Brittleness coefficient and compressive strength design value of ultra-high performance concrete
-
摘要: 为探讨超高性能混凝土(UHPC)的脆性系数和抗压强度设计值,开展了2组试验研究(Ⅰ组和Ⅱ组)。Ⅰ组试验针对11种工程常用强度等级的UHPC进行缺口梁抗折试验,测试其断裂韧性,并以其作为脆性系数的对立指标间接推导各强度等级UHPC的脆性系数,Ⅱ组试验通过15批次UHPC棱柱体与立方体试件的抗压测试,研究抗压强度测试的形状效应,整合试验数据与国内外相关文献数据构建数据库,进行数值分析以确定UHPC标准棱柱体与标准立方体试件的抗压强度比值。试验结果表明:在相同抗压强度等级下,随着抗拉性能等级的提升,UHPC的韧性显著增强;随着试件尺寸增大,棱柱体与立方体之间的强度比值即形状效应逐渐加剧,但增长趋势趋于平缓;基于试验数据并综合参考现行相关标准中关于脆性系数的取值方法,提出了适用于各等级UHPC的脆性系数推荐值;数值分析得出UHPC标准棱柱体与标准立方体试件的抗压强度比值为0.89;参照普通混凝土抗压强度设值的确定方法,结合所确定的脆性数与形状效应系数,提出了11个用UHPC强度等级的抗压强度设计值推荐取值,为UHPC结构设计规范的完善提供了试验依据和系数支持。Abstract: Two groups of experimental studies (group Ⅰ and group Ⅱ) were carried out to investigate the brittle coefficient and compressive strength design value of ultra-high performance concrete (UHPC). Specifically, group Ⅰ test carried out the flexural test of notched beams for 11 kinds of UHPC with commonly employed strength grades in engineering, tested the fracture toughness, and indirectly derived the brittleness coefficient of UHPC for each strength grade by adopting it as the opposite index of the brittleness coefficient. Group Ⅱ test studied the shape effect of compressive strength test via compression tests on 15 batches of UHPC prismatic and cubic specimens, and integrated the experimental data with relevant literature data at home and abroad to build a database. Meanwhile, numerical analysis was carried out to determine the compressive strength ratio of UHPC standard prismatic and standard cubic specimens. Experimental results show that under the same compressive strength grade, the UHPC toughness is significantly enhanced with the improving tensile performance grade. As the specimen size increases, the strength ratio between prismatic and cubic specimens (or shape effect) gradually intensifies, but the growth trend tends to be gentle. By employing the experimental data as the basis and comprehensively referring to the method for determining brittleness coefficients in current relevant standards, the recommended brittleness coefficient values applicable to UHPC of various grades were proposed. Numerical analysis shows that the compressive strength ratio of UHPC standard prismatic specimens to standard cubic specimens is 0.89. By referring to the method for determining the compressive strength design value of ordinary concrete, and combining the determined brittleness coefficient and shape effect coefficient, the recommended compressive strength design values for 11 commonly employed UHPC strength grades were put forward, thus providing experimental basis and coefficient support for the improvement of UHPC structural design codes.
-
表 1 Ⅰ组试验的UHPC下料单
Table 1. Batch sheet of UHPC for group Ⅰ test
kg 试验编号 集料 胶凝材料 减水剂 水 钢纤维 [40,70) 目 [20,40) 目 [10,20) 目 400目 水泥 硅灰 Ⅰ-1 3.67 10.73 13.87 2.36 26.46 7.90 0.54 2.54 1.08 Ⅰ-2 3.67 10.73 13.87 2.36 26.46 7.90 0.54 3.88 4.32 Ⅰ-3 3.67 10.73 13.87 2.36 26.46 7.90 0.54 3.88 6.48 Ⅰ-4 3.67 10.73 13.87 2.36 26.17 7.58 0.66 6.15 1.17 Ⅰ-5 3.67 10.73 13.87 2.36 26.17 7.58 0.66 6.15 2.34 Ⅰ-6 3.67 10.73 13.87 2.36 26.17 7.58 0.66 6.15 5.84 Ⅰ-7 3.67 10.73 13.87 2.36 26.17 7.58 0.66 4.76 1.17 Ⅰ-8 3.67 10.73 13.87 2.36 26.17 7.58 0.66 5.44 2.34 Ⅰ-9 3.67 10.73 13.87 2.36 26.17 7.58 0.66 6.13 4.67 Ⅰ-10 2.86 8.73 10.82 1.84 20.42 6.13 0.51 3.18 2.73 Ⅰ-11 2.86 8.73 10.82 1.84 20.42 6.13 0.51 3.18 3.64 表 2 Ⅰ组试验结果
Table 2. Group Ⅰ test results
试验编号 UHPC强度等级 性能指标 韧性指标 抗压强度/MPa 峰值拉应变 单轴拉伸强度/MPa feq, 2/MPa feq, 3/MPa Ⅰ-1 U120C 127.6 0.000 609 0 4.6 4.70 3.40 Ⅰ-2 U120B 120.1 0.001 573 5 6.1 6.67 5.80 Ⅰ-3 U120A 134.3 0.002 648 0 8.1 9.31 8.70 Ⅰ-4 U140C 141.8 0.000 584 0 4.4 7.10 5.34 Ⅰ-5 U140B 147.0 0.001 542 0 7.3 10.20 7.19 Ⅰ-6 U140A 150.5 0.002 577 0 8.5 12.22 9.60 Ⅰ-7 U160C 160.6 0.001 062 0 5.6 10.10 7.71 Ⅰ-8 U160B 162.7 0.001 592 0 7.5 13.00 9.20 Ⅰ-9 U160A 167.9 0.002 448 0 8.8 18.30 12.63 Ⅰ-10 U180B 180.5 0.001 661 0 8.6 15.10 10.40 Ⅰ-11 U180A 191.8 0.002 806 0 9.7 24.00 17.60 表 3 各级UHPC的α2
Table 3. α2 of UHPC at each grade
UHPC强度等级 α2 α2, 2 α2, 3 min{α2, 2,α2, 3} U120A 1.000 U140A 1.000 U160A 1.000 U180A 1.000 U120B 0.850 0.860 0.850 U140B 0.840 0.810 0.810 U160B 0.750 0.730 0.730 U180B 0.700 0.690 0.690 U120C 0.740 U140C 0.675 U160C 0.610 U180C 0.545 表 4 Ⅱ组试验的UHPC配合比
Table 4. Mix ratio of UHPC for group Ⅱ test
集料/kg 胶凝材料/kg 减水剂 钢纤维的体积分数/% [40,70) 目 [20,40) 目 [10,20) 目 400目 水泥 硅灰 0.14 0.41 0.53 0.09 1.0 0.3 0.025 2 表 5 Ⅱ组试验结果(抗压强度)
Table 5. Group Ⅱ test results (compressive strength)
MPa 试验组
编号立方体试件 棱柱体试件 Cu70.7 Cu100 Cu150 P70.7 P100 P150 Ⅱ-1 190.2 192.3 179.3 173.8 162.7 163.1 Ⅱ-2 191.3 197.4 185.6 179.3 169.2 177.3 Ⅱ-3 196.0 200.4 186.0 183.4 174.4 143.1 Ⅱ-4 187.5 179.8 168.9 163.1 159.5 139.0 Ⅱ-5 184.0 181.9 169.9 164.3 160.7 141.0 Ⅱ-6 200.0 185.7 171.5 166.2 168.3 146.9 Ⅱ-7 186.6 173.6 168.2 159.2 157.5 159.5 Ⅱ-8 182.1 186.0 176.5 167.8 164.4 132.7 Ⅱ-9 184.4 198.5 173.1 177.6 172.4 165.1 Ⅱ-10 192.7 188.8 170.7 170.5 159.3 146.4 Ⅱ-11 195.6 190.7 175.3 174.3 161.4 149.1 Ⅱ-12 195.8 193.5 183.9 174.9 173.2 152.1 Ⅱ-13 155.2 153.7 114.5 140.2 129.6 120.2 Ⅱ-14 156.0 154.7 150.1 141.2 134.5 119.4 Ⅱ-15 186.9 161.1 160.8 146.7 142.2 132.3 表 6 不同等级UHPC的抗压强度设计值
Table 6. Compressive strength design values of UHPC at different grades
UHPC强度等级 fcd/MPa U120A 64.0 U140A 75.0 U160A 85.0 U180A 96.0 U120B 54.8 U140B 61.8 U160B 64.0 U180B 67.2 U120C 47.0 U140C 50.0 U160C 52.0 U180C 53.0 -
[1] OLIPITZ M. Paulifurt-bridge-design, planing and execution of a UHPC-shell-bridge[J]. Beton-und Stahlbetonbau, 2015, 110(5): 365-373. doi: 10.1002/best.201500013 [2] JIA J F, REN Z D, BAI Y L, et al. Tensile behavior of UHPC wet joints for precast bridge deck panels[J]. Engineering Structures, 2023, 282: 115826. doi: 10.1016/j.engstruct.2023.115826 [3] CHO J R, KIM Y J, PARK J S, et al. Rolling fatigue test of large-sized UHPC member for cable stayed bridge[J]. Engineering, 2012, 4(10): 646-654. doi: 10.4236/eng.2012.410082 [4] YANG J, CHEN B C, SU J Z, et al. Effects of fibers on the mechanical properties of UHPC: A review[J]. Journal of Traffic and Transportation Engineering (English Edition), 2022, 9(3): 363-387. doi: 10.1016/j.jtte.2022.05.001 [5] YOO D Y, YOON Y S. A review on structural behavior, design, and application of ultra-high-performance fiber-reinforced concrete[J]. International Journal of Concrete Structures and Materials, 2016, 10(2): 125-142. doi: 10.1007/s40069-016-0143-x [6] 杨简. 基于刚纤维增强作用的UHPC材料性能预测与多指标分级方法[D]. 福州: 福州大学, 2021.YANG Jian. Prediction and classification method with multi-index of UHPC material performance based on the fiber reinforcement effects[D]. Fuzhou: Fuzhou University, 2021. [7] 吕雪源, 王英, 符程俊, 等. 活性粉末混凝土基本力学性能指标取值[J]. 哈尔滨工业大学学报, 2014, 46(10): 1-9.LV Xue-yuan, WANG Ying, FU Cheng-jun, et al. Basic mechanical property indexes of reactive powder concrete[J]. Journal of Harbin Institute of Technology, 2014, 46(10): 1-9. [8] KUSUMAWARDANINGSIH Y, FEHLING E, ISMAIL M. UHPC compressive strength test specimens: Cylinder or cube?[J]. Procedia Engineering, 2015, 125: 1076-1080. doi: 10.1016/j.proeng.2015.11.165 [9] 马亚峰. 活性粉末混凝土(RPC200)单轴受压本构关系研究[D]. 北京: 北京交通大学, 2006.MA Ya-feng. Study on constitutive relationship of 200 MPa reactive powder concrete under uni-axial compression fractions under uni-axial compression[D]. Beijing: Beijing Jiaotong University, 2006. [10] TC Membership. RILEM TC 162-TDF: 'Test and design methods for steel fibre reinforced concrete' σ-E-design method[J]. Materials and Structures, 2003, 36(262): 560-567. doi: 10.1617/14007 [11] 姚燕, 李功洲, 高春勇, 等. 大于C80混凝土轴心抗压强度设计值取值的探讨[J]. 煤炭工程, 2015, 47(1): 110-111, 114.YAO Yan, LI Gong-zhou, GAO Chun-yong, et al. Discussion on design value selection of axial compressive strength of over C80 concrete[J]. Coal Engineering, 2015, 47(1): 110-111, 114. [12] 郑文忠, 卢姗姗, 张明辉. 掺粉煤灰和矿渣粉的活性粉末混凝土梁受力性能试验研究[J]. 建筑结构学报, 2009, 30(3): 62-70.ZHENG Wen-zhong, LU Shan-shan, ZHANG Ming-hui. Experimental research on mechanical property of reactive powder concrete with fly ash and blast slag beam[J]. Journal of Building Structures, 2009, 30(3): 62-70. [13] 宋子辉. 不同钢纤维掺量活性粉末混凝土单轴受压力学特性及损伤分析[D]. 北京: 北京交通大学, 2008.SONG Zi-hui. Study on mechanical performance and damage of reactive powder concrete in different steel fiber volume fractions under uni-axial compression[D]. Beijing: Beijing Jiaotong University, 2008. [14] 卢姗姗. 配置钢筋或GFRP筋活性粉末混凝土梁受力性能试验与分析[D]. 哈尔滨: 哈尔滨工业大学, 2010.LU Shan-shan. Test and analysis of mechanical behavior of reactive powder concrete beams reinforced with steel or GDRP bars[D]. Harbin: Harbin Institute of Technology, 2010. [15] YOO D Y, LEE J H, YOON Y S. Effect of fiber content on mechanical and fracture properties of ultra high performance fiber reinforced cementitious composites[J]. Composite Structures, 2013, 106(11): 742-753. [16] KIM D J, WILLE K, NAAMAN A E, et al. High performance fiber reinforced cement composites 6[M]. Berlin: Springer, 2012. [17] 石秋君. 碎石活性粉末混凝土抗压力学性能试验研究[D]. 北京: 北京交通大学, 2010.SHI Qiu-jun. Study on compressive strength of gravel reactive powder concrete[D]. Beijing: Beijing Jiaotong University, 2010. [18] 方志, 向宇, 匡镇, 等. 钢纤维含量对活性粉末混凝土抗疲劳性能的影响[J]. 湖南大学学报(自然科学版), 2011, 38(6): 6-12.FANG Zhi, XIANG Yu, KUANG Zhen, et al. Fatigue properties of reactive powder concrete with different steel fiber ratios[J]. Journal of Hunan University (Natural Sciences), 2011, 38(6): 6-12. [19] 马远荣. 活性粉末混凝土(RPC) 预应力叠合梁试验研究[D]. 长沙: 湖南大学, 2002.MA Yuan-rong. An experimental study on unbonded prestressed composite beams with reaction powder concrete[D]. Changsha: Hunan University, 2002. [20] 方志, 向宇, 刘传乐. 配置碳纤维预应力筋的钢纤维活性粉末混凝土无腹筋梁疲劳性能试验研究[J]. 建筑结构学报, 2013, 34(1): 101-107, 116.FANG Zhi, XIANG Yu, LIU Chuan-le. Experimental study on fatigue properties of CFRP prestressed RPC beams without stirrups[J]. Journal of Building Structures, 2013, 34(1): 101-107, 116. [21] 杨简, 李洋, 陈宝春, 等. UHPC直拉试验方法与本构关系研究[J]. 材料导报, 2024, 38(6): 159-167.YANG Jian, LI Yang, CHEN Bao-chun, et al. Study on uniaxial tensile test method and constitutive relationship of UHPC[J]. Materials Reports, 2024, 38(6): 159-167. [22] BENJAMIN G, MARSHALL D. Cylinder or cube: Strength testing of 80 to 200 MPa (11.6 to 29 ksi) ultra-high-performance fiber-reinforced concrete[J]. ACI Materials Journal, 2008, 105(6): 603-609. [23] 冯磊, 刘红彬, 彭培火, 等. 高强与活性粉末混凝土尺寸效应的分析[J]. 四川建筑科学研究, 2010, 36(3): 191-197.FENG Lei, LIU Hong-bin, PENG Pei-huo, et al. Analysis of size effect on high-strength concrete and reactive powder concrete[J]. Sichuan Building Science, 2010, 36(3): 191-197. [24] 张明波. 基于承载力控制的预应力RPC梁设计理论研究[D]. 北京: 北京交通大学, 2009.ZHANG Ming-bo. Research of design theory for prestressed RPC girder based on bearing capacity[D]. Beijing: Beijing Jiaotong University, 2009. [25] 王俊亭, 掺粉煤灰活性粉末混凝土配制技术与力学性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2006.WANG Jun-ting. Study on compounding technology and mechanical performance of reactive powder concrete with fly ash[D]. Harbin: Harbin Institute of Technology, 2006. [26] 罗华. 圆钢管活性粉末混凝土短柱轴压受力性能研究[D]. 北京: 北京交通大学, 2011.LUO Hua. Research on behavior of reactive powder concrete-filled circular steel tube stub columns under axial compression[D]. Beijing: Beijing Jiaotong University, 2011. [27] 郝文秀, 徐晓. 钢纤维活性粉末混凝土力学性能试验研究[J]. 建筑技术, 2012, 43(1): 35-37.HAO Wen-xiu, XU Xiao. Experimental study on the mechanical properties of reactive powder concrete with steel fibre[J]. Architecture Technology, 2012, 43(1): 35-37. [28] 李聪, 毛庆超, 胡文旭, 等. 栓黏混合连接钢-UHPC组合板界面抗剪试验[J]. 交通运输工程学报, 2025, 25(5): 278-296. doi: 10.19818/j.cnki.1671-1637.2025.05.019LI Cong, MAO Qing-chao, HU Wen-xu, et al. Shear test on interface of steel-UHPC composite slab with hybrid connection of headed stud and adhesive[J]. Journal of Traffic and Transportation Engineering, 2025, 25(5): 278-296. doi: 10.19818/j.cnki.1671-1637.2025.05.019 [29] 曾建仙, 吴炎海, 林清. 掺钢纤维活性粉末混凝土的受压力学性能研究[J]. 福州大学学报(自然科学版), 2005, 33(增1): 132-137.ZENG Jian-xian, WU Yan-hai, LIN Qing. Researches on the compressive mechanics properties of steel fiber RPC[J]. Journal of Fuzhou University (Natural Science), 2005, 33(S1): 132-137. [30] 赵军卫. 预应力锚具下混凝土局部受压基本问题试验研究[D]. 哈尔滨: 哈尔滨工业大学, 2008.ZHAO Jun-wei. Experimental research on fundamental Problems of local compression of concrete under anchorages[D]. Harbin: Harbin Institute of Technology, 2008. [31] 林上顺, 暨邦冲, 刘君平, 等. 矩形截面型钢超高性能混凝土梁短期刚度计算方法[J]. 交通运输工程学报, 2024, 24(6): 92-105. doi: 10.19818/j.cnki.1671-1637.2024.03.006LIN Shang-shun, JI Bang-chong, LIU Jun-ping, et al. Calculation method of instantaneous stiffness of steel reinforced ultra-high performance concrete beams with rectangular section[J]. Journal of Traffic and Transportation Engineering, 2024, 24(6): 92-105. doi: 10.19818/j.cnki.1671-1637.2024.03.006 [32] 李凌霄, 邹德强, 王嘉兴, 等. UHPC免模板湿接缝抗弯性能试验[J]. 长安大学学报(自然科学版), 2024, 44(6): 81-91.LI Ling-xiao, ZOU De-qiang, WANG Jia-xing, et al. Experiment on flexural behavior of UHPC wet joints without formwork[J]. Journal of Chang'an University (Natural Science Edition), 2024, 44(6): 81-91. [33] 晏班夫, 刘千, 王凯, 等. 带钢底板UHPC梁抗剪承载力计算方法[J]. 交通运输工程学报, 2024, 24(3): 82-93. doi: 10.19818/j.cnki.1671-1637.2024.03.005YAN Ban-fu, LIU Qian, WANG Kai, et al. Shear bearing capacity calculation method for UHPC beams with steel bottom plate[J]. Journal of Traffic and Transportation Engineering, 2024, 24(3): 82-93. doi: 10.19818/j.cnki.1671-1637.2024.03.005 -
下载: