留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑电力设施失效的区域路网桥梁震后修复决策方法

温佳年 危丽燕 张望欣 韩强

温佳年, 危丽燕, 张望欣, 韩强. 考虑电力设施失效的区域路网桥梁震后修复决策方法[J]. 交通运输工程学报, 2025, 25(6): 61-74. doi: 10.19818/j.cnki.1671-1637.2025.06.006
引用本文: 温佳年, 危丽燕, 张望欣, 韩强. 考虑电力设施失效的区域路网桥梁震后修复决策方法[J]. 交通运输工程学报, 2025, 25(6): 61-74. doi: 10.19818/j.cnki.1671-1637.2025.06.006
WEN Jia-nian, WEI Li-yan, ZHANG Wang-xin, HAN Qiang. A post-earthquake repair decision method for bridges in regional road networks considering power facility failures[J]. Journal of Traffic and Transportation Engineering, 2025, 25(6): 61-74. doi: 10.19818/j.cnki.1671-1637.2025.06.006
Citation: WEN Jia-nian, WEI Li-yan, ZHANG Wang-xin, HAN Qiang. A post-earthquake repair decision method for bridges in regional road networks considering power facility failures[J]. Journal of Traffic and Transportation Engineering, 2025, 25(6): 61-74. doi: 10.19818/j.cnki.1671-1637.2025.06.006

考虑电力设施失效的区域路网桥梁震后修复决策方法

doi: 10.19818/j.cnki.1671-1637.2025.06.006
基金项目: 

国家自然科学基金项目 U24A20175

国家自然科学基金项目 52338010

国家自然科学基金项目 52494963

详细信息
    作者简介:

    温佳年(1990-),男,甘肃兰州人,北京工业大学研究员,工学博士,从事桥梁抗震安全及韧性提升研究

  • 中图分类号: U447

A post-earthquake repair decision method for bridges in regional road networks considering power facility failures

Funds: 

National Natural Science Foundation of China U24A20175

National Natural Science Foundation of China 52338010

National Natural Science Foundation of China 52494963

More Information
Article Text (Baidu Translation)
  • 摘要: 为降低地震灾害对区域交通系统运行的负面影响,增强公路交通基础设施的震后恢复能力,研究了资源受限条件下区域路网桥梁群的震后修复决策问题;基于路段通行成本函数与交叉口控制延误模型,构建了能够量化交通功能随设施损伤和修复动态变化的区域路网交通性能分析方法;引入2类依存机制,建立了考虑电力设施失效的区域路网桥梁韧性评估模型;以桥梁和电力设施联合修复次序为优化变量,设计了基于韧性最优准则的双层修复决策模型,其中上层为整数规划模型,用于求解桥梁和电力设施的最优修复调度,下层为用户均衡流量分配模型,旨在动态评估桥梁和电力设施服务状态变化对交通用户出行效率的影响;以Centerville社区的交通-电力耦合网络为算例,对模型的有效性和应用价值进行了分析验证。分析结果表明:修复决策方法能够有效解决考虑电力设施失效与多重资源约束的区域路网桥梁修复优化问题,准确再现震后交通功能动态演化过程;相比传统基准策略,近似最优修复策略在网络恢复效率与抗震韧性方面均显著提升;相互依存关系对修复次序优化具有显著影响,忽略功能和修复依存关系将导致区域交通功能与抗震韧性被高估。研究成果可为区域交通基础设施的灾后恢复决策与抗震韧性提升提供科学参考。

     

  • 图  1  功能恢复轨迹示意

    Figure  1.  Schematic of recovery curves

    图  2  双层规划模型的逻辑关系

    Figure  2.  Logic scheme of the bi-level programming model

    图  3  优化算法的计算流程

    Figure  3.  Flow of the proposed algorithm

    图  4  染色体的编码机制

    Figure  4.  Encoding mechanism of the chromosome

    图  5  无效染色体的更新方式

    Figure  5.  Updating of invalid chromosomes

    图  6  适应度评估流程

    Figure  6.  Flow of fitness evaluation

    图  7  区域交通-电力网络布局

    Figure  7.  Layout of transportation-electric power network

    图  8  桥梁网络的交通拥堵

    Figure  8.  Traffic congestion of the bridge network

    图  9  震前与震后各节点对间的最短通行时间的比值

    Figure  9.  Ratio of the shortest travel time between each node pair before and after earthquake

    图  10  近似最优修复策略

    Figure  10.  Near optimal strategy for restoration

    图  11  抗震韧性直方图

    Figure  11.  Histograms of seismic resilience

    图  12  修复完成时间直方图

    Figure  12.  Histograms of final recovery time

    图  13  1 000个样本下不同策略的网络功能演变结果

    Figure  13.  Results from 1 000 simulations for different strategies

    图  14  不同修复策略的平均恢复轨迹

    Figure  14.  Average network recovery trajectories with different restoration strategies

    图  15  伪近似最优修复策略的修复调度

    Figure  15.  Repair scheduling of pseudo-near optimal strategy

    图  16  PNOS的网络恢复轨迹

    Figure  16.  Network recovery trajectories of PNOS

    图  17  PNOS的抗震韧性直方图

    Figure  17.  Histograms of network resilience for PNOS

    表  1  相互依存关系的施加方式

    Table  1.   Implementation of interdependencies

    相互依存关系类别 影响因素 施加对象
    功能依存关系 交叉口延误 桥梁网络
    修复相互依存关系 修复延误 电力网络
    延长修复持时 桥梁网络
    下载: 导出CSV

    表  2  桥梁损伤状态与道路残余性能

    Table  2.   Bridge damage state and residual performance of road segment  %

    损伤状态 残余百分比
    交通容量θc 自由流速度θv
    ND 100 100
    SD 70 75
    MD 50 50
    ED 20 30
    CD 0 0
    下载: 导出CSV

    表  3  损伤状态与预期修复持时

    Table  3.   Damage states and expected restoration durations of elements

    编号 损伤
    状态
    平均修复
    持时/d
    编号 损伤
    状态
    平均修复
    持时/d
    B2 CD 162 E5 ED 8
    B3 CD 175 E6 CD 33
    B4 ED 66 E9 CD 11
    B5 CD 158 E11 ED 2
    B6 MD 47 E12 CD 9
    B7 CD 139 E15 CD 9
    B8 ED 73 E16 CD 6
    B9 SD 20 E17 ED 9
    B10 ED 85 E22 CD 7
    E2 ED 3 E23 ED 11
    E3 CD 8 E26 CD 35
    E4 CD 29 E31 CD 6
    下载: 导出CSV

    表  4  修复策略的统计结果

    Table  4.   Statistical results for all strategies

    修复策略 NOS BM1 BM2 BM3
    抗震
    韧性
    最大值 0.776 8 0.643 2 0.654 5 0.621 6
    最小值 0.750 3 0.589 9 0.590 7 0.565 1
    均值 0.763 6 0.617 6 0.621 2 0.594 0
    变异系数 0.006 4 0.014 7 0.016 8 0.017 3
    最终
    恢复
    时间
    最大值/d 600.820 4 747.583 4 728.049 7 673.037 3
    最小值/d 510.394 4 656.775 6 609.581 8 595.814 6
    均值/d 551.777 3 703.332 3 670.063 9 636.338 1
    变异系数 0.027 1 0.021 7 0.024 7 0.021 1
    P[Q(720)=1]/% 100.0 88.8 98.4 100.0
    下载: 导出CSV
  • [1] 钟剑, 王浩, 朱小杰. 多点激励地震动空间效应参数敏感性分析[J]. 东南大学学报(自然科学版), 2024, 54(6): 1377-1385.

    ZHONG Jian, WANG Hao, ZHU Xiao-jie. Sensitivity analysis on seismic spatial variability parameters subjected to differential support motions[J]. Journal of Southeast University (Natural Science Edition), 2024, 54(6): 1377-1385.
    [2] ZHONG J, ZHOU S E, WANG H, et al. Regional seismic fragility of bridge network derived by covariance matrix model of bridge portfolios[J]. Engineering Structures, 2024, 309: 118035. doi: 10.1016/j.engstruct.2024.118035
    [3] CHANG L, ELNASHAI A S, SPENCER B F. Post-earthquake modelling of transportation networks[J]. Structure and Infrastructure Engineering, 2012, 8(10): 893-911.
    [4] HAN Q, DU X L, LIU J B, et al. Seismic damage of high-way bridges during the 2008 Wenchuan Earthquake[J]. Earthquake Engineering and Engineering Vibration, 2009, 8(2): 263-273. doi: 10.1007/s11803-009-8162-0
    [5] HOLLING C S. Resilience and stability of ecological systems[J]. Annual Review of Ecology and Systematics, 1973, 4: 1-23. doi: 10.1146/annurev.es.04.110173.000245
    [6] BRUNEAU M, CHANG S E, EGUCHI R T, et al. A framework to quantitatively assess and enhance the seismic resilience of communities[J]. Earthquake Spectra, 2003, 19(4): 733-752. doi: 10.1193/1.1623497
    [7] ALIPOUR A, SHAFEI B. Seismic resilience of transporta-tion networks with deteriorating components[J]. Journal of Structural Engineering, 2016, 142(8): C4015015. doi: 10.1061/(ASCE)ST.1943-541X.0001399
    [8] 贾俊峰, 魏博, 杜修力, 等. 从WCEE看国内外韧性抗震梁桥研究进展[J]. 交通运输工程学报, 2022, 22(6): 25-45. doi: 10.19818/j.cnki.1671-1637.2022.06.002

    JIA Jun-feng, WEI Bo, DU Xiu-li, et al. Research progress of seismic resilient girder bridges at home and abroad from WCEE[J]. Journal of Traffic and Transportation Engi-neering, 2022, 22(6): 25-45. doi: 10.19818/j.cnki.1671-1637.2022.06.002
    [9] 张望欣, 韩强, 温佳年, 等. 基于地震灾害管理的桥梁网络韧性决策框架[J]. 土木工程学报, 2023, 56(4): 72-82.

    ZHANG Wang-xin, HAN Qiang, WEN Jia-nian, et al. A decision framework for improving bridge network resilience based on earthquake disaster management[J]. China Civil Engineering Journal, 2023, 56(4): 72-82.
    [10] CHEN L C, MILLER-HOOKS E. Resilience: An indicator of recovery capability in intermodal freight transport[J]. Transportation Science, 2011, 46(1): 109-123.
    [11] 翟长海, 岳清瑞, 谢礼立. 抗震韧性城市评估与构建[J]. 建筑结构学报, 2024, 45(5): 1-13.

    ZHAI Chang-hai, YUE Qing-rui, XIE Li-li. Evaluation and construction of seismic resilient cities[J]. Journal of Building Structures, 2024, 45(5): 1-13.
    [12] 毛新华, 王建伟, 袁长伟, 等. 基于韧性最优的灾后公路网修复调度研究[J]. 中国公路学报, 2022, 35(6): 289-298.

    MAO Xin-hua, WANG Jian-wei, YUAN Chang-wei, et al. Restoration scheduling for post-disaster road networks based on resilience optimization[J]. China Journal of Highway and Transport, 2022, 35(6): 289-298.
    [13] 路庆昌, 刘鹏, 徐标, 等. 运营事件下基于韧性的地铁网络保护决策优化[J]. 交通运输工程学报, 2023, 23(3): 209-220. doi: 10.19818/j.cnki.1671-1637.2023.03.016

    LU Qing-chang, LIU Peng, XU Biao, et al. Resilience-based protection decision optimization for metro network under operational incidents[J]. Journal of Traffic and Transpor-tation Engineering, 2023, 23(3): 209-220. doi: 10.19818/j.cnki.1671-1637.2023.03.016
    [14] KAVIANI A, THOMPSON R G, RAJABIFARD A, et al. A model for multi-class road network recovery scheduling of regional road networks[J]. Transportation, 2020, 47(1): 109-143. doi: 10.1007/s11116-017-9852-5
    [15] MERSCHMAN E, DOUSTMOHAMMADI M, SALMAN A M, et al. Postdisaster decision framework for bridge repair prioritization to improve road network resilience[J]. Trans-portation Research Record: Journal of the Transportation Research Board, 2020(2674): 81-92.
    [16] SOMY S, SHAFAEI R, RAMEZANIAN R. Resilience-based mathematical model to restore disrupted road-bridge trans-portation networks[J]. Structure and Infrastructure Engi-neering, 2022, 18(9): 1334-1349. doi: 10.1080/15732479.2021.1906711
    [17] KARAMLOU A, BOCCHINI P. Sequencing algorithm with multiple-input genetic operators: Application to disaster resilience[J]. Engineering Structures, 2016, 117: 591-602. doi: 10.1016/j.engstruct.2016.03.038
    [18] LIU K Z, ZHAI C H, DONG Y. Optimal restoration schedules of transportation network considering resilience[J]. Structure and Infrastructure Engineering, 2021, 17(8): 1141-1154. doi: 10.1080/15732479.2020.1801764
    [19] ZHANG W X, DONG H H, WEN J N, et al. A resilience-based decision framework for post-earthquake restoration of bridge networks under uncertainty[J]. Structure and Infrastructure Engineering, 2025, 21(2): 341-356. doi: 10.1080/15732479.2023.2218838
    [20] SUN L, STOJADINOVIC B, SANSAVINI G. Resilience evaluation framework for integrated civil infrastructure-community systems under seismic hazard[J]. Journal of Infrastructure Systems, 2019, 25(2): 04019016. doi: 10.1061/(ASCE)IS.1943-555X.0000492
    [21] FOTOUHI H, MORYADEE S, MILLER-HOOKS E. Quanti-fying the resilience of an urban traffic-electric power coupled system[J]. Reliability Engineering & System Safety, 2017, 163: 79-94.
    [22] ZOU Q L, CHEN S R. Resilience modeling of interdependent traffic-electric power system subject to hurricanes[J]. Journal of Infrastructure Systems, 2020, 26: 04019034. doi: 10.1061/(ASCE)IS.1943-555X.0000524
    [23] ZOU Q L, CHEN S R. Enhancing resilience of interdepen-dent traffic-electric power system[J]. Reliability Engineering & System Safety, 2019, 191: 106557.
    [24] LIU Z L, LI S C, ZHAO W G, et al. Post-earthquake assessment model for highway bridge networks considering traffic congestion due to earthquake-induced bridge damage[J]. Engineering Structures, 2022, 262: 114395. doi: 10.1016/j.engstruct.2022.114395
    [25] ZHAO T Y, SUN L. Seismic resilience assessment of critical infrastructure-community systems considering looped interde-pendences[J]. International Journal of Disaster Risk Reduc-tion, 2021, 59: 102246. doi: 10.1016/j.ijdrr.2021.102246
    [26] DUAN D L, LV C C, SI S B, et al. Universal behavior of cascading failures in interdependent networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(45): 22452-22457.
    [27] BOCCHINI P, FRANGOPOL D M. Restoration of bridge networks after an earthquake: Multicriteria intervention optimization[J]. Earthquake Spectra, 2012, 28(2): 427-455. doi: 10.1193/1.4000019
    [28] WARDROP J G. Road paper. Some theoretical aspects of road traffic research[J]. Proceedings of the Institution of Civil Engineers, 1952, 1(3): 325-362. doi: 10.1680/ipeds.1952.11259
    [29] MARTIN W A, MCGUCKIN N A. Travel estimation techniques for urban planning[M]. Washington DC: National Academy Press, 1998.
    [30] FHWA. Highway capacity manual[M]. Washington DC: FHWA, 2000.
    [31] LIU Y, WOTHERSPOON L, NAIR N C, et al. Quantifying the seismic risk for electric power distribution systems[J]. Structure and Infrastructure Engineering, 2021, 17(2): 217-232. doi: 10.1080/15732479.2020.1734030
    [32] CARDONI A, CIMELLARO G P, DOMANESCHI M, et al. Modeling the interdependency between buildings and the electrical distribution system for seismic resilience assessment[J]. International Journal of Disaster Risk Reduction, 2020, 42: 101315. doi: 10.1016/j.ijdrr.2019.101315
    [33] OUYANG M, DUEÑAS-OSORIO L. An approach to design interface topologies across interdependent urban infrastructure systems[J]. Reliability Engineering & System Safety, 2011, 96(11): 1462-1473.
    [34] WU B C, TANG A P, WU J. Modeling cascading failures in interdependent infrastructures under terrorist attacks[J]. Reliability Engineering & System Safety, 2016, 147: 1-8.
    [35] WANG F, MAGOUA J J, LI N, et al. Assessing the impact of systemic heterogeneity on failure propagation across interdependent critical infrastructure systems[J]. Inter-national Journal of Disaster Risk Reduction, 2020, 50: 101818. doi: 10.1016/j.ijdrr.2020.101818
    [36] LI Z L, JIN C, HU P, et al. Resilience-based transportation network recovery strategy during emergency recovery phase under uncertainty[J]. Reliability Engineering & System Safety, 2019, 188: 503-514.
    [37] GUO A X, LIU Z L, LI S C, et al. Seismic performance assessment of highway bridge networks considering post-disaster traffic demand of a transportation system in emergency conditions[J]. Structure and Infrastructure Engi-neering, 2017, 13(12): 1523-1537. doi: 10.1080/15732479.2017.1299770
    [38] XU M, OUYANG M, MAO Z J, et al. Improving repair sequence scheduling methods for postdisaster critical infrastructure systems[J]. Computer-aided Civil and Infrastructure Engineering, 2019, 34(6): 506-522. doi: 10.1111/mice.12435
    [39] CIMELLARO G P, REINHORN A M, BRUNEAU M. Framework for analytical quantification of disaster resilience[J]. Engineering Structures, 2010, 32(11): 3639-3649. doi: 10.1016/j.engstruct.2010.08.008
    [40] FRANK M, WOLFE P. An algorithm for quadratic programming [J]. Naval Research Logistics Quarterly, 1956, 3(1/2): 95-110.
    [41] ELLINGWOOD B R, CUTLER H, GARDONI P, et al. The centerville virtual community: A fully integrated decision model of interacting physical and social infrastructure systems[J]. Sustainable and Resilient Infrastructure, 2016, 1(3/4): 95-107.
    [42] WU Y Y, HOU G Y, CHEN S R. Post-earthquake resilience assessment and long-term restoration prioritization of trans-portation network[J]. Reliability Engineering & System Safety, 2021, 211: 107612.
    [43] ZHANG W L, WANG N Y, NICHOLSON C. Resilience-based post-disaster recovery strategies for road-bridge networks[J]. Structure and Infrastructure Engineering, 2017, 13(11): 1404-1413. doi: 10.1080/15732479.2016.1271813
    [44] ZHANG W X, HAN Q, SHANG W L, et al. Seismic resilience assessment of interdependent urban transportation-electric power system under uncertainty[J]. Transportation Research Part A: Policy and Practice, 2024, 183: 104078. doi: 10.1016/j.tra.2024.104078
  • 加载中
图(17) / 表(4)
计量
  • 文章访问数:  208
  • HTML全文浏览量:  97
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-08
  • 录用日期:  2025-06-16
  • 修回日期:  2025-06-03
  • 刊出日期:  2025-12-28

目录

    /

    返回文章
    返回