Simplified physical parameter model for bidirectional-flow yaw dampers
-
摘要: 为满足快速、精确的动力学仿真需求,建立了油液双向流式抗蛇行减振器的简化物理参数模型。基于油液双向流式抗蛇行减振器工作原理,通过合理分配压缩行程中压缩阻尼阀与底座阻尼阀的流量,实现静态阻尼特性曲线与压力-流量曲线的转换,进而构建了适用于该类型减振器的简化阻尼阀模型;计算各阀系流通流量,考虑油液泄漏效应与压缩效应,建立了各腔室的宏观压力流量方程;采用龙格库塔法对各腔室压力进行数值求解,从而描述减振器的动态行为;根据抗蛇行减振器实际工作状态,进行减振器动态特性的仿真与台架试验对比,分析了单向流式与双向流式减振器动态特性差异及其关键影响因素。研究结果表明:仿真与测试的减振器力-位移曲线、力-速度曲线及作用力时域曲线高度一致,后处理得到的动态刚度、动态阻尼与测试结果的误差在10%以内,模型能准确反映减振器的动态行为;在1 s正弦激扰作用下,复杂物理参数模型的仿真时间超过300 s,而简化物理参数模型在不同频率下的仿真时间均不超过0.5 s,显著提高仿真效率;与单向流式减振器相比,双向流式减振器拉压行程油液回路短,其力-位移曲线的面积更大、对称性更好,表现出更高的动态刚度;空气溶解率和泄漏间隙增加会显著降低减振器的动态刚度和动态阻尼,增大橡胶接头刚度可提升减振器的动态刚度和动态阻尼,但其影响在橡胶接头刚度达到一定水平后逐渐减弱,此时减振器串联刚度主要由油液弹性主导。建立的模型将简化物理参数模型拓展至双向流式抗蛇行减振器,计算效率高,适用于整车动力学仿真。Abstract: To meet the demand of fast and accurate dynamic simulation, a simplified physical parameter model of bidirectional-flow hydraulic yaw dampers was established. According to the working principle of the dampers, the flow rates of compression damping valves and base damping valves during the compression stroke were reasonably allocated. The conversion between static damping characteristic curve and pressure-flow curve was achieved, and then a simplified damping valve model suitable for this type of yaw damper was constructed. Flow rates through each valve system were calculated, and the oil leakage effect and compression effect were considered. Macroscopic pressure-flow equations of each chamber were established. The Runge-Kutta method was adopted for numerical solution of pressure in each chamber, thus dynamic behavior of the yaw damper was described. According to the actual working conditions of yaw dampers, a simulation and bench test comparison of the dynamic characteristics of dampers was carried out, and differences and key influencing factors of dynamic characteristics between unidirectional-flow and bidirectional-flow yaw dampers were analyzed. Research results show that the force-displacement curves, force-velocity curves, and force-time domain curves of the damper from simulation and test are highly consistent. The errors of dynamic stiffness and dynamic damping obtained from post-processing compared with the test results are within 10%. The dynamic behavior of the damper can be accurately reflected by the model. Under 1 s sinusoidal excitation, the simulation time of the complex physical parameter model exceeds 300 s, while that of the simplified physical parameter model at different frequencies does not exceed 0.5 s. Simulation efficiency is significantly improved. Compared with the unidirectional-flow yaw damper, the bidirectional-flow yaw damper has a shorter oil circuit in extension and compression strokes, its force-displacement curve area is larger, and symmetry is better, thus exhibiting higher dynamic stiffness. An increase in air dissolution rate and leakage gap significantly reduces the dynamic stiffness and dynamic damping of yaw dampers. Increasing the stiffness of rubber joints can enhance the dynamic stiffness and dynamic damping of yaw dampers; however, their effect gradually weakens after rubber joint stiffness reaches a certain level. At this time, the series stiffness of yaw dampers is mainly dominated by oil elasticity. The established model extends the simplified physical parameter model to the bidirectional-flow yaw damper. It features high calculation efficiency and is applicable to vehicle dynamics simulation.
-
表 1 抗蛇行减振器主要参数及其取值
Table 1. Main parameters and their values of the yaw damper
参数 数值 参数 数值 参数 数值 Eo/(N·m-2) 1.75×109 μ/(Pa·s) 3.92×10-2 Dh/mm 70 ρ/(kg·m-3) 863 Au/m2 9.81×10-5 Dg/mm 28 KM/(kN·mm-1) 110 δ/m 2.3×10-5 Pr0/kPa 101 KR/(kN·mm-1) 35 Ll/mm 3 γ 1.4 Cd 0.6 e/m 0 L/m 0.329 ε/‰ 0.2 表 2 动态刚度测试和仿真结果对比
Table 2. Comparison of dynamic stiffnesses between testing and simulation results
频率/Hz 动态刚度 0.75 mm 1.00 mm 2.00 mm 测试/
(MN·m-1)仿真/
(MN·m-1)误差/
%测试/
(MN·m-1)仿真/
(MN·m-1)误差/
%测试/
(MN·m-1)仿真/
(MN·m-1)误差/
%2 13.14 12.45 5.21 13.68 13.23 3.28 14.37 14.70 2.30 3 15.27 14.51 5.01 15.47 14.54 5.97 14.01 14.85 6.03 4 16.31 15.62 4.22 16.24 16.08 0.97 13.66 14.53 6.37 5 16.70 15.88 4.92 16.56 16.73 1.02 13.54 14.30 5.62 6 16.81 16.37 2.59 16.65 17.03 2.33 13.49 14.19 5.18 7 16.87 16.70 0.99 16.72 17.20 2.87 13.62 14.28 4.87 8 16.85 16.90 0.26 16.75 17.31 3.36 13.77 14.44 4.88 9 16.87 17.00 0.73 16.80 17.42 3.73 13.99 14.65 4.70 10 16.86 17.06 1.21 16.81 17.50 4.10 14.21 14.95 5.24 表 3 动态阻尼测试和仿真结果对比
Table 3. Comparison of dynamic dampings between testing and simulation results
频率/Hz 动态阻尼 0.75 mm 1.00 mm 2.00 mm 测试/(kN· s·m-1) 仿真/(kN· s·m-1) 误差/ % 测试/(kN· s·m-1) 仿真/(kN· s·m-1) 误差/ % 测试/(kN· s·m-1) 仿真/(kN· s·m-1) 误差/ % 2 330.4 324.6 1.76 425.3 389.3 8.46 564.1 523.2 7.24 3 432.5 398.9 7.77 534.7 520.0 2.74 440.6 429.6 2.49 4 489.8 445.7 8.99 568.4 532.5 6.32 357.6 352.5 1.42 5 512.9 520.8 1.53 548.3 515.5 5.98 303.8 301.7 0.68 6 520.6 540.0 3.72 533.7 501.9 5.97 266.5 265.7 0.31 7 518.0 540.7 4.38 518.1 495.3 4.40 237.5 237.6 0.04 8 514.2 536.0 4.24 507.0 489.9 3.37 214.6 215.7 0.52 9 502.8 534.5 6.30 489.7 484.1 1.16 196.2 198.6 1.22 10 491.7 534.9 8.78 481.6 480.8 0.16 182.3 185.3 1.63 表 4 不同减振器理论模型下所需仿真时间对比
Table 4. Comparison of simulation times for different damper models
激扰频率/Hz 2 3 4 5 6 7 8 9 仿真时间/s 复杂物理参数模型[34] >300 单向流式减振器简化物理参数模型 0.23 0.21 0.22 0.21 0.21 0.21 0.21 0.21 双向流式减振器简化物理参数模型 0.28 0.34 0.36 0.33 0.33 0.32 0.33 0.32 -
[1] 干锋, 戴焕云, 罗光兵, 等. 高速动车组柔性转向架蛇行运动频谱分析[J]. 交通运输工程学报, 2022, 22(1): 155-167. doi: 10.19818/j.cnki.1671-1637.2022.01.013GAN Feng, DAI Huan-yun, LUO Guang-bing, et al. Spectrum analysis of hunting motion of flexible bogies in high-speed EMUs[J]. Journal of Traffic and Transportation Engineering, 2022, 22(1): 155-167. doi: 10.19818/j.cnki.1671-1637.2022.01.013 [2] 石怀龙, 曾京. 基于二系横向主动悬挂的高速列车晃车控制[J]. 机械工程学报, 2024, 60(22): 340-350.SHI Huai-long, ZENG Jing. Swaying control of high-speed trains using active lateral secondary suspension[J]. Journal of Mechanical Engineering, 2024, 60(22): 340-350. [3] 许自强, 贾喆, 张楠, 等. 基于动力车晃车的等效锥度边界研究[J]. 铁道机车车辆, 2024, 44(5): 125-131.XU Zi-qiang, JIA Zhe, ZHANG Nan, et al. Research on equivalent conicity boundary based on power car swing[J]. Railway Locomotive & Car, 2024, 44(5): 125-131. [4] 郭金莹. 高速车辆主动控制与蛇行运动分岔特性研究[D]. 成都: 西南交通大学, 2022.GUO Jin-ying. Study on active control and bifurcation characteristics of hunting motion for high-speed railway vehicle[D]. Chengdu: Southwest Jiaotong University, 2022. [5] 毛冉成, 曾京, 石怀龙, 等. 基于主动抗蛇行减振器的高速转向架分岔控制与复杂运动分析[J]. 交通运输工程学报, 2025, 25(1): 121-131. doi: 10.19818/j.cnki.1671-1637.2025.01.008MAO Ran-cheng, ZENG Jing, SHI Huai-long, et al. Bifur-cation control and complex motion analysis of high-speed bogie based on active yaw damper[J]. Journal of Traffic and Transportation Engineering, 2025, 25(1): 121-131. doi: 10.19818/j.cnki.1671-1637.2025.01.008 [6] 朱海燕, 曾庆涛, 王宇豪, 等. 高速列车动力学性能研究进展[J]. 交通运输工程学报, 2021, 21(3): 57-92. doi: 10.19818/j.cnki.1671-1637.2021.03.004ZHU Hai-yan, ZENG Qing-tao, WANG Yu-hao, et al. Research progress on dynamics performance of high-speed train[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 57-92. doi: 10.19818/j.cnki.1671-1637.2021.03.004 [7] 石怀龙, 干锋, 曾京, 等. 高速动车组阀控式半主动横向减振系统与试验[J]. 交通运输工程学报, 2025, 25(3): 231-241. doi: 10.19818/j.cnki.1671-1637.2025.03.015SHI Huai-long, GAN Feng, ZENG Jing, et al. Valve-controlled semi-active lateral vibration reduction system for high-speed EMUs and tests[J]. Journal of Traffic and Trans-portation Engineering, 2025, 25(3): 231-241. doi: 10.19818/j.cnki.1671-1637.2025.03.015 [8] 石怀龙, 罗仁, 曾京. 国内外高速列车动力学评价标准综述[J]. 交通运输工程学报, 2021, 21(1): 36-58. doi: 10.19818/j.cnki.1671-1637.2021.01.002SHI Huai-long, LUO Ren, ZENG Jing. Review on domestic and foreign dynamics evaluation criteria of high-speed train[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 36-58. doi: 10.19818/j.cnki.1671-1637.2021.01.002 [9] 黄彩虹, 曾京, 魏来. 铁道车辆蛇行稳定性主动控制综述[J]. 交通运输工程学报, 2021, 21(1): 267-284. doi: 10.19818/j.cnki.1671-1637.2021.01.013HUANG Cai-hong, ZENG Jing, WEI Lai. Review on active control of hunting stability for railway vehicles[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 267-284. doi: 10.19818/j.cnki.1671-1637.2021.01.013 [10] 黄彩虹. 高速车辆减振技术研究[D]. 成都: 西南交通大学, 2012.HUANG Cai-hong. Research on vibration reduction techno-logy of high-speed vehicles[D]. Chengdu: Southwest Jiao-tong University, 2012. [11] TENG W X, SHI H L, LUO R, et al. Improved nonlinear model of a yaw damper for simulating the dynamics of a high-speed train[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2019, 233(7): 651-665. doi: 10.1177/0954409718804414 [12] WANG W L, HUANG Y, YANG X J, et al. Non-linear parametric modelling of a high-speed rail hydraulic yaw damper with series clearance and stiffness[J]. Nonlinear Dynamics, 2011, 65(1): 13-34. [13] JIANG C C, ZHANG H, LING L, et al. Modelling and simulation of nonlinear dynamic characteristics of yaw dampers subjected to variable temperature operation condition of high-speed trains[J]. Nonlinear Dynamics, 2023, 111(20): 18931-18952. doi: 10.1007/s11071-023-08831-x [14] GAO H X, CHI M R, DAI L C, et al. Mathematical modelling and computational simulation of the hydraulic damper during the orifice-working stage for railway vehicles[J]. Mathe-matical Problems in Engineering, 2020, 2020: 1830150. [15] 杨东晓, 李贵宇, 公衍军, 等. 基于物理结构的油压减振器数学模型及试验验证[J]. 铁道车辆, 2022, 60(3): 46-51.YANG Dong-xiao, LI Gui-yu, GONG Yan-jun, et al. Mathe-matical model and experiment verification of oil damper based on the physical structure[J]. Rolling Stock, 2022, 60(3): 46-51. [16] 李登辉. 阀片式抗蛇行减振器力学模型研究[D]. 成都: 西南交通大学, 2021.LI Deng-hui. Research on the mechanical model of yaw damper with shim stacks[D]. Chengdu: Southwest Jiaotong University, 2021. [17] WANG W L, YU D S, XU R. Prediction of the in-service performance of a railway hydraulic damper[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2017, 231(1): 19-32. doi: 10.1177/0954409715618685 [18] WANG W L, ZHOU Z R, ZHANG W H, et al. A new nonlinear displacement-dependent parametric model of a high-speed rail pantograph hydraulic damper[J]. Vehicle System Dynamics, 2020, 58(2): 272-289. doi: 10.1080/00423114.2019.1578385 [19] WANG W L, LIANG Y W, ZHANG W H, et al. Effect of the nonlinear displacement-dependent characteristics of a hydraulic damper on high-speed rail pantograph dynamics[J]. Nonlinear Dynamics, 2019, 95(4): 3439-3464. doi: 10.1007/s11071-019-04766-4 [20] 高红星. 铁道车辆油压减振器非线性力学模型研究[D]. 成都: 西南交通大学, 2020.GAO Hong-xing. Research on nonlinear mechanical model of hydraulic dampers for railway vehicles[D]. Chengdu: Southwest Jiaotong University, 2020. [21] BRUNI S, VINOLAS J, BERG M, et al. Modelling of suspension components in a rail vehicle dynamics context[J]. Vehicle System Dynamics, 2011, 49(7): 1021-1072. doi: 10.1080/00423114.2011.586430 [22] XIA Z H, ZHOU J S, GONG D, et al. On the modal damping abnormal variation mechanism for railway vehicles[J]. Mechanical Systems and Signal Processing, 2019, 122: 256-272. doi: 10.1016/j.ymssp.2018.12.015 [23] ISACCHI G, RIPAMONTI F, CORSI M. A meta-heuristic optimization procedure for the identification of the nonlinear model parameters of hydraulic dampers based on experimental dataset of real working conditions[J]. Journal of Computa-tional and Nonlinear Dynamics, 2023, 18(9): 091004. doi: 10.1115/1.4062541 [24] ISACCHI G, RIPAMONTI F, CORSI M. Innovative passive yaw damper to increase the stability and curve-taking perfor-mance of high-speed railway vehicles[J]. Vehicle System Dynamics, 2023, 61(9): 2273-2291. doi: 10.1080/00423114.2022.2105242 [25] REN J L, LI Q, REN Z S, et al. A new hydraulic damper dynamics model and the availability on high speed vehicle dynamics investigation[J]. Vehicle System Dynamics, 2023, 61(1): 356-374. doi: 10.1080/00423114.2022.2053728 [26] SUN J F, CHI M R, CAI W B, et al. Numerical investi-gation into the critical speed and frequency of the hunting motion in railway vehicle system[J]. Mathematical Problems in Engineering, 2019, 2019(1): 7163732. doi: 10.1155/2019/7163732 [27] BARETHIYE V, POHIT G, MITRA A. A combined nonli-near and hysteresis model of shock absorber for quarter car simulation on the basis of experimental data[J]. Engineering Science and Technology — an International Journal, 2017, 20(6): 1610-1622. doi: 10.1016/j.jestch.2017.12.003 [28] DAI L C, CHI M R, XU C B, et al. A hybrid neural network model based modelling methodology for the rubber bushing[J]. Vehicle System Dynamics, 2022, 60(9): 2941-2962. doi: 10.1080/00423114.2021.1933090 [29] DAI L C, CHI M R, GUO Z T, et al. A physical model-neural network coupled modelling methodology of the hydraulic damper for railway vehicles[J]. Vehicle System Dynamics, 2023, 61(2): 616-637. doi: 10.1080/00423114.2022.2053171 [30] 吴舒扬, 唐兆, 罗仁, 等. 基于Maxwell-LSTM的抗蛇行减振器混合建模方法研究[J]. 铁道机车车辆, 2024, 44(5): 1-10.WU Shu-yang, TANG Zhao, LUO Ren, et al. Research on hybrid modeling method of yaw damper based on Maxwell-LSTM[J]. Railway Locomotive & Car, 2024, 44(5): 1-10. [31] 王先云, 郭孔辉. 支持向量机与神经网络在减振器建模中的应用[J]. 科学技术与工程, 2011, 11(33): 8219-8224.WANG Xian-yun, GUO Kong-hui. Applications of support vector regression and neural network in modelling the hydraulic damper[J]. Science Technology and Engineering, 2011, 11(33): 8219-8224. [32] HUANG C H, ZENG J. Comparison of the Maxwell model and a simplified physical model for a railway yaw damper in damping characteristics and vehicle stability assessment[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2022, 236(3): 275-287. doi: 10.1177/09544097211020582 [33] HUANG C H, ZENG J. Dynamic behaviour of a high-speed train hydraulic yaw damper[J]. Vehicle System Dynamics, 2018, 56(12): 1922-1944. doi: 10.1080/00423114.2018.1439588 [34] 黄彩虹, 曾京, 宋春元. 高速列车抗蛇行减振器的简化物理参数模型[J]. 铁道学报, 2021, 43(7): 47-56.HUANG Cai-hong, ZENG Jing, SONG Chun-yuan. Simp-lified physical parameter model of high-speed train yaw damper[J]. Journal of the China Railway Society, 2021, 43(7): 47-56. [35] 牛道安, 魏子龙, 孙宪夫, 等. 小半径曲线钢轨波磨激扰下列车车内振动噪声特性[J]. 交通运输工程学报, 2023, 23(1): 143-155. doi: 10.19818/j.cnki.1671-1637.2023.01.011NIU Dao-an, WEI Zi-long, SUN Xian-fu, et al. Train interior vibration and noise characteristics induced by rail corrugation with small-radius curves[J]. Journal of Traffic and Transportation Engineering, 2023, 23(1): 143-155. doi: 10.19818/j.cnki.1671-1637.2023.01.011 [36] 王开云, 隋顺琦, 谢博, 等. 轮径差对铁路车辆服役性能影响综述[J]. 交通运输工程学报, 2025, 25(3): 1-11. doi: 10.19818/j.cnki.1671-1637.2025.03.001WANG Kai-yun, SUI Shun-qi, XIE Bo, et al. Overview on effect of wheel diameter difference on service performance for railway vehicles[J]. Journal of Traffic and Transpor-tation Engineering, 2025, 25(3): 1-11. doi: 10.19818/j.cnki.1671-1637.2025.03.001 [37] 吴丹, 丁旺才. 轨道交通列车车轮多边形磨耗机理及其影响综述[J]. 交通运输工程学报, 2024, 24(2): 85-101. doi: 10.19818/j.cnki.1671-1637.2024.02.005WU Dan, DING Wang-cai. Review on wear mechanism and influence of wheel polygon of rail transit train[J]. Journal of Traffic and Transportation Engineering, 2024, 24(2): 85-101. doi: 10.19818/j.cnki.1671-1637.2024.02.005 [38] 吴建斌. 液压减振器结构参数对性能的影响[D]. 成都: 西南交通大学, 2015.WU Jian-bin. The influence of damper structural parameters on performance[D]. Chengdu: Southwest Jiaotong University, 2015. [39] HU Z Y, SONG D L, ZENG Y C, et al. Analysis of the service life of railway hydraulic dampers considering temperature and loading[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2021, 235(1): 3-11. doi: 10.1177/0954409719898079 [40] VAN KASTEEL R, WANG C G, QIAN L X, et al. A new shock absorber model for use in vehicle dynamics studies[J]. Vehicle System Dynamics, 2005, 43(9): 613-631. . doi: 10.1080/0042311042000266720 [41] ALONSO A, GIMÉNEZ J G, GOMEZ E. Yaw damper modelling and its influence on railway dynamic stability[J]. Vehicle System Dynamics, 2011, 49(9): 1367-1387. doi: 10.1080/00423114.2010.515031 [42] VAN KASTEEL R, 钱立新, 王成国, 等. 铁道车辆液压减振器的工作原理和数值模型[J]. 铁道学报, 2005, 27(2): 28-34.VAN KASTEEL R, QIAN Li-xin, WANG Cheng-guo, et al. Study on working principle and numerical model of shock absorbers used in railway vehicles[J]. Journal of the China Railway Society, 2005, 27(2): 28-34. [43] JIAO S J, WANG Y, ZHANG L, et al. Shock wave charac-teristics of a hydraulic damper for shock test machine[J]. Mechanical Systems and Signal Processing, 2010, 24(5): 1570-1578. doi: 10.1016/j.ymssp.2009.12.005 [44] MERRITT H E. Hydraulic control systems[M]. New York: John Wiley & Sons Inc., 2005. [45] BS EN 13802: 2013, Railway applications. Suspension com-ponents. Hydraulic dampers[S]. -
下载: