Mechanical characteristics of ballastless track on long-span cable-stayed bridge under shrinkage and creep effects
-
摘要: 建立了考虑钢轨、扣件、轨道板、底座板、滑动层、砂浆层、桥梁、摩擦板和端刺等部件的(117.9+240.0+117.9) m高速铁路预应力混凝土矮塔斜拉桥-无砟轨道系统仿真模型;以铁路桥涵规范TB 10002—2017、公路规范JTG 3362—2018和欧洲规范Eurocode 2为例,首次探讨了无砟轨道收缩徐变效应下高速铁路大跨度矮塔斜拉桥上无缝线路受力特性;分析了存梁时间、混凝土相对湿度等设计参数的影响。研究结果表明:随着服役时间的延长,轨道结构的受力逐渐增大;单独考虑桥梁收缩徐变效应时,钢轨最大拉应力为4.9 MPa,出现在右侧梁端处,最大压应力为5.2 MPa,出现在固结机构附近;单独考虑无砟轨道收缩徐变效应时,钢轨最大拉应力为0.9 MPa,最大压应力为1.1 MPa,均出现在右侧梁端处;同时考虑桥梁和轨道的收缩徐变效应时,钢轨最大拉应力为7.7 MPa,出现在右侧梁端处,最大压应力为6.5 MPa,出现在固结机构附近。延长存梁时间、加强混凝土养护可减小收缩徐变效应对轨道结构的影响。研究结果可为大跨度桥梁与无砟轨道设计提供重要参考。Abstract: A simulation model of (117.9+240.0+117.9) m extradosed cable-stayed bridge and ballastless track system with prestressed concrete for high-speed railway was established in consideration of rails, fasteners, track plates, base plates, sliding layers, mortar layers, bridges, friction plates, and end spurs. With the railway bridge and culvert specification TB 10002—2017, highway specification JTG 3362—2018, and European specification Eurocode 2 as reference standards, the mechanical characteristics in seamless lines on long-span extradosed cable-stayed bridges for the high-speed railway under shrinkage and creep effects of ballastless tracks were investigated firstly, and the influence of design parameters such as storage time of girders and relative humidity of concrete was analyzed. The results show that with the prolongation of service time, the stress of track structures increases gradually. When the shrinkage and creep effects of the bridge alone are considered, the maximum tensile stress of the rail is 4.9 MPa, which appears at the end of the girder at the right side, and the maximum compressive stress is 5.2 MPa, which appears near the consolidation mechanism. When the shrinkage and creep effects of the ballastless track alone are considered, the maximum tensile stress of the rail is 0.9 MPa, and the maximum compressive stress is 1.1 MPa, both of which appear at the end of the girder at the right side. When the shrinkage and creep effects of the bridge and the track are considered at the same time, the maximum tensile stress of the rail is 7.7 MPa, appearing at the end of the girder at the right side, and the maximum compressive stress is 6.5 MPa, appearing near the consolidation mechanism. Prolonging the storage time of the girder and strengthening the concrete maintenance can reduce the influence of shrinkage and creep effects on the rail structure. The research results can provide an important reference for the design of long-span bridges and ballastless tracks.
-
表 1 不同收缩徐变下轨道结构受力结果汇总
Table 1. Summary of stress results of track structures under different shrinkage and creep conditions
收缩徐变 桥梁 轨道 桥梁和轨道 钢轨应力/MPa 最大拉应力 4.9 0.9 7.7 最大压应力 5.2 1.1 6.5 轨道板应力/MPa 最大拉应力 1.0 4.2 4.7 底座板应力/MPa 最大拉应力 1.2 4.1 5.4 墩顶水平力最大值/kN 1 865.2 8.8 1 619.2 -
[1] 陈亮, 邵长宇. 结合梁斜拉桥混凝土收缩徐变影响规律[J]. 桥梁建设, 2015, 45(1): 74-78.CHEN Liang, SHAO Chang-yu. Influential laws of concrete shrinkage and creep of composite girder cable-stayed bridge[J]. Bridge Construction, 2015, 45(1): 74-78. [2] NASER A F. A review study on theoretical comparison between time-dependent analysis models for prestressed concrete bridges[J]. Jurnal Kejuruteraan, 2022, 34(3): 375-385. doi: 10.17576/jkukm-2022-34(3)-04 [3] 郭远航. 收缩徐变效应对高速铁路大跨度混凝土斜拉桥运营状态的影响[J]. 铁道建筑技术, 2019(6): 68-71, 92.GUO Yuan-hang. Study on shrinkage and creep effect of long-span concrete cable-stayed high-speed railway bridge[J]. Railway Construction Technology, 2019(6): 68-71, 92. [4] HUI Q X, YAN L, ZHANG Z Q, et al. Shrinkage and creep effect analysis of beam-arch composite bridge based on field test[J]. Structures, 2024, 62: 106187. doi: 10.1016/j.istruc.2024.106187 [5] 郭安娜. 大跨度铁路预应力混凝土斜拉桥收缩徐变影响及控制措施研究[J]. 铁道标准设计, 2021, 65(6): 73-77.GUO An-na. Research on influence of shrinkage and creep on long-span railway prestressed concrete cable-stayed bridge and control measures[J]. Railway Standard Design, 2021, 65(6): 73-77. [6] 徐斌, 卢皓, 张浩. 梁桁组合结构高铁斜拉桥的收缩徐变分析: 以西十高铁汉江特大桥为例[J]. 铁道标准设计, 2024, 68(5): 60-67.XU Bin, LU Hao, ZHANG Hao. Analysis of shrinkage and creep on high-speed railway cable-stayed bridge with beam-truss composite structure: Take the Hanjiang River Super Major Bridge of the Xi'an-Shiyan High-speed Railway as an example[J]. Railway Standard Design, 2024, 68(5): 60-67. [7] WILLIAMS M, MENON D, PRASAD A M. Creep and shrinkage in prestressed concrete beams: An experimental study[J]. Structural Concrete, 2024, 25(4): 2400-2419. doi: 10.1002/suco.202300625 [8] 王春生, 何文龙, 张文婷, 等. 基于改进BP神经网络的斜拉桥静力体系可靠度分析[J]. 交通运输工程学报, 2024, 24(5): 86-100. doi: 10.19818/j.cnki.1671-1637.2024.05.006WANG Chun-sheng, HE Wen-long, ZHANG Wen-ting, et al. Static system reliability analysis of cable-stayed bridge based on improved BP neural network[J]. Journal of Traffic and Transportation Engineering, 2024, 24(5): 86-100. doi: 10.19818/j.cnki.1671-1637.2024.05.006 [9] 康炜, 李伟, 文强, 等. 铁路双边箱混合梁斜拉桥钢-混结合段受力性能[J]. 交通运输工程学报, 2025, 25(3): 114-129. doi: 10.19818/j.cnki.1671-1637.2025.03.007KANG Wei, LI Wei, WEN Qiang, et al. Force performance of steel-concrete sections in railway double-box hybrid girder cable-stayed bridge[J]. Journal of Traffic and Transportation Engineering, 2025, 25(3): 114-129. doi: 10.19818/j.cnki.1671-1637.2025.03.007 [10] 钱程, 沈彬然, 陈漫, 等. 桥上CRTSⅡ型纵连板式无砟轨道断轨力作用下梁轨相互作用影响分析[J]. 中国铁路, 2016(4): 47-51.QIAN Cheng, SHEN Bin-ran, CHEN Man, et al. Analysis of beam-rail interaction in bridge-supported CRTSⅡ continuous slab ballastless track subjected to rail break force[J]. China Railway, 2016(4): 47-51. [11] 朱志辉, 闫铭铭, 李晓光, 等. 大跨度斜拉桥-无砟轨道结构变形适应性研究[J]. 中国铁道科学, 2019, 40(2): 16-24.ZHU Zhi-hui, YAN Ming-ming, LI Xiao-guang, et al. Deformation adaptability of long-span cable-stayed bridge and ballastless track structure[J]. China Railway Science, 2019, 40(2): 16-24. [12] 于向东, 黄铮, 敬海泉. 考虑加载历史多因素耦合作用下的梁轨相互作用附加力[J]. 铁道科学与工程学报, 2023, 20(1): 210-221.YU Xiang-dong, HUANG Zheng, JING Hai-quan. Additional force of track-bridge interaction under multi-factor coupling of loading history[J]. Journal of Railway Science and Engineering, 2023, 20(1): 210-221. [13] YAN B, ZHANG G X, HAN Z S, et al. Longitudinal force of continuously welded rail on suspension bridge with length exceeding 1 000 m[J]. Structural Engineering International, 2019, 29(3): 390-395. doi: 10.1080/10168664.2019.1577115 [14] 梁金宝, 戴公连, 唐宇, 等. 桥上CRTSⅡ型板式无砟轨道温度作用取值研究[J]. 铁道学报, 2021, 43(1): 122-127.LIANG Jin-bao, DAI Gong-lian, TANG Yu, et al. Study on values of temperature actions for CRTSⅡ slab ballastless track on bridge[J]. Journal of the China Railway Society, 2021, 43(1): 122-127. [15] 闫斌, 谢浩然, 潘文彬, 等. 大跨度混合梁斜拉桥-轨道系统受力特性[J]. 铁道工程学报, 2019, 36(9): 11-16.YAN Bin, XIE Hao-ran, PAN Wen-bin, et al. Characteristics of interaction between tracks and long-span cable-stayed bridge with steel-concrete composite beam[J]. Journal of Railway Engineering Society, 2019, 36(9): 11-16. [16] 张鹏飞, 徐朗, 唐强强, 等. 考虑行波效应的桥上Ⅲ型板式无砟轨道系统震致响应[J]. 交通运输工程学报, 2025, 25(2): 283-295. doi: 10.19818/j.cnki.1671-1637.2025.02.018ZHANG Peng-fei, XU Lang, TANG Qiang-qiang, et al. Seismic response of ballastless track system with Ⅲ type slab on bridge considering traveling wave effect[J]. Journal of Traffic and Transportation Engineering, 2025, 25(2): 283-295. doi: 10.19818/j.cnki.1671-1637.2025.02.018 [17] 刘永存. 大跨度刚构拱桥铺设无砟轨道适应性研究[J]. 铁道工程学报, 2019, 36(6): 51-55.LIU Yong-cun. Research on the adaptability of laying ballastless track on long-span rigid frame arch bridge[J]. Journal of Railway Engineering Society, 2019, 36(6): 51-55. [18] 刘文硕, 吕方舟, 戴公连, 等. 高速铁路大跨度斜拉桥钢箱梁温度模式分析[J]. 铁道科学与工程学报, 2023, 20(11): 4031-4040.LIU Wen-shuo, LV Fang-zhou, DAI Gong-lian, et al. Temperature mode of steel box girder of long span cable-stayed bridge of high-speed railway[J]. Journal of Railway Science and Engineering, 2023, 20(11): 4031-4040. [19] 胡志鹏, 孙宗磊, 张浩然, 等. 大跨度斜拉桥无砟轨道结构静动力特性研究[J]. 铁道标准设计, 2025, 69(4): 42-49.HU Zhi-peng, SUN Zong-lei, ZHANG Hao-ran, et al. Study on static and dynamic characteristics of ballastless track structure on long span cable-stayed bridges[J]. Railway Standard Design, 2025, 69(4): 42-49. [20] 张捍东. 大跨度混合梁斜拉桥上无砟轨道纵向力分析[J]. 铁道建筑, 2020, 60(3): 104-107, 117.ZHANG Han-dong. Analysis on longitudinal force of ballastless track system on long span hybrid girder cable-stayed bridge[J]. Railway Engineering, 2020, 60(3): 104-107, 117. [21] ZHENG Z H, LIU P, YU Z W, et al. Numerical investigation of interlaminar stress of CRTS Ⅱ slab ballastless track induced by creep and shrinkage of concrete[J]. Materials, 2022, 15(7): 2480. doi: 10.3390/ma15072480 [22] 王俊冬, 欧阳辉来, 魏周春, 等. 高速铁路主跨320 m钢-混部分斜拉桥无砟轨道适应性研究[J]. 铁道标准设计, 2024, 68(5): 29-35.WANG Jun-dong, OUYANG Hui-lai, WEI Zhou-chun, et al. Research on the adaptability of ballastless track for 320 m main span steel-concrete partially cable-stayed bridge of high-speed railway[J]. Railway Standard Design, 2024, 68(5): 29-35. [23] XIANG P, WEI M L, SUN M M, et al. Creep effect on the dynamic response of train-track-continuous bridge system[J]. International Journal of Structural Stability and Dynamics, 2021, 21(10): 2150139. doi: 10.1142/S021945542150139X [24] CHEN Z W. Dynamic contact between CRTS Ⅱ slab track and bridge due to time-dependent effect of bridge and its influence on train-track-bridge interaction[J]. Engineering Structures, 2021, 234: 111974. doi: 10.1016/j.engstruct.2021.111974 [25] 秦煜, 张鑫, 曾永平, 等. 收缩徐变对高速铁路斜拉桥单箱单室混合梁位移的影响及调控[J]. 中国铁道科学, 2024, 45(2): 41-47.QIN Yu, ZHANG Xin, ZENG Yong-ping, et al. Influence and control of shrinkage and creep on displacement of single-box single-cell hybrid beam of high-speed railway cable-stayed bridge[J]. China Railway Science, 2024, 45(2): 41-47. [26] 陈兆玮. 桥梁收缩徐变诱发高速列车-CRTS Ⅱ型板式轨道-桥梁系统非线性动力相互作用研究[J]. 振动与冲击, 2021, 40(12): 1-8, 22.CHEN Zhao-wei. Nonlinear dynamic contact behavior of high-speed train-CRTS Ⅱ slab track-bridge interaction caused by concrete creep and shrinkage[J]. Journal of Vibration and Shock, 2021, 40(12): 1-8, 22. [27] 方辉, 赵科, 朱晟毅, 等. 收缩徐变对高速列车-轨道-桥梁系统动态特性的影响[J]. 科学技术与工程, 2018, 18(34): 118-122.FANG Hui, ZHAO Ke, ZHU Sheng-yi, et al. Influence of shrinkage and creep on the dynamic performance of high-speed train-track-bridge system[J]. Science Technology and Engineering, 2018, 18(34): 118-122. [28] 闫斌, 潘文彬, 孟亚军, 等. 收缩徐变作用下铁路连续刚构桥-轨道系统受力特性[J]. 铁道学报, 2017, 39(5): 99-103.YAN Bin, PAN Wen-bin, MENG Ya-jun, et al. Interaction between tracks and continuous rigid-frame bridge carrying railway under action of shrinkage and creep[J]. Journal of the China Railway Society, 2017, 39(5): 99-103. [29] 卿三惠, 陈叔, 胡建. 高速铁路CRTS Ⅱ型板式无砟轨道施工关键设备及施工技术研究[J]. 铁道工程学报, 2008, 25(7): 22-27.QING San-hui, CHEN Shu, HU Jian. Researches on the key construction equipments and technologies for CRTS Ⅱ slab ballastless track for high-speed railway[J]. Journal of Railway Engineering Society, 2008, 25(7): 22-27. -
下载: