留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于MDS-YOLO的轻量级隧道表观病害检测算法

张振海 孙岩 李哲远

张振海, 孙岩, 李哲远. 基于MDS-YOLO的轻量级隧道表观病害检测算法[J]. 交通运输工程学报, 2025, 25(6): 271-283. doi: 10.19818/j.cnki.1671-1637.2025.06.022
引用本文: 张振海, 孙岩, 李哲远. 基于MDS-YOLO的轻量级隧道表观病害检测算法[J]. 交通运输工程学报, 2025, 25(6): 271-283. doi: 10.19818/j.cnki.1671-1637.2025.06.022
ZHANG Zhen-hai, SUN Yan, LI Zhe-yuan. Lightweight tunnel surface defect detection algorithm based on MDS-YOLO[J]. Journal of Traffic and Transportation Engineering, 2025, 25(6): 271-283. doi: 10.19818/j.cnki.1671-1637.2025.06.022
Citation: ZHANG Zhen-hai, SUN Yan, LI Zhe-yuan. Lightweight tunnel surface defect detection algorithm based on MDS-YOLO[J]. Journal of Traffic and Transportation Engineering, 2025, 25(6): 271-283. doi: 10.19818/j.cnki.1671-1637.2025.06.022

基于MDS-YOLO的轻量级隧道表观病害检测算法

doi: 10.19818/j.cnki.1671-1637.2025.06.022
基金项目: 

中央引导地方科技发展资金项目 24ZYQA044

甘肃省重点研发计划 22YF7GA141

甘肃省教育厅高校青年博士基金 2022QB-064

详细信息
    作者简介:

    张振海(1983-),男,河南安阳人,兰州交通大学教授,工学博士,从事轨道交通信号控制与智能运维、智能交通与信息系统研究

  • 中图分类号: U457.2

Lightweight tunnel surface defect detection algorithm based on MDS-YOLO

Funds: 

Central Guidance Local Science and Technology Development Fund Project 24ZYQA044

Key Research and Development Program of Gansu Province 22YF7GA141

Young Doctoral Fund for Colleges and Universities of Gansu Province Education Department 2022QB-064

More Information
Article Text (Baidu Translation)
  • 摘要: 针对隧道表观病害检测中存在复杂环境干扰严重、多尺度病害特征难以准确提取与高效识别的问题,提出了一种基于改进YOLOv8的轻量级隧道表观病害检测算法MDS-YOLO,以YOLOv8n模型为基础进行改进。在骨干网络中设计多尺度特征融合(C2f_MSFA)模块替代原C2f特征提取模块,通过部分通道卷积与多尺度特征融合方式,有效提取并聚合来自不同层级的特征图,增强模型对尺寸差异显著的病害目标的感知与表达能力;在颈部网络中引入动态上采样模块(DySample)替代传统上采样方法,根据输入特征内容自适应学习采样参数,增强上采样阶段的特征还原能力和空间信息保持效果,提高了特征融合的精度和效率;构建共享卷积检测头(SC_Detection),利用共享卷积策略与组归一化策略,在降低参数量和计算复杂度的同时提升了模型的检测效率和稳定性。试验结果表明:MDS-YOLO模型在渗漏水、裂缝、衬砌脱落3类隧道表观病害检测任务中检测精度较改进前分别提升了2.2%、3.4%、4.4%,平均检测精度达到74.2%,较基准模型YOLOv8n提升3.4%;模型参数量由3.00×106压缩至1.97×106,减少34.3%;计算量由8.1×109降低至5.6×109,减少30.9%;模型体积从5.96 MB压缩至4.00 MB。该算法在保证检测精度的同时实现了模型的轻量化,满足隧道巡检、边缘计算等实际场景中对高精度与低计算资源并重的应用需求。

     

  • 图  1  C3与C2f模块结构

    Figure  1.  Modular structures of C3 and C2f

    图  2  MDS-YOLO结构

    Figure  2.  Structure of MDS-YOLO

    图  3  瓶颈块结构

    Figure  3.  Structure of bottleneck block

    图  4  C2f_MSFA结构

    Figure  4.  Structure of C2f_MSFA

    图  5  DySample采样过程

    Figure  5.  Sampling process of DySample

    图  6  采样点生成器结构

    Figure  6.  Structure of sampling point generator

    图  7  SC_Detection结构

    Figure  7.  Structure of SC_Detection

    图  8  隧道表观病害图像

    Figure  8.  Tunnel surface defect pictures

    图  9  感受野可视化

    Figure  9.  Visualization of the receptive field

    图  10  特征图可视化对比

    Figure  10.  Comparison of feature map visualization

    图  11  热力图对比

    Figure  11.  Heatmap comparison

    图  12  不同尺度病害检测结果对比

    Figure  12.  Comparison of defect detection results at different scales

    表  1  C2f_MSFA模块验证试验

    Table  1.   Validation experiment of C2f_MSFA module

    参数 P/% R/% Map/% 参数量/106 计算量/109
    试验前 81.2 64.7 70.8 3.00 8.1
    主干 81.0 64.6 71.1 2.79 7.5
    颈部 79.9 67.7 71.8 2.81 7.7
    主+颈 83.9 65.6 72.2 2.60 7.1
    下载: 导出CSV

    表  2  消融试验

    Table  2.   Ablation experiments

    试验编号 C2f_MSFA DySample SC_Detection P/% R/% Map/% 参数量/106 计算量/109 模型大小/MB
    1 × × × 81.2 64.7 70.8 3.00 8.1 5.96
    2 × × 83.9 65.6 72.2 2.60 7.1 5.95
    3 × 85.0 67.0 72.9 2.56 6.8 5.23
    4 × 78.3 67.5 71.0 2.37 6.5 4.73
    5 × 78.3 67.6 72.0 2.16 6.1 4.35
    6 84.7 66.9 74.2 1.97 5.6 4.00
    下载: 导出CSV

    表  3  改进前后3类病害指标对比

    Table  3.   Comparison of 3 types of defect indicators before and after improvement

    模型 类别 P/ % R/ % Map/ % P的指标均值/% R的指标均值/% Map的指标均值/%
    YOLO v8n 渗漏水 78.6 82.0 79.3 81.2 64.7 70.8
    裂缝 88.0 63.4 72.5
    衬砌脱落 77.0 48.8 60.7
    MDS- YOLO 渗漏水 83.4 78.8 81.5 84.7 66.9 74.2
    裂缝 92.0 64.5 75.9
    衬砌脱落 78.7 57.6 65.1
    下载: 导出CSV

    表  4  C2f_MSFA模块对比试验

    Table  4.   Comparison experiment of the C2f_MSFA module

    方法 P/% R/% Map/ % 参数量/106 计算量/109
    C3 75.8 65.5 69.9 2.48 6.8
    C2f 81.2 64.7 70.8 3.00 8.1
    C2f_Faster 77.9 64.3 69.7 2.47 6.3
    C2f_DBB 75.0 67.0 71.4 3.01 8.1
    C2f_MSFA 83.9 65.6 72.2 2.60 7.1
    下载: 导出CSV

    表  5  DySample模块对比试验

    Table  5.   Comparison experiment of the DySample module

    方法 P/% R/% Map/ % 参数量/106 计算量/109
    Upsample 81.2 64.7 70.8 3.00 8.1
    CARAFE 79.5 66.4 72.3 3.14 8.4
    DySample 78.7 68.7 71.9 2.81 7.7
    下载: 导出CSV

    表  6  SC_Detection检测头对比试验

    Table  6.   Comparison experiment of the SC_Detection head

    方法 P/% R/% Map/ % 参数量/106 计算量/109
    YOLOv8head 81.2 64.7 70.8 3.00 8.1
    Dyhead 81.7 68.6 72.3 3.48 9.6
    LADH 77.3 66.8 70.9 2.38 6.2
    SEAMhead 83.1 64.6 72.1 2.81 7.0
    SC_Detection 84.8 65.6 72.0 2.36 6.5
    下载: 导出CSV

    表  7  算法对比试验

    Table  7.   Comparison experiment of algorithms

    模型 P/% R/% Map/% 参数量/106 计算量/109 模型大小/MB
    SSD 69.6 57.3 65.4 24.28 275.6 96.80
    Faster R-CNN 73.1 62.8 67.9 41.03 215.1 186.70
    YOLOv5n 77.7 65.2 68.6 1.95 5.4 3.94
    YOLOv6n 82.8 62.4 71.1 4.23 11.8 8.70
    YOLOv7t 71.7 59.8 65.4 6.01 13.0 12.30
    YOLOv8n 81.2 64.7 70.8 3.00 8.1 5.96
    YOLOv10n 80.6 64.5 70.4 2.26 6.5 5.48
    YOLOv11n 79.3 66.6 71.2 2.58 6.3 4.97
    YOLOv8n-Fasternet 77.7 64.1 69.8 4.17 9.7 6.20
    YOLOv8n-Starnet 82.2 63.9 70.8 1.68 4.9 3.42
    YOLOv8n-Efficientnet 80.2 65.5 70.4 2.01 5.4 4.34
    MDS-YOLO 84.7 66.9 74.2 1.97 5.6 4.00
    下载: 导出CSV
  • [1] 王福文, 梁帅文, 冯爱军. 2023年我国城市轨道交通数据统计与发展分析[J]. 隧道建设(中英文), 2024, 44(2): 393-400.

    WANG Fu-wen, LIANG Shuai-wen, FENG Ai-jun. Statistics and development analysis of urban rail transit in China in 2023[J]. Tunnel Construction, 2024, 44(2): 393-400.
    [2] 朱明哲, 梁彧, 范长新. 既有铁路隧道病害整治技术及运维周期管理分析[J]. 中国设备工程, 2023(11): 238-241.

    ZHU Ming-zhe, LIANG Yu, FAN Chang-xin. Analyses on the repair technology and operation and maintenance cycle management of existing railway tunnels[J]. China Plant Engineering, 2023(11): 238-241.
    [3] 《中国公路学报》编辑部. 中国交通隧道工程学术研究综述·2022[J]. 中国公路学报, 2022, 35(4): 1-40.

    Editorial Department of China Journal of Highway and Transport. Review on China's traffic tunnel engineering research: 2022[J]. China Journal of Highway and Transport, 2022, 35(4): 1-40.
    [4] 刘德军, 仲飞, 黄宏伟, 等. 运营隧道衬砌病害诊治的现状与发展[J]. 中国公路学报, 2021, 34(11): 178-199.

    LIU De-jun, ZHONG Fei, HUANG Hong-wei, et al. Present status and development trend of diagnosis and treatment of tunnel lining diseases[J]. China Journal of Highway and Transport, 2021, 34(11): 178-199.
    [5] LU W, MENG L X, LI S C, et al. Study on progressive failure behavior and mechanical properties of tunnel arch support structures[J]. Tunnelling and Underground Space Technology, 2023, 140: 105285. doi: 10.1016/j.tust.2023.105285
    [6] 王石磊, 高岩, 齐法琳, 等. 铁路运营隧道检测技术综述[J]. 交通运输工程学报, 2020, 20(5): 41-57. doi: 10.19818/j.cnki.1671-1637.2020.05.003

    WANG Shi-lei, GAO Yan, QI Fa-lin, et al. Review on inspection technology of railway operation tunnels[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5): 41-57. doi: 10.19818/j.cnki.1671-1637.2020.05.003
    [7] HUANG M Q, NINIC J, ZHANG Q B. BIM, machine learning and computer vision techniques in underground construction: Current status and future perspectives[J]. Tunnelling and Underground Space Technology, 2021, 108: 103677. doi: 10.1016/j.tust.2020.103677
    [8] 王健, 郑理科, 吴斌杰, 等. 改进Mask RCNN的盾构隧道渗漏水检测方法[J]. 测绘通报, 2024(2): 170-177.

    WANG Jian, ZHENG Li-ke, WU Bin-jie, et al. Improved Mask RCNN method for shield tunnel leakage detection[J]. Bulletin of Surveying and Mapping, 2024(2): 170-177.
    [9] WANG Y D, LIAO W S, DONG A Q, et al. High-speed acquisition and intelligent tunnel surface defects recognition[J]. Tunnelling and Underground Space Technology, 2024, 144: 105572. doi: 10.1016/j.tust.2023.105572
    [10] 任松, 朱倩雯, 涂歆玥, 等. 基于深度学习的公路隧道衬砌病害识别方法[J]. 浙江大学学报(工学版), 2022, 56(1): 92-99.

    REN Song, ZHU Qian-wen, TU Xin-yue, et al. Lining disease identification of highway tunnel based on deep learning[J]. Journal of Zhejiang University (Engineering Science), 2022, 56(1): 92-99.
    [11] ZHOU Z, ZHANG J J, GONG C J. Automatic detection method of tunnel lining multi-defects via an enhanced You Only Look Once network[J]. Computer-aided Civil and Infrastructure Engineering, 2022, 37(6): 762-780. doi: 10.1111/mice.12836
    [12] MEI C B, WEN Y C. Subway tunnel crack identification based on YOLOv5[J]. Frontiers in Computing and Intelligent Systems, 2024, 8(1): 122-129. doi: 10.54097/7gw4nw71
    [13] 高贤君, 刘振宇, 许磊, 等. 基于CutMix数据增强与多约束损失函数的YOLOv7盾构隧道渗漏水检测[J]. 测绘通报, 2024(7): 105-110.

    GAO Xian-jun, LIU Zhen-yu, XU Lei, et al. YOLOv7 shield tunnel water leakage detection method based on CutMix data augmentation and multi-constraint loss function[J]. Bulletin of Surveying and Mapping, 2024(7): 105-110.
    [14] WANG L, TANG C. Effective small crack detection based on tunnel crack characteristics and an anchor-free convolu-tional neural network[J]. Scientific Reports, 2024, 14(1): 10355. doi: 10.1038/s41598-024-60454-3
    [15] 宋娟, 贺龙喜, 龙会平. 基于深度学习的隧道衬砌多病害检测算法[J]. 浙江大学学报(工学版), 2024, 58(6): 1161-1173.

    SONG Juan, HE Long-xi, LONG Hui-ping. Deep learning-based algorithm for multi defect detection in tunnel lining[J]. Journal of Zhejiang University (Engineering Science), 2024, 58(6): 1161-1173.
    [16] SOHAN M, SAI RAM T, RAMI REDDY C V. Interna-tional conference on data intelligence and cognitive informatics[M]. Berlin: Springer, 2024: 529-545.
    [17] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//IEEE. 2023 IEEE/CVF Confe-rence on Computer Vision and Pattern Recognition. New York: IEEE, 2023: 7464-7475.
    [18] LIU W Z, LU H, FU H T, et al. Learning to upsample by learning to sample[C]//IEEE. 2023 IEEE/CVF Interna-tional Conference on Computer Vision (ICCV). New York: IEEE, 2023: 6027-6037.
    [19] TIAN Z, SHEN C H, CHEN H, et al. FCOS: Fully convo-lutional one-stage object detection[C]//IEEE. 2019 IEEE/CVF International Conference on Computer Vision (ICCV). New York: IEEE, 2019: 9627-9636.
    [20] XUE Y D, CAI X Y, SHADABFAR M, et al. Deep learning-based automatic recognition of water leakage area in shield tunnel lining[J]. Tunnelling and Underground Space Tech-nology, 2020, 104: 103524. doi: 10.1016/j.tust.2020.103524
    [21] ZHOU Q, QU Z, LI Y X, et al. Tunnel crack detection with linear seam based on mixed attention and multiscale feature fusion[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 5014711.
    [22] DING X H, ZHANG X Y, HAN J G, et al. Scaling up your kernels to 31×31: Revisiting large kernel design in CNNs[C]//IEEE. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2022: 11963-11975.
    [23] 耿焕同, 刘振宇, 蒋骏, 等. 基于改进YOLOv8的嵌入式道路裂缝检测算法[J]. 计算机应用, 2024, 44(5): 1613-1618.

    GENG Huan-tong, LIU Zhen-yu, JIANG Jun, et al. Embedded road crack detection algorithm based on improved YOLOv8[J]. Journal of Computer Applications, 2024, 44(5): 1613-1618.
    [24] 蒋仕新, 邹小雪, 杨建喜, 等. 复杂背景下基于改进YOLO v8s的混凝土桥梁裂缝检测方法[J]. 交通运输工程学报, 2024, 24(6): 135-147. doi: 10.19818/j.cnki.1671-1637.2024.06.009

    JIANG Shi-xin, ZOU Xiao-xue, YANG Jian-xi, et al. Concrete bridge crack detection method based on improved YOLO v8s in complex backgrounds[J]. Journal of Traffic and Trans-portation Engineering, 2024, 24(6): 135-147. doi: 10.19818/j.cnki.1671-1637.2024.06.009
    [25] WANG H, LIU C Y, CAI Y F, et al. YOLOv8-QSD: An improved small object detection algorithm for autonomous vehicles based on YOLOv8[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 2513916.
    [26] WANG J Q, CHEN K, XU R, et al. CARAFE++: Unified content-aware ReAssembly of FEatures[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(9): 4674-4687.
    [27] 渠逸, 汪诚, 余嘉博, 等. 基于YOLOv5的表面缺陷检测优化算法[J]. 空军工程大学学报, 2023, 24(5): 80-87.

    QU Yi, WANG Cheng, YU Jia-bo, et al. Optimized algorithm for surface defect detection based on YOLOv5[J]. Journal of Air Force Engineering University, 2023, 24(5): 80-87.
    [28] ZHANG J R, CHEN Z H, YAN G X, et al. Faster and lightweight: An improved YOLOv5 object detector for remote sensing images[J]. Remote Sensing, 2023, 15(20): 4974. doi: 10.3390/rs15204974
    [29] FU Z B, LING J R, YUAN X P, et al. Yolov8n-FADS: A study for enhancing miners' helmet detection accuracy in complex underground environments[J]. Sensors, 2024, 24(12): 3767. doi: 10.3390/s24123767
    [30] 梁礼明, 龙鹏威, 李俞霖. 改进轻量高效FMG-YOLOv8s的钢材表面缺陷检测算法[J]. 计算机工程与应用, 2025, 61(3): 84-93.

    LIANG Li-ming, LONG Peng-wei, LI Yu-lin. Improved lightweight and efficient FMG-YOLOv8s algorithm for steel surface defect detection[J]. Computer Engineering and Applications, 2025, 61(3): 84-93.
    [31] MA X, DAI X Y, BAI Y, et al. Rewrite the stars[C]//IEEE. 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2024: 5694-5703.
    [32] 江德港, 江智, 黄子杰, 等. 基于Efficientnet的无人机车辆目标检测算法[J]. 计算机工程与应用, 2023, 59(12): 228-234.

    JIANG De-gang, JIANG Zhi, HUANG Zi-jie, et al. UAV vehicle object detection algorithm based on Efficientnet[J]. Computer Engineering and Applications, 2023, 59(12): 228-234.
  • 加载中
图(12) / 表(7)
计量
  • 文章访问数:  111
  • HTML全文浏览量:  45
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-06
  • 录用日期:  2025-06-06
  • 修回日期:  2025-03-14
  • 刊出日期:  2025-12-28

目录

    /

    返回文章
    返回