留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

摩托车防抱死制动系统液压控制单元压力响应特性分析

曾科 傲其 王小琛 尹晓军 段浩 胡二江

曾科, 傲其, 王小琛, 尹晓军, 段浩, 胡二江. 摩托车防抱死制动系统液压控制单元压力响应特性分析[J]. 交通运输工程学报, 2025, 25(6): 124-134. doi: 10.19818/j.cnki.1671-1637.2025.06.011
引用本文: 曾科, 傲其, 王小琛, 尹晓军, 段浩, 胡二江. 摩托车防抱死制动系统液压控制单元压力响应特性分析[J]. 交通运输工程学报, 2025, 25(6): 124-134. doi: 10.19818/j.cnki.1671-1637.2025.06.011
ZENG Ke, AO Qi, WANG Xiao-chen, YIN Xiao-jun, DUAN Hao, HU Er-jiang. Analysis of pressure response characteristics of hydraulic control unit in motorcycle anti-lock braking system[J]. Journal of Traffic and Transportation Engineering, 2025, 25(6): 124-134. doi: 10.19818/j.cnki.1671-1637.2025.06.011
Citation: ZENG Ke, AO Qi, WANG Xiao-chen, YIN Xiao-jun, DUAN Hao, HU Er-jiang. Analysis of pressure response characteristics of hydraulic control unit in motorcycle anti-lock braking system[J]. Journal of Traffic and Transportation Engineering, 2025, 25(6): 124-134. doi: 10.19818/j.cnki.1671-1637.2025.06.011

摩托车防抱死制动系统液压控制单元压力响应特性分析

doi: 10.19818/j.cnki.1671-1637.2025.06.011
基金项目: 

国家自然科学基金项目 52176131

详细信息
    作者简介:

    曾科(1966-),男,湖南常德人,西安交通大学教授,工学博士,从事发动机电控技术、转子发动机研究

    通讯作者:

    段浩(1991-),男,陕西咸阳人,西安交通大学助理教授,工学博士

  • 中图分类号: U483

Analysis of pressure response characteristics of hydraulic control unit in motorcycle anti-lock braking system

Funds: 

National Natural Science Foundation of China 52176131

More Information
    Corresponding author: DUAN Hao (1991-), male, assistant professor, PhD, walry@xjtu.edu.cn
Article Text (Baidu Translation)
  • 摘要: 为探究及优化摩托车防抱死制动系统中液压控制单元(HCU)在不同工作状态下的压力响应特性,基于团队自主研发的针对博世ABS9-HCU的控制程序,开展了压力响应特性测试,并对控制效果进行了参数响应优化研究。分析结果表明:常规泄压开始后35~45 ms内轮缸压力呈线性下降,轮缸线性压降幅度占总压降的70%~80%,压力线性下降过程的响应特性决定整个常规泄压阶段的HCU性能,不同初始压力下45 ms内即可实现泄压效果;常规增压开始后,轮缸线性压升时长随初始压力增加(1.0→3.5 MPa)逐渐缩短(51.1→21.6 ms),线性压升幅度占总压升的90%以上,压力线性上升结束后常规增压已基本完成;随着初始压力增大,阶梯控制完成所需周期数逐渐减少,当初始压力较低时各周期压力变化幅度更均匀,单周期压力变化幅度方差更小;阶梯控制过程对单周期增压和泄压时长极为敏感,单周期增压时长应在4~20 ms以内,单周期泄压时长不应超过12 ms;通过更改保压时长可以控制压力的变化趋势;单周期压升幅度的离散程度随着周期数的增加而增加,阶梯控制周期数应控制在3个;电机工作时长应小于泄压时长;3.00 MPa初始压力工况优化后取得了良好的压力控制效果,轮缸最大单周期压降幅度下降了62%,且单周期压降幅度的方差仅为0.004 7 (MPa)2。研究为摩托车ABS的控制系统开发提供了数据指导和理论支撑。

     

  • 图  1  HCU结构

    Figure  1.  Structure of HCU

    图  2  HCU特性测试系统

    Figure  2.  Test system of HCU characteristics

    图  3  阶梯控制方法

    Figure  3.  Step control method

    图  4  增压和泄压压力变化特性

    Figure  4.  Pressure variation characteristics of pressurization and depressurization

    图  5  线性压降时长和线性压降占比的变化

    Figure  5.  Variations of linear pressure drop time and proportion

    图  6  线性压升时长和线性压升占比的变化

    Figure  6.  Variations of linear pressure rise time and proportion

    图  7  高压和低压保压下的压力变化特性

    Figure  7.  Pressure variations characteristics under high and low pressure holding stages

    图  8  阶梯增、泄压的压力变化特性

    Figure  8.  Pressure variations characteristics of step pressurization and depressurization

    图  9  轮缸单周期压升幅度方差的变化

    Figure  9.  Variations of pressure rise amplitude variance of wheel cylinder in single-cycle

    图  10  前2个周期内压降占比

    Figure  10.  Pressure drop ratio during first two cycles

    图  11  不同周期数下压力曲线

    Figure  11.  Pressure curves under different cycle numbers

    图  12  不同单周期增压和泄压时长下压力变化

    Figure  12.  Pressure variations under different single-cycle pressurization and depressurization times

    图  13  不同保压时长下压力变化

    Figure  13.  Pressure variations under different pressure holding times

    图  14  阶梯泄压解耦控制方法

    Figure  14.  Step depressurization decoupled control method

    图  15  阶梯泄压中不同电机工作时长下压力变化

    Figure  15.  Pressure variations under different motor working time in step depressurization

    表  1  阶梯控制阶段参数设置

    Table  1.   Parameters setting of step control stage

    控制阶段 参数 数值
    阶梯增压 tin1/ms 20
    tin2/ms 40
    Nin/个 10
    阶梯泄压 tde1/ms 20
    tde2/ms 40
    Nde/个 10
    下载: 导出CSV

    表  2  不同周期数下的阶梯控制参数设置

    Table  2.   Step control parameter settings under different cycle numbers

    参数 数值
    tin1/ms 8
    tin2/ms 42
    tde1/ms 6
    tde2/ms 44
    Nin/个 3、5
    Nde/个 2、3
    下载: 导出CSV
  • [1] 李修曾. 汽车防抱制动系统的发展现状及趋势[J]. 世界汽车, 1996(3): 15-20.

    LI Xiu-zeng. Present state and trend of auto ABS[J]. World Auto, 1996(3): 15-20.
    [2] MORE H R, DIGRASE A A, WAYSE A V. Linear PID control technique for single wheel ABS (anti-lock braking system) of motorcycle[C]//IEEE. 2nd International Conference for Convergence in Technology (I2CT). New York: IEEE, 2017: 277-281.
    [3] 沈好民. 摩托车制动防抱死系统设计[J]. 摩托车技术, 2023(4): 31-37.

    SHEN Hao-min. Design of anti-lock braking system of motorcycle[J]. Motorcycle Technology, 2023(4): 31-37.
    [4] RAFATNIA S, MIRZAEI M. Adaptive estimation of vehicle velocity from updated dynamic model for control of anti-lock braking system[J]. IEEE Transactions on Intelligent Trans-portation Systems, 2021, 23(6): 5871-5880.
    [5] 龙鑫, 李自成, 池经鹏, 等. 基于MATLAB的汽车ABS液压制动仿真[J]. 现代工业经济和信息化, 2024, 14(3): 118-120, 127.

    LONG Xin, LI Zi-cheng, CHI Jing-peng, et al. MATLAB-based simulation of automotive ABS hydraulic brakes[J]. Modern Industrial Economy and Informationization, 2024, 14(3): 118-120, 127.
    [6] LIU Y P, PEI X F, GUO X X. Redundancy control of anti-lock braking system based on electro-hydraulic braking system[J]. SAE International Journal of Vehicle Dynamics, Stability, and NVH, 2022, 7(1): 53-67. doi: 10.4271/10-07-01-0004
    [7] SHIZA N, KUMAR SINGH A. A study on control strate-gies utilized for performance enhancement of antilock braking system[J]. Materials Today: Proceedings, 2023, 80: 128-133. doi: 10.1016/j.matpr.2022.10.287
    [8] ABREU R, BOTHA T R, HAMERSMA H A. Model-free intelligent control for antilock braking systems on rough roads[J]. SAE International Journal of Vehicle Dynamics, Stability, and NVH, 2023, 7(3): 269-285. doi: 10.4271/10-07-03-0017
    [9] VINOTH KUMAR K, LOGANATHAN T G, JAGADEESH G. Mechanical anti-lock braking system using pneumatic system and solenoid valve with low cost manufacturing[J]. World Journal of Engineering, 2023, 20(6): 1018-1024. doi: 10.1108/WJE-01-2022-0002
    [10] YANG F, CHEN X, GUO D, et al. Electric-hydraulic compound control anti-lock braking system[J]. International Journal of Automotive Technology, 2022, 23(6): 1593-1608. doi: 10.1007/s12239-022-0139-2
    [11] AMIRKHANI A, MOLAIE M. Fuzzy controllers of antilock braking system: A review[J]. International Journal of Fuzzy Systems, 2023, 25(1): 222-244. doi: 10.1007/s40815-022-01376-y
    [12] ZHAO X Y, XU W B, GANG L. Pressure estimation and pressure control of hydraulic control unit in electric-wheel vehicle[J]. Mathematical Problems in Engineering, 2020, 2020(1): 6576297.
    [13] 王海军, 杨帆. 电子液压制动系统的安全设计与匹配分析[J]. 中国设备工程, 2023(1): 102-104.

    WANG Hai-jun, YANG Fan. Safety design and matching analysis of electro-hydraulic braking system[J]. China Plant Engineering, 2023(1): 102-104.
    [14] 高会恩. 电动轿车制动能量回收与防抱死集成控制系统研究[D]. 长春: 吉林大学, 2020.

    GAO Hui-en. Research on integrated control system of braking energy recovery and anti-lock braking for electric car[D]. Changchun: Jilin University, 2020.
    [15] 莫炳先, 黄涛, 蔡栋墅, 等. 基于ABS的汽车防抱制动系统性能检测方法研究[J]. 中国机械, 2023(4): 74-77.

    MO Bing-xian, HUANG Tao, CAI Dong-shu, et al. Research on performance testing method of automobile anti-lock braking system based on ABS[J]. Machine China, 2023(4): 74-77.
    [16] 陆艺, 徐博文, 吴佳伟, 等. 基于模糊PID的客车防抱死制动系统硬件在环测试试验研究[J]. 计量学报, 2018, 39(2): 163-167.

    LU Yi, XU Bo-wen, WU Jia-wei, et al. Research on hard-ware-in-the-loop test of bus antilock brake system based on fuzzy PID[J]. Acta Metrologica Sinica, 2018, 39(2): 163-167.
    [17] 付嘉乐, 张朝权, 王若浩, 等. 基于ABS的汽车防抱死制动系统性能的EMC测试方法研究[J]. 汽车电器, 2025(4): 42-45.

    FU Jia-le, ZHANG Chao-quan, WANG Ruo-hao, et al. Research on EMC test method of anti-lock braking system performance based on ABS[J]. Auto Electric Parts, 2025(4): 42-45.
    [18] 郭树元, 方昌辉, 张旭昌, 等. 液压ABS/ESC柱塞泵子系统关键特性设计及试验方法[J]. 汽车实用技术, 2024, 49(9): 101-106.

    GUO Shu-yuan, FANG Chang-hui, ZHANG Xu-chang, et al. Design of key characteristics of hydraulic ABS/ESC pump subsystem and test method[J]. Automobile Applied Technology, 2024, 49(9): 101-106.
    [19] 覃秋, 吴昊, 关娇. 乘用车ABS系统冰雪路面试验方法研究[J]. 时代汽车, 2023(2): 193-195.

    QIN Qiu, WU Hao, GUAN Jiao. Research on test method of passenger car ABS system on ice and snow road[J]. Auto Time, 2023(2): 193-195.
    [20] 钟震. 电液混合动力SUV再生制动与ABS协调控制研究[D]. 重庆: 重庆大学, 2021.

    ZHONG Zhen. Study on coordinated control of ABS and regenerative braking for electric-hydraulic hybrid SUV[D]. Chongqing: Chongqing University, 2021.
    [21] 李雪冰. 基于两轮车的ABS控制系统的研究[D]. 石家庄: 河北科技大学, 2018.

    LI Xue-bing. Research on ABS control system based on two-wheeled vehicle[D]. Shijiazhuang: Hebei University of Science and Technology, 2018.
    [22] 张璐璐. 基于AGA-Elman神经网络的汽车ABS故障诊断研究[D]. 西安: 长安大学, 2021.

    ZHANG Lu-lu. Research on automobile ABS fault diagnosis based on AGA-Elman neural network[D]. Xi'an: Chang'an University, 2021.
    [23] 刘艳广. 基于自抗扰控制的汽车电子机械制动系统ABS控制研究[D]. 镇江: 江苏大学, 2023.

    LIU Yan-guang. Research on ABS control of automobile electromechanical braking system based on active disturbance rejection control[D]. Zhenjiang: Jiangsu University, 2023.
    [24] JIANG G R, MIAO X L, WANG Y H, et al. Real-time estimation of the pressure in the wheel cylinder with a hydraulic control unit in the vehicle braking control system based on the extended kalman filter[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2017, 231(10): 1340-1352. doi: 10.1177/0954407016671685
    [25] CHOI M, CHOI K, CHO M, et al. Chattering reduction of sliding mode control via nonlinear disturbance observer for anti-lock braking system and verification with CarSim simulation[J]. International Journal of Automotive Tech-nology, 2023, 24(4): 1141-1149. doi: 10.1007/s12239-023-0093-7
    [26] 陈贺军, 黄波, 李亚轮, 等. 基于ABS增减压阀的轮缸液压力控制研究[J]. 农业装备与车辆工程, 2023, 61(10): 12-17.

    CHEN He-jun, HUANG Bo, LI Ya-lun, et al. Research on hydraulic pressure control of wheel cylinder based on ABS booster and reducing valve[J]. Agricultural Equipment & Vehicle Engineering, 2023, 61(10): 12-17.
    [27] 张立伟. 双转子轮毂电机再生制动与液压ABS协调控制方法研究[D]. 镇江: 江苏大学, 2021.

    ZHANG Li-wei. Research on coordinated control method of regenerative braking and hydraulic ABS for dual-rotor hub motor[D]. Zhenjiang: Jiangsu University, 2021.
    [28] 张永春. 基于EHB的智能汽车紧急避障协同优化控制研究[D]. 长沙: 湖南大学, 2023.

    ZHANG Yong-chun. Research on collaborative optimal control of emergency obstacle avoidance for smart cars based on EHB[D]. Changsha: Hunan University, 2023.
    [29] 曹会发, 陶国良, 周文袆. ABS柱塞泵测试系统的研制[J]. 液压气动与密封, 2005, 25(2): 35-36, 39.

    CAO Hui-fa, TAO Guo-liang, ZHOU Wen-yi. Design for ABS piston pump test system[J]. Hydraulics Pneumatics & Seals, 2005, 25(2): 35-36, 39.
    [30] 初亮, 欧阳, 张永生, 等. ABS液压控制系统压力变化速率的机理研究[J]. 汽车技术, 2010(9): 19-23.

    CHU Liang, OU Yang, ZHANG Yong-sheng, et al. Mecha-nism study of pressure change rate of ABS hydraulic control system[J]. Automobile Technology, 2010(9): 19-23.
    [31] 丁能根, 潘为民, 方裕固. ABS压力响应测试和压力的精细调节[J]. 机械工程学报, 2004, 40(6): 188-191.

    DING Neng-gen, PAN Wei-min, FANG Yu-gu. Measure-ment of hydraulic pressure response for ABS and fine regulation of pressure[J]. Chinese Journal of Mechanical Engineering, 2004, 40(6): 188-191.
    [32] 王骏骋, 吕林峰, 王法慧. 基于区间二型模糊逻辑的制动防抱死控制[J]. 交通运输工程学报, 2024, 24(3): 238-250. doi: 10.19818/j.cnki.1671-1637.2020.02.017

    WANG Jun-cheng, LYU Lin-feng, WANG Fa-hui. Anti-lock braking control based on interval type-2 fuzzy logic[J]. Journal of Traffic and Transportation Engineering, 2024, 24(3): 238-250. doi: 10.19818/j.cnki.1671-1637.2020.02.017
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  98
  • HTML全文浏览量:  46
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-25
  • 录用日期:  2025-04-30
  • 修回日期:  2025-01-21
  • 刊出日期:  2025-12-28

目录

    /

    返回文章
    返回