontier research: Road and traffic engineering[M]. London: CRC Press, 2022.
    [31] 贺清, 赵康效. 基于传热模型的融雪道岔优化方案研究[J]. 铁道标准设计, 2023, 67(7): 69-74.

    HE Qing, ZHAO Kang-xiao. Research on optimization scheme of snowmelt switch based on heat transfer model[J]. Railway Standard Design, 2023, 67(7): 69-74.
    [32] 贺清, 李宗霖, 黄勇, 等. 道岔融雪系统电加热元件传热模型构建及分析[J]. 铁道科学与工程学报, 2025, 22(2): 841-851.

    HE Qing, LI Zong-lin, HUANG Yong, et al. Construction and analysis of heat transfer model for electric heating elements in switch snow melting system[J]. Journal of Railway Science and Engineering, 2025, 22(2): 841-851.
  • 加载中
图(25) / 表(5)
计量
  • 文章访问数:  230
  • HTML全文浏览量:  97
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-30
  • 录用日期:  2025-06-06
  • 修回日期:  2025-03-17
  • 刊出日期:  2025-12-28

目录

    /

    返回文章
    返回