Modeling and simulation of nonlinear motion of ship heave and pitch in head sea
-
摘要: 为了提高航海模拟器的行为真实感,使用混合Green函数法构建船舶运动数学模型,对船舶垂荡运动和纵摇运动进行求解。基于已有Rankine源数学模型,通过人为引入虚拟控制面将计算域分为内外域两部分,内域使用Rankine源法,外域使用Green函数法,构建混合Green函数三维时域线性数学模型并对船舶运动的波浪力进行求解,对Wigley Ⅰ型船不同方法的仿真结果进行分析;为进一步考虑非线性因素对船舶航行的影响,基于四叉树法对船体网格进行动态生成,对船舶运动的傅汝德-克雷洛夫(F-K)力和静恢复力进行求解,对Wigley Ⅰ型船不同的波长船长比和不同方法的仿真结果进行了可行性分析。研究结果表明:提出的线性数学模型计算效率远高于Rankine源法,垂荡仿真结果与试验结果误差为10.86%,纵摇仿真结果与试验结果误差为14.28%;而当非线性数学模型波长船长比为1.25时,计算所得的垂荡F-K力幅值结果、纵摇F-K力幅值结果与Green函数非线性时域计算所得的计算结果相差均较小,误差都在5.00%以内,与三维线性时域相比误差较大,误差在30.00%以内;当非线性数学模型波长船长比为2时,计算所得的垂荡F-K力幅值结果、纵摇F-K力幅值结果与Green函数非线性时域计算所得的计算结果相差均较小,其误差都在3.00%以内,与三维线性时域相比误差较大,误差在20.00%以内;由于非线性方法需要在瞬时湿表面上计算,而线性方法在平均湿表面上计算,导致垂荡F-K力计算结果相差较大;与试验结果对比,计算所得的垂荡幅值响应因子和三维线性时域方法均和试验结果误差不大,误差均在20.00%以内;相对于纵摇幅值响应因子,波长船长比为1.75时存在共振现象导致2种方法误差均较大,波长船长比不等于1.75时,提出的方法误差明显小于三维时域方法误差。建立的三维时域非线性数学模型可以应用在航海模拟器上,可用于航海动态仿真数值分析。Abstract: The hybrid Green function method was adopted to build a mathematical model of ship motion, and the heave motion and pitch motion of the ships were solved to improve the behavioral realism of navigation simulators. Based on the existing Rankine source mathematical models, the computational domain was divided into an inner and outer domain by artificially introducing a virtual control surface. The inner domain employs the Rankine source method, and the outer domain utilizes the Green function method. A 3D time-domain linear mathematical model of the hybrid Green function was built and the wave force of ship motion was solved. The simulation results of the Wigley Ⅰ hull with different methods were analyzed. The hull grid was dynamically generated based on the quadtree method, the Froude-Krylov (F-K) force and hydrostatic restoring force of ship motion were solved, and feasibility analysis was conducted on the simulation results of the Wigley Ⅰ hull with different wave length-to-ship length ratios and methods to further consider the influence of nonlinear factors on ship navigation. The results show that the computational efficiency of the proposed linear mathematical model is much higher than that of the Rankine source method. The error between the heave simulation results and experimental results is 10.86%, and the error between the pitch simulation results and experimental results is 14.28%. When the wave length-to-ship length ratio in the nonlinear mathematical model is 1.25, the heave F-K force amplitude results and pitch F-K force amplitude results calculated by this paper are slightly different from those calculated by Green function nonlinear time-domain calculation, and the errors are all within 5.00%. Compared with the 3D linear time domain, the errors are large and within 30.00%. When the wave length-to-ship length ratio in the nonlinear mathematical model is 2, the heave F-K force amplitude results and pitch F-K force amplitude results calculated by this paper are slightly different from those calculated by the Green function nonlinear time-domain calculation, and the error is within 3.00%. Compared with the 3D linear time domain, the error is large and within 20.00%. The nonlinear method needs to be calculated on the instantaneous wet surface, while the linear method is calculated on the average wet surface, thereby resulting in large errors in the calculation results of the heave F-K force. Compared with the experimental results, there is little error between heave amplitude response factor and 3D linear time-domain method in this paper and the experimental results, and the errors are all within 20.00%. Compared with the pitch amplitude response factor, under the wave length-to-ship length ratio of 1.75, resonance occurs, resulting in large errors in both methods. When the wave length-to-ship length ratio is not equal to 1.75, the error of the proposed method is significantly smaller than that of the 3D time-domain method. The built 3D time-domain nonlinear mathematical model can be applied to navigation simulators and can be adopted for the numerical analysis of navigation dynamic simulation.
-
Key words:
- ship engineering /
- navigation simulator /
- hybrid Green function /
- ship seakeeping /
- Wigley Ⅰ hull /
- F-K force /
- quadtree
-
表 1 Wigley Ⅰ型船主尺度
Table 1. Main particulars of Wigley Ⅰ hull
参数名称 值 参数名称 值 垂线间长/m 3 纵摇惯性半径/m 0.75 船宽/m 0.3 重心距离基线距离/m 0.17 吃水/m 0.187 5 干舷吃水比 1 排水体积/m3 0.094 6 船中剖面系数 0.909 表 2 Fn=0.2, Wigley Ⅰ型船运动时历求解时间对比
Table 2. Comparison of time history solution times for Wigley Ⅰ hull ship motion at Fn=0.2
方法 网格划分
时间/s速度势求解
时间/s波浪力计算
时间/s本文方法 1.53 1 191.99 0.54 Rankine源法 5.53 148 766.04 1.77 表 3 当Fn=0.2,Wigley Ⅰ型船垂荡运动RAO与试验值相对误差
Table 3. Relative error of Wigley Ⅰ hull's heave motion RAO compared with experimental value at Fn=0.2
λ/L 1.25 1.40 1.50 1.60 1.75 2.00 相对误差/% 本文方法 6.40 2.25 2.08 1.25 2.58 3.03 Green函数法 6.98 0.11 13.65 0.31 1.34 0.71 三维线性时域 15.70 9.55 9.06 7.81 6.80 6.67 表 4 当Fn=0.2,Wigley Ⅰ型船纵摇运动RAO与试验值相对误差
Table 4. Relative error of Wigley Ⅰ hull's pitch motion RAO compared with experimental value at Fn=0.2
λ/L 1.25 1.40 1.50 1.60 1.75 2.00 相对误差/% 本文方法 4.24 12.90 5.31 0.21 28.44 10.29 Green函数法 3.21 4.11 10.88 4.32 27.71 9.41 三维线性时域 16.97 17.74 21.95 16.11 35.87 13.53 -
[1] 刘克中, 俞月蓉, 庄素婕, 等. 基于船舶动态群组的复杂通航水域碰撞风险评估[J]. 交通运输工程学报, 2025, 25(1): 145-159. doi: 10.19818/j.cnki.1671-1637.2025.01.010 LIU Ke-zhong, YU Yue-rong, ZHUANG Su-jie, et al. Collision risk assessment for complex navigable waters based on ship dynamic cluster[J]. Journal of Traffic and Transportation Engineering, 2025, 25(1): 145-159. doi: 10.19818/j.cnki.1671-1637.2025.01.010 [2] 李晨, 严新平, 刘佳仑, 等. 船舶远程驾驶控制系统设计与应用[J]. 交通运输工程学报, 2024, 24(5): 333-347. doi: 10.19818/j.cnki.1671-1637.2024.05.021 LI Chen, YAN Xin-ping, LIU Jia-lun, et al. Design and application of ship remote-driving control system[J]. Journal of Traffic and Transportation Engineering, 2024, 24(5): 333-347. doi: 10.19818/j.cnki.1671-1637.2024.05.021 [3] 金一丞, 尹勇. 公约、技术与航海模拟器的发展[J]. 中国航海, 2010, 33(1): 1-6, 36.JIN Yi-cheng, YIN Yong. Maritime simulators: convention and technology[J]. Navigation of China, 2010, 33(1): 1-6, 36. [4] 张秀凤, 王晓雪, 孟耀, 等. 船舶运动建模与仿真研究进展及未来发展趋势[J]. 大连海事大学学报, 2021, 47(1): 1-8.ZHANG Xiu-feng, WANG Xiao-xue, MENG Yao, et al. Research progress and future development trend of ship motion modeling and simulation[J]. Journal of Dalian Maritime University, 2021, 47(1): 1-8. [5] 陈立家, 周欣蔚, 杨沛艺, 等. 面向环境不确定性的船舶操纵运动建模与预报方法[J]. 交通运输工程学报, 2024, 24(3): 279-295. doi: 10.19818/j.cnki.1671-1637.2024.03.020 CHEN Li-jia, ZHOU Xin-wei, YANG Pei-yi, et al. Modeling and prediction method of ship maneuvering motion facing environmental uncertainty[J]. Journal of Traffic and Transportation Engineering, 2024, 24(3): 279-295. doi: 10.19818/j.cnki.1671-1637.2024.03.020 [6] 周翔宇, 金诗奇, 王新宇, 等. 自主船舶适航标准界定与适航风险指标体系构建方法[J]. 交通运输工程学报, 2025, 25(2): 118-140. doi: 10.19818/j.cnki.1671-1637.2025.02.008 ZHOU Xiang-yu, JIN Shi-qi, WANG Xin-yu, et al. Definition of seaworthiness standard and construction method of seaworthiness risk indicator system for autonomous ships[J]. Journal of Traffic and Transportation Engineering, 2025, 25(2): 118-140. doi: 10.19818/j.cnki.1671-1637.2025.02.008 [7] LIU S K, PAPANIKOLAOU A D. Time-domain hybrid method for simulating large amplitude motions of ships advancing in waves[J]. International Journal of Naval Architecture and Ocean Engineering, 2011, 3(1): 72-79. doi: 10.2478/JNAOE-2013-0047 [8] TANG K, ZHU R C, MIAO G P, et al. Domain decomposition and matching for time-domain analysis of motions of ships advancing in head sea[J]. China Ocean Engineering, 2014, 28(4): 433-444. doi: 10.1007/s13344-014-0035-2 [9] LI Z F, SHI Y Y, HUILONGA R, et al. Simulation of irregular waves in a numerical wave tank[J]. Polish Maritime Research, 2015, 22(S1): 21-25. doi: 10.1515/pomr-2015-0027 [10] CHEN X, ZHU R C, ZHOU W J, et al. A 3D multi-domain high order boundary element method to evaluate time domain motions and added resistance of ship in waves[J]. Ocean Engineering, 2018, 159: 112-128. doi: 10.1016/j.oceaneng.2018.03.091 [11] 杨骏, 胡嘉骏, 汪雪良, 等. 散货船三维时域波浪载荷计算研究[J]. 舰船科学技术, 2016, 38(15): 18-22.YANG Jun, HU Jia-jun, WANG Xue-liang, et al. Study of the three-dimensional time-domain wave loads of a bulk carrier[J]. Ship Science and Technology, 2016, 38(15): 18-22. [12] 卜淑霞, 顾民, 鲁江, 等. 基于三维时域混合源法的顶浪参数横摇研究[J]. 中国造船, 2018, 59(4): 27-35.BU Shu-xia, GU Min, LU Jiang, et al. Study on parametric roll in regular head waves with hybrid panel method in 3D time domain[J]. Shipbuilding of China, 2018, 59(4): 27-35. [13] DATTA R, SOARES C G. Analysis of the hydroelastic effect on a container vessel using coupled BEM-FEM method in the time domain[J]. Ships and Offshore Structures, 2020, 15(4): 393-402. doi: 10.1080/17445302.2019.1625848 [14] 周文俊. 基于多域法的船舶时域非线性水动力分析及大幅运动预报[D]. 上海: 上海交通大学, 2020.ZHOU Wen-jun. Time-domain nonlinear hydrodynamic analysis and large amplitude motion prediction of ship based on the multi-domain method[D]. Shanghai: Shanghai Jiao Tong University, 2020. [15] TANG H Y, ZHANG X K, REN H L, et al. Numerical study of trimaran motion and wave load prediction based on time-domain Rankine-Green matching method[J]. Ocean Engineering, 2020, 214: 107605. doi: 10.1016/j.oceaneng.2020.107605 [16] 张腾. 波浪中船舶运动时域数值建模与仿真研究[D]. 大连: 大连海事大学, 2019.ZHANG Teng. Research on time domain numerical modeling and simulation of ship motions in waves[D]. Dalian: Dalian Maritime University, 2019. [17] 唐恺. 时域混合格林函数法及波浪中船舶运动的预报[D]. 上海: 上海交通大学, 2014.TANG Kai. Time domain hybrid green function method and prediction of ship motions in waves[D]. Shanghai: Shanghai Jiao Tong University, 2014. [18] RODRIGUES J M, GUEDES SOARES C. Exact pressure integrations on submerged bodies in waves using a quadtree adaptive mesh algorithm[J]. International Journal for Numerical Methods in Fluids, 2014, 76(10): 632-652. doi: 10.1002/fld.3948 [19] RAJENDRAN S, FONSECA N, GUEDES SOARES C. Simplified body nonlinear time domain calculation of vertical ship motions and wave loads in large amplitude waves[J]. Ocean Engineering, 2015, 107: 157-177. doi: 10.1016/j.oceaneng.2015.07.050 [20] RODRIGUES J M, GUEDES SOARES C. Froude-Krylov forces from exact pressure integrations on adaptive panel meshes in a time domain partially nonlinear model for ship motions[J]. Ocean Engineering, 2017, 139: 169-183. doi: 10.1016/j.oceaneng.2017.04.041 [21] 杨骏. 三维时域非线性波浪载荷计算方法研究[D]. 北京: 中国舰船研究院, 2016.YANG Jun. Research on time-domain three-dimensional nonlinear wave-induced loads calculation method[D]. Beijing: China Ship Research and Development Academy, 2016. [22] SENGUPTA D, DATTA R, SEN D. A simplified approach for computation of nonlinear ship loads and motions using a 3D time-domain panel method[J]. Ocean Engineering, 2016, 117: 99-113. doi: 10.1016/j.oceaneng.2016.03.039 [23] RAJENDRAN S, FONSECA N, GUEDES SOARES C. Body nonlinear time domain calculation of vertical ship responses in extreme seas accounting for 2nd order Froude-Krylov pressure[J]. Applied Ocean Research, 2016, 54: 39-52. doi: 10.1016/j.apor.2015.10.008 [24] CHEN X, ZHU R C, ZHAO J, et al. Study on weakly nonlinear motions of ship advancing in waves and influences of steady ship wave[J]. Ocean Engineering, 2018, 150: 243-257. doi: 10.1016/j.oceaneng.2017.12.053 [25] JIAO J L, ZHAO Y L, AI Y F, et al. Theoretical and experimental study on nonlinear hydroelastic responses and slamming loads of ship advancing in regular waves[J]. Shock and Vibration, 2018, 2018(1): 2613832. doi: 10.1155/2018/2613832 [26] RIESNER M, EL MOCTAR O. A numerical method to compute global resonant vibrations of ships at forward speed in oblique waves[J]. Applied Ocean Research, 2021, 108: 102520. doi: 10.1016/j.apor.2020.102520 [27] CONSTÂNCIO M B, DA SILVA P P, MOREIRA M B. Development of an algorithm for the calculation of Froude-Krylov and diffraction forces using a multiparameter conformal mapping approach[C]//IEEE. OCEANS 2022—Chennai. New York: IEEE, 2022: 1-8. [28] 马山, 赵彬彬, 段文洋, 等. 基于全非线性流函数理论的规则波中船舶大幅运动弱非线性数值模型研究[J]. 船舶, 2022, 33(4): 15-29.MA Shan, ZHAO Bin-bin, DUAN Wen-yang, et al. On weakly nonlinear numerical model for large amplitude motion of ship in regular waves based on the fully-nonlinear stream function theory[J]. Ship & Boat, 2022, 33(4): 15-29. [29] WERMBTER M, ABDEL-MAKSOUD M. Calculation of ship motions in steep waves with restoring and Froude-Krylov forces on an adaptive panel mesh with Gauss and analytic integration methods[J]. Journal of Hydrodynamics, 2024, 36(2): 275-289. doi: 10.1007/s42241-024-0026-6 [30] 唐浩云. 三体船三维时域波浪载荷计算方法研究及其应用[D]. 哈尔滨: 哈尔滨工程大学, 2018.TANG Hao-yun. Three dimensional time domain wave load calculation method for trimaran and its application[D]. Harbin: Harbin Engineering University, 2018. [31] 孙葳. 船舶大幅运动的三维时域数值方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2016.SUN Wei. Three dimensional time domain numerical method for large amplitude ship motions[D]. Harbin: Harbin Engineering University, 2016. [32] HATECKE H. The impulse response fitting and ship motions[J]. Ship Technology Research, 2015, 62(2): 97-106. doi: 10.1179/2056711115Y.0000000001 [33] HU K Y, WANG R, MA S, et al. Numerical modelling and study of parametric rolling for c11 containership in regular head seas using consistent strip theory[J]. Brodogradnja, 2017, 68(3): 135-156. doi: 10.21278/brod68309 [34] KIM K H, KIM Y. Comparative study on ship hydrodynamics based on Neumann-Kelvin and double-body linearizations in time-domain analysis[J]. International Journal of Offshore and Polar Engineering, 2010, 20: 265. [35] 张腾, 任俊生, 梅天龙. 基于傅汝德-克雷洛夫力非线性法的规则波浪中船舶运动数学模型[J]. 交通运输工程学报, 2020, 20(2): 77-87. doi: 10.19818/j.cnki.1671-1637.2020.02.007ZHANG Teng, REN Jun-sheng, MEI Tian-long. Mathematical model of ship motions in regular waves based on Froude-Krylov force nonlinear method[J]. Journal of Traffic and Transportation Engineering, 2020, 20(2): 77-87. doi: 10.19818/j.cnki.1671-1637.2020.02.007 [36] MEI T L, ZHANG T, CANDRIES M, et al. Comparative study on ship motions in waves based on two time domain boundary element methods[J]. Engineering Analysis with Boundary Elements, 2020, 111: 9-21. doi: 10.1016/j.enganabound.2019.10.013 -
下载: