留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向网联自动驾驶混行场景的车道通行能力与路阻函数研究

李同飞 赵梦晴 熊杰 周文涵 窦雪萍

李同飞, 赵梦晴, 熊杰, 周文涵, 窦雪萍. 面向网联自动驾驶混行场景的车道通行能力与路阻函数研究[J]. 交通运输工程学报, 2025, 25(6): 146-156. doi: 10.19818/j.cnki.1671-1637.2025.06.013
引用本文: 李同飞, 赵梦晴, 熊杰, 周文涵, 窦雪萍. 面向网联自动驾驶混行场景的车道通行能力与路阻函数研究[J]. 交通运输工程学报, 2025, 25(6): 146-156. doi: 10.19818/j.cnki.1671-1637.2025.06.013
LI Tong-fei, ZHAO Meng-qing, XIONG Jie, ZHOU Wen-han, DOU Xue-ping. Lane capacity and cost function for the mixed traffic scenario with connected and autonomous vehicles[J]. Journal of Traffic and Transportation Engineering, 2025, 25(6): 146-156. doi: 10.19818/j.cnki.1671-1637.2025.06.013
Citation: LI Tong-fei, ZHAO Meng-qing, XIONG Jie, ZHOU Wen-han, DOU Xue-ping. Lane capacity and cost function for the mixed traffic scenario with connected and autonomous vehicles[J]. Journal of Traffic and Transportation Engineering, 2025, 25(6): 146-156. doi: 10.19818/j.cnki.1671-1637.2025.06.013

面向网联自动驾驶混行场景的车道通行能力与路阻函数研究

doi: 10.19818/j.cnki.1671-1637.2025.06.013
基金项目: 

北京市社会科学基金规划项目 22GLC060

详细信息
    作者简介:

    李同飞(1990-), 男, 山东泰安人, 北京工业大学副教授, 理学博士, 从事交通网络建模与优化、网联自动驾驶研究

    通讯作者:

    熊杰(1988-), 男, 黑龙江哈尔滨人, 北京工业大学副教授, 工学博士

  • 中图分类号: U495

Lane capacity and cost function for the mixed traffic scenario with connected and autonomous vehicles

Funds: 

Social Science Foundation of Beijing 22GLC060

More Information
    Corresponding author: XIONG Jie (1988-), male, associate professor, PhD, jxiong@bjut.edu.cn
Article Text (Baidu Translation)
  • 摘要: 针对未来人工驾驶车辆与网联自动驾驶车辆(CAV)混行场景,基于安全车头时距分类、CAV编队规模上限的不同假设,分别推导了混行车道通行能力、以自然车辆数表示的路阻函数的计算表达式;为使不同交通组成的混合交通流之间具有可比性,利用以当量交通量表示的路阻函数,反推出CAV的车辆换算系数(PCE);在未对不同跟驰模式的安全车头时距取值做简化假设的前提下,依据CAV技术发展水平划分积极、中立和保守3种技术场景,分别对应不同的安全车头时距,通过理论分析与数值试验的方法探讨了CAV渗透率、编队规模上限对混行车道通行能力、路阻函数和CAV的PCE的影响。研究结果表明:混行车道通行能力、路阻函数和CAV的PCE计算表达式均是CAV渗透率和编队规模上限的二元函数,而上述函数关于任一单一变量的单调性则直接取决于安全车头时距的取值;当渗透率为0.4时,考虑CAV编队规模上限较无编队情况下的混行车道通行能力在积极技术场景下增加5.04%,中立技术场景增加10.93%,保守技术场景增加4.55%;在积极、中立技术场景下,CAV能够有效减少交通拥堵和延误,在保守技术场景下网联自动驾驶技术的发展水平较低,路段阻抗随CAV渗透率的增大呈现先增大后减小的趋势。

     

  • 图  1  考虑CAV编队规模上限的跟驰模式分类

    Figure  1.  Classification of car-following patterns considering maximum CAV platoon size

    图  2  混行车道通行能力与渗透率的关系

    Figure  2.  Relationship between mixed-flow lane capacities and penetration rates

    图  3  混行车道路段阻抗与渗透率的关系

    Figure  3.  Relationship between mixed-flow lane road section impedance and penetration rate

    图  4  PCE与CAV渗透率的关系

    Figure  4.  Relationship between PCE and CAV penetration rate

    图  5  混行车道通行能力与CAV编队规模上限的关系

    Figure  5.  Relationship between mixed-flow lane capacity and maximum CAV platoon size

    图  6  混行车道路段阻抗与CAV编队规模上限的关系

    Figure  6.  Relationship between mixed-flow lane road section impedance and maximum CAV platoon size

    图  7  PCE与CAV编队规模上限的关系

    Figure  7.  Relationship between PCE and maximum CAV platoon size

    表  1  关于跟驰模式、CAV编队与安全车头时距的不同假设分类

    Table  1.   Categorization of different assumptions on car-following mode, CAV platooning, and safety headway

    类别 研究基于的相关假设对比
    跟驰模式种类 CAV编队行驶 不同安全车头时距间关系
    分类1(第1.1节) 2 不考虑CAV编队行驶(L=1 veh) h12=h11h21=h22
    分类2(第1.2节) 4 不考虑CAV编队行驶(L=1 veh) h22=h22
    分类3(第1.3节) 5 L为任意有限取值的正整数 无关于取值的特定假设
    下载: 导出CSV

    表  2  不同技术场景的安全车头时距

    Table  2.   Safety headways under different technical scenarios  s

    技术场景 h11 h12 h21 h22 h22 参考文献
    积极 2.0 1.8 1.6 0.8 1.0 [21]、[22]
    中立 2.0 2.0 2.0 1.0 1.5 [23]~[25]
    保守 2.0 2.4 2.8 2.2 2.5 [26]~[30]
    下载: 导出CSV
  • [1] GUERRIERI M. Smart roads geometric design criteria and capacity estimation based on AV and CAV emerging technologies: A case study in the trans-European transport network[J]. International Journal of Intelligent Transportation Systems Research, 2021, 19(2): 429-440.
    [2] YAO Z H, XU T R, JIANG Y S, et al. Linear stability analysis of heterogeneous traffic flow considering degradations of connected automated vehicles and reaction time[J]. Physica A: Statistical Mechanics and Its Applications, 2021, 561: 125218.
    [3] ZHOU J Z, ZHU F. Modeling the fundamental diagram of mixed human-driven and connected automated vehicles[J]. Transportation Research Part C: Emerging Technologies, 2020, 115: 102614.
    [4] PAN Y C, WU Y, XU L, et al. The impacts of connected autonomous vehicles on mixed traffic flow: A comprehensive review[J]. Physica A: Statistical Mechanics and Its Applications, 2024, 635: 129454.
    [5] CARRONE A P, RICH J, VANDET C A, et al. Autonomous vehicles in mixed motorway traffic: Capacity utilisation, impact and policy implications[J]. Transportation, 2021, 48(6): 2907-2938.
    [6] HOSSEINIAN S M, MIRZAHOSSEIN H. Efficiency and safety of traffic networks under the effect of autonomous vehicles[J]. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 2024, 48(4): 1861-1885.
    [7] DAI Z, LIU X C, CHEN X, et al. Joint optimization of scheduling and capacity for mixed traffic with autonomous and human-driven buses: A dynamic programming approach[J]. Transportation Research Part C: Emerging Technologies, 2020, 114: 598-619.
    [8] LEVIN M W, BOYLES S D. A multiclass cell transmission model for shared human and autonomous vehicle roads[J]. Transportation Research Part C: Emerging Technologies, 2016, 62: 103-116.
    [9] CHEN D J, AHN S, CHITTURI M, et al. Towards vehicle automation: Roadway capacity formulation for traffic mixed with regular and automated vehicles[J]. Transportation Research Part B: Methodological, 2017, 100: 196-221.
    [10] LIU Z C, SONG Z Q. Strategic planning of dedicated autonomous vehicle lanes and autonomous vehicle/toll lanes in transportation networks[J]. Transportation Research Part C: Emerging Technologies, 2019, 106: 381-403.
    [11] YAO Z H, WU Y X, WANG Y, et al. Analysis of the impact of maximum platoon size of CAVs on mixed traffic flow: An analytical and simulation method[J]. Transportation Research Part C: Emerging Technologies, 2023, 147: 103989.
    [12] JIANG Y S, REN T T, MA Y Q, et al. Traffic safety evaluation of mixed traffic flow considering the maximum platoon size of connected automated vehicles[J]. Physica A: Statistical Mechanics and Its Applications, 2023, 612: 128452.
    [13] JIANG Y S, ZHU F Y, GU Q F, et al. Influence of CAVs platoon characteristics on fundamental diagram of mixed traffic flow[J]. Physica A: Statistical Mechanics and Its Applications, 2023, 624: 128906.
    [14] 姚志洪, 郝慧君, 巫雪梅, 等. 考虑自动驾驶的混合交通流路段阻抗函数[J]. 交通运输工程与信息学报, 2021, 19(4): 1-12.

    YAO Zhi-hong, HAO Hui-jun, WU Xue-mei, et al. Cost function of mixed traffic flow with autonomous driving[J]. Journal of Transportation Engineering and Information, 2021, 19(4): 1-12.
    [15] BUJANOVIC P, LOCHRANE T. Capacity predictions and capacity passenger car equivalents of platooning vehicles on basic segments[J]. Journal of Transportation Engineering, Part A: Systems, 2018, 144(10): 04018063.
    [16] WANG X K, ZHANG J, LI H H, et al. A mixed traffic car-following behavior model[J]. Physica A: Statistical Mechanics and Its Applications, 2023, 632: 129299.
    [17] 曲大义, 李奥迪, 张智, 等. 多车响应的网联自动驾驶纵横向协同控制方法[J]. 交通运输工程学报, 2025, 25(4): 281-295. doi: 10.19818/j.cnki.1671-1637.2025.04.020

    QU Da-yi, LI Ao-di, ZHANG Zhi, et al. Multi-vehicle responsive longitudinal and lateral cooperative control method for networked autonomous driving[J]. Journal of Traffic and Transportation Engineering, 2025, 25(4): 281-295. doi: 10.19818/j.cnki.1671-1637.2025.04.020
    [18] GUO Q Q, LI L, BAN X G. Urban traffic signal control with connected and automated vehicles: A survey[J]. Transportation Research Part C: Emerging Technologies, 2019, 101: 313-334.
    [19] 李同飞, 曹雅宁, 窦雪萍, 等. 面向新型混合交通流的智能交叉口网络布局优化[J]. 交通运输系统工程与信息, 2022, 22(4): 302-312.

    LI Tong-fei, CAO Ya-ning, DOU Xue-ping, et al. Layout optimization of smart intersections under novel mixed traffic flow[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(4): 302-312.
    [20] WANG J, WANG W, REN G, et al. Worst-case traffic assignment model for mixed traffic flow of human-driven vehicles and connected and autonomous vehicles by factoring in the uncertain link capacity[J]. Transportation Research Part C: Emerging Technologies, 2022, 140: 103703.
    [21] LU P, ZHENG Z J, TOLLIVER D, et al. Measuring passenger car equivalents (PCE) for heavy vehicle on two lane highway segments operating under various traffic conditions[J]. Journal of Advanced Transportation, 2020, 2020: 6972958.
    [22] ZHONG Z J, LEE J, ZHAO L H. Traffic flow characteristics and lane use strategies for connected and automated vehicles in mixed traffic conditions[J]. Journal of Advanced Transportation, 2021, 2021: 8816540.
    [23] LAZAR D A, COOGAN S, PEDARSANI R. Capacity modeling and routing for traffic networks with mixed autonomy[C]//IEEE. 2017 IEEE 56th Annual Conference on Decision and Control (CDC). New York: IEEE, 2017: 5678-5683.
    [24] CHRISTENSEN P A, ANDERSON P A, HARPER G D J, et al. Risk management over the life cycle of lithium-ion batteries in electric vehicles[J]. Renewable and Sustainable Energy Reviews, 2021, 148: 111240.
    [25] ALI AMEEN H, MAHAMAD A K, ZAIDAN B B, et al. A deep review and analysis of data exchange in vehicle-to-vehicle communications systems: Coherent taxonomy, challenges, motivations, recommendations, substantial analysis and future directions[J]. IEEE Access, 2019, 7: 158349-158378.
    [26] LI T F, QIAN Z, FAN B, et al. Integrated optimal planning of multi-type lanes and intersections in a transportation network with mixed HVs and CAVs[J]. Transportation Research Part E: Logistics and Transportation Review, 2024, 192: 103814.
    [27] LI W, BAN X G. Connected vehicle-based traffic signal coordination[J]. Engineering, 2020, 6(12): 1463-1472.
    [28] YAO Z H, WANG Y, LIU B, et al. Fuel consumption and transportation emissions evaluation of mixed traffic flow with connected automated vehicles and human-driven vehicles on expressway[J]. Energy, 2021, 230: 120766.
    [29] 彭佳力, 上官伟, 柴琳果, 等. 混合交通环境下网联自动驾驶车辆跟驰模型与优化策略[J]. 交通运输工程学报, 2023, 23(3): 232-247. doi: 10.19818/j.cnki.1671-1637.2023.03.018

    PENG Jia-li, SHANGGUAN Wei, CHAI Lin-guo, et al. Car-following model and optimization strategy for connected and automated vehicles under mixed traffic environment[J]. Journal of Traffic and Transportation Engineering, 2023, 23(3): 232-247. doi: 10.19818/j.cnki.1671-1637.2023.03.018
    [30] FERENCHAK N N. Longitudinal bicyclist, driver, and pedestrian perceptions of autonomous vehicle communication strategies[J]. Journal of Traffic and Transportation Engineering (English Edition), 2023, 10(1): 31-44.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  128
  • HTML全文浏览量:  75
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-22
  • 录用日期:  2025-07-02
  • 修回日期:  2025-05-30
  • 刊出日期:  2025-12-28

目录

    /

    返回文章
    返回