Analysis of pressure response characteristics of hydraulic control unit in motorcycle anti-lock braking system
-
摘要: 为探究及优化摩托车防抱死制动系统中液压控制单元(HCU)在不同工作状态下的压力响应特性,基于团队自主研发的针对博世ABS9-HCU的控制程序,开展了压力响应特性测试,并对控制效果进行了参数响应优化研究。分析结果表明:常规泄压开始后35~45 ms内轮缸压力呈线性下降,轮缸线性压降幅度占总压降的70%~80%,压力线性下降过程的响应特性决定整个常规泄压阶段的HCU性能,不同初始压力下45 ms内即可实现泄压效果;常规增压开始后,轮缸线性压升时长随初始压力增加(1.0→3.5 MPa)逐渐缩短(51.1→21.6 ms),线性压升幅度占总压升的90%以上,压力线性上升结束后常规增压已基本完成;随着初始压力增大,阶梯控制完成所需周期数逐渐减少,当初始压力较低时各周期压力变化幅度更均匀,单周期压力变化幅度方差更小;阶梯控制过程对单周期增压和泄压时长极为敏感,单周期增压时长应在4~20 ms以内,单周期泄压时长不应超过12 ms;通过更改保压时长可以控制压力的变化趋势;单周期压升幅度的离散程度随着周期数的增加而增加,阶梯控制周期数应控制在3个;电机工作时长应小于泄压时长;3.00 MPa初始压力工况优化后取得了良好的压力控制效果,轮缸最大单周期压降幅度下降了62%,且单周期压降幅度的方差仅为0.004 7 (MPa)2。研究为摩托车ABS的控制系统开发提供了数据指导和理论支撑。Abstract: To investigate and optimize the pressure response characteristics of the hydraulic control unit (HCU) in motorcycle anti-lock braking system (ABS) under different working conditions, the pressure response characteristics were tested, and the parameter response optimization of the control effect was studied, based on the team's self-developed control program for Bosch ABS9-HCU. Analysis results show that the pressure of the wheel cylinder decreases linearly from 35 ms to 45 ms after the start of conventional depressurization, and the linear pressure drop of the wheel cylinder accounts for 70% - 80% of the total pressure drop. The HCU performance throughout the conventional depressurization is determined by the response characteristics of the linear pressure drop process, and the depressurization effect can be achieved within 45 ms under varying initial pressure. After the beginning of conventional pressurization, the linear pressure rise time of the wheel cylinder is gradually shortened (51.1→21.6 ms) with the increase of initial pressure (1.0→3.5 MPa), and the linear pressure rise accounts for more than 90.0% of the total pressure rise. After the linear pressure rise ends, the conventional pressurization is basically completed. As the initial pressure increases, the number of cycles required for the completion of the step control gradually decreases. When the initial pressure is low, the pressure variation amplitude in each cycle is more uniform, and the variance of pressure variation amplitude in a single cycle is smaller. The step control process is extremely sensitive to single-cycle pressurization and depressurization time. The single-cycle pressurization time should be within 4 - 20 ms, and the single-cycle depressurization time should not exceed 12 ms. The changing trend of pressure can be controlled by changing the pressure holding time. The dispersion degree of the single-cycle pressure rise increases with the increase of the number of cycles, and the number of step control cycles should be controlled at three. The working time of the motor should be less than the depressurization time. After the initial pressure condition of 3.00 MPa is optimized, a good pressure control effect is achieved. The maximum single-cycle pressure drop of the wheel cylinder is reduced by 62%, and the variance of the single-cycle pressure drop is only 0.004 7 (MPa)2. The research provides data guidance and theoretical support for the development of a motorcycle ABS control system.
-
表 1 阶梯控制阶段参数设置
Table 1. Parameters setting of step control stage
控制阶段 参数 数值 阶梯增压 tin1/ms 20 tin2/ms 40 Nin/个 10 阶梯泄压 tde1/ms 20 tde2/ms 40 Nde/个 10 表 2 不同周期数下的阶梯控制参数设置
Table 2. Step control parameter settings under different cycle numbers
参数 数值 tin1/ms 8 tin2/ms 42 tde1/ms 6 tde2/ms 44 Nin/个 3、5 Nde/个 2、3 -
[1] 李修曾. 汽车防抱制动系统的发展现状及趋势[J]. 世界汽车, 1996(3): 15-20.LI Xiu-zeng. Present state and trend of auto ABS[J]. World Auto, 1996(3): 15-20. [2] MORE H R, DIGRASE A A, WAYSE A V. Linear PID control technique for single wheel ABS (anti-lock braking system) of motorcycle[C]//IEEE. 2nd International Conference for Convergence in Technology (I2CT). New York: IEEE, 2017: 277-281. [3] 沈好民. 摩托车制动防抱死系统设计[J]. 摩托车技术, 2023(4): 31-37.SHEN Hao-min. Design of anti-lock braking system of motorcycle[J]. Motorcycle Technology, 2023(4): 31-37. [4] RAFATNIA S, MIRZAEI M. Adaptive estimation of vehicle velocity from updated dynamic model for control of anti-lock braking system[J]. IEEE Transactions on Intelligent Trans-portation Systems, 2021, 23(6): 5871-5880. [5] 龙鑫, 李自成, 池经鹏, 等. 基于MATLAB的汽车ABS液压制动仿真[J]. 现代工业经济和信息化, 2024, 14(3): 118-120, 127.LONG Xin, LI Zi-cheng, CHI Jing-peng, et al. MATLAB-based simulation of automotive ABS hydraulic brakes[J]. Modern Industrial Economy and Informationization, 2024, 14(3): 118-120, 127. [6] LIU Y P, PEI X F, GUO X X. Redundancy control of anti-lock braking system based on electro-hydraulic braking system[J]. SAE International Journal of Vehicle Dynamics, Stability, and NVH, 2022, 7(1): 53-67. doi: 10.4271/10-07-01-0004 [7] SHIZA N, KUMAR SINGH A. A study on control strate-gies utilized for performance enhancement of antilock braking system[J]. Materials Today: Proceedings, 2023, 80: 128-133. doi: 10.1016/j.matpr.2022.10.287 [8] ABREU R, BOTHA T R, HAMERSMA H A. Model-free intelligent control for antilock braking systems on rough roads[J]. SAE International Journal of Vehicle Dynamics, Stability, and NVH, 2023, 7(3): 269-285. doi: 10.4271/10-07-03-0017 [9] VINOTH KUMAR K, LOGANATHAN T G, JAGADEESH G. Mechanical anti-lock braking system using pneumatic system and solenoid valve with low cost manufacturing[J]. World Journal of Engineering, 2023, 20(6): 1018-1024. doi: 10.1108/WJE-01-2022-0002 [10] YANG F, CHEN X, GUO D, et al. Electric-hydraulic compound control anti-lock braking system[J]. International Journal of Automotive Technology, 2022, 23(6): 1593-1608. doi: 10.1007/s12239-022-0139-2 [11] AMIRKHANI A, MOLAIE M. Fuzzy controllers of antilock braking system: A review[J]. International Journal of Fuzzy Systems, 2023, 25(1): 222-244. doi: 10.1007/s40815-022-01376-y [12] ZHAO X Y, XU W B, GANG L. Pressure estimation and pressure control of hydraulic control unit in electric-wheel vehicle[J]. Mathematical Problems in Engineering, 2020, 2020(1): 6576297. [13] 王海军, 杨帆. 电子液压制动系统的安全设计与匹配分析[J]. 中国设备工程, 2023(1): 102-104.WANG Hai-jun, YANG Fan. Safety design and matching analysis of electro-hydraulic braking system[J]. China Plant Engineering, 2023(1): 102-104. [14] 高会恩. 电动轿车制动能量回收与防抱死集成控制系统研究[D]. 长春: 吉林大学, 2020.GAO Hui-en. Research on integrated control system of braking energy recovery and anti-lock braking for electric car[D]. Changchun: Jilin University, 2020. [15] 莫炳先, 黄涛, 蔡栋墅, 等. 基于ABS的汽车防抱制动系统性能检测方法研究[J]. 中国机械, 2023(4): 74-77.MO Bing-xian, HUANG Tao, CAI Dong-shu, et al. Research on performance testing method of automobile anti-lock braking system based on ABS[J]. Machine China, 2023(4): 74-77. [16] 陆艺, 徐博文, 吴佳伟, 等. 基于模糊PID的客车防抱死制动系统硬件在环测试试验研究[J]. 计量学报, 2018, 39(2): 163-167.LU Yi, XU Bo-wen, WU Jia-wei, et al. Research on hard-ware-in-the-loop test of bus antilock brake system based on fuzzy PID[J]. Acta Metrologica Sinica, 2018, 39(2): 163-167. [17] 付嘉乐, 张朝权, 王若浩, 等. 基于ABS的汽车防抱死制动系统性能的EMC测试方法研究[J]. 汽车电器, 2025(4): 42-45.FU Jia-le, ZHANG Chao-quan, WANG Ruo-hao, et al. Research on EMC test method of anti-lock braking system performance based on ABS[J]. Auto Electric Parts, 2025(4): 42-45. [18] 郭树元, 方昌辉, 张旭昌, 等. 液压ABS/ESC柱塞泵子系统关键特性设计及试验方法[J]. 汽车实用技术, 2024, 49(9): 101-106.GUO Shu-yuan, FANG Chang-hui, ZHANG Xu-chang, et al. Design of key characteristics of hydraulic ABS/ESC pump subsystem and test method[J]. Automobile Applied Technology, 2024, 49(9): 101-106. [19] 覃秋, 吴昊, 关娇. 乘用车ABS系统冰雪路面试验方法研究[J]. 时代汽车, 2023(2): 193-195.QIN Qiu, WU Hao, GUAN Jiao. Research on test method of passenger car ABS system on ice and snow road[J]. Auto Time, 2023(2): 193-195. [20] 钟震. 电液混合动力SUV再生制动与ABS协调控制研究[D]. 重庆: 重庆大学, 2021.ZHONG Zhen. Study on coordinated control of ABS and regenerative braking for electric-hydraulic hybrid SUV[D]. Chongqing: Chongqing University, 2021. [21] 李雪冰. 基于两轮车的ABS控制系统的研究[D]. 石家庄: 河北科技大学, 2018.LI Xue-bing. Research on ABS control system based on two-wheeled vehicle[D]. Shijiazhuang: Hebei University of Science and Technology, 2018. [22] 张璐璐. 基于AGA-Elman神经网络的汽车ABS故障诊断研究[D]. 西安: 长安大学, 2021.ZHANG Lu-lu. Research on automobile ABS fault diagnosis based on AGA-Elman neural network[D]. Xi'an: Chang'an University, 2021. [23] 刘艳广. 基于自抗扰控制的汽车电子机械制动系统ABS控制研究[D]. 镇江: 江苏大学, 2023.LIU Yan-guang. Research on ABS control of automobile electromechanical braking system based on active disturbance rejection control[D]. Zhenjiang: Jiangsu University, 2023. [24] JIANG G R, MIAO X L, WANG Y H, et al. Real-time estimation of the pressure in the wheel cylinder with a hydraulic control unit in the vehicle braking control system based on the extended kalman filter[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2017, 231(10): 1340-1352. doi: 10.1177/0954407016671685 [25] CHOI M, CHOI K, CHO M, et al. Chattering reduction of sliding mode control via nonlinear disturbance observer for anti-lock braking system and verification with CarSim simulation[J]. International Journal of Automotive Tech-nology, 2023, 24(4): 1141-1149. doi: 10.1007/s12239-023-0093-7 [26] 陈贺军, 黄波, 李亚轮, 等. 基于ABS增减压阀的轮缸液压力控制研究[J]. 农业装备与车辆工程, 2023, 61(10): 12-17.CHEN He-jun, HUANG Bo, LI Ya-lun, et al. Research on hydraulic pressure control of wheel cylinder based on ABS booster and reducing valve[J]. Agricultural Equipment & Vehicle Engineering, 2023, 61(10): 12-17. [27] 张立伟. 双转子轮毂电机再生制动与液压ABS协调控制方法研究[D]. 镇江: 江苏大学, 2021.ZHANG Li-wei. Research on coordinated control method of regenerative braking and hydraulic ABS for dual-rotor hub motor[D]. Zhenjiang: Jiangsu University, 2021. [28] 张永春. 基于EHB的智能汽车紧急避障协同优化控制研究[D]. 长沙: 湖南大学, 2023.ZHANG Yong-chun. Research on collaborative optimal control of emergency obstacle avoidance for smart cars based on EHB[D]. Changsha: Hunan University, 2023. [29] 曹会发, 陶国良, 周文袆. ABS柱塞泵测试系统的研制[J]. 液压气动与密封, 2005, 25(2): 35-36, 39.CAO Hui-fa, TAO Guo-liang, ZHOU Wen-yi. Design for ABS piston pump test system[J]. Hydraulics Pneumatics & Seals, 2005, 25(2): 35-36, 39. [30] 初亮, 欧阳, 张永生, 等. ABS液压控制系统压力变化速率的机理研究[J]. 汽车技术, 2010(9): 19-23.CHU Liang, OU Yang, ZHANG Yong-sheng, et al. Mecha-nism study of pressure change rate of ABS hydraulic control system[J]. Automobile Technology, 2010(9): 19-23. [31] 丁能根, 潘为民, 方裕固. ABS压力响应测试和压力的精细调节[J]. 机械工程学报, 2004, 40(6): 188-191.DING Neng-gen, PAN Wei-min, FANG Yu-gu. Measure-ment of hydraulic pressure response for ABS and fine regulation of pressure[J]. Chinese Journal of Mechanical Engineering, 2004, 40(6): 188-191. [32] 王骏骋, 吕林峰, 王法慧. 基于区间二型模糊逻辑的制动防抱死控制[J]. 交通运输工程学报, 2024, 24(3): 238-250. doi: 10.19818/j.cnki.1671-1637.2020.02.017WANG Jun-cheng, LYU Lin-feng, WANG Fa-hui. Anti-lock braking control based on interval type-2 fuzzy logic[J]. Journal of Traffic and Transportation Engineering, 2024, 24(3): 238-250. doi: 10.19818/j.cnki.1671-1637.2020.02.017 -
下载: