Integrated track-bridge management method for large-span railway suspension bridges based on train operation performance
-
摘要: 为建立适用于大跨度悬索桥的轨道线形管理方法与指标体系,弥补既有线路管理指标在桥梁及轨道运维中的不足,依托某主跨1 092 m的大跨度铁路悬索桥开展研究。通过车-线-桥耦合动力分析,研究了大跨桥梁变形引起的轨道线形演变对桥上高速列车运行的影响规律,识别了大跨桥上轨道线形的平顺性管理截止波长;基于波长分离方法,分离桥上轨道不平顺与桥梁动态纵断面,并对照区间线路的管理标准,提出大跨度铁路悬索桥场景下相统一的指标体系;量化分析了大跨铁路悬索桥轨道中各线形成分对车体加速度的影响。研究结果表明:大跨桥上轨道线形平顺性管理截止波长可采用120 m;基于截止波长实现桥上轨道不平顺与桥梁动态纵断面的有效分离,在此基础上使大跨铁路悬索桥轨道管理指标与区间线路标准相统一;基于行车平稳性指标限值,可以反推桥上轨道不平顺与桥梁动态纵断面的管理指标限值,形成大跨铁路悬索桥线-桥一体化管理指标体系,指导大跨度铁路悬索桥设计和运维。Abstract: A management methodology and indicator system are expected to be established for track geometry on large-span suspension bridges to address the shortcomings of existing track management criteria in bridge and track maintenance. Taking a suspension bridge with a main span of 1 092 m as the research object, a vehicle-track-bridge coupled dynamic analysis was conducted to investigate the influence rule of bridge deformation-induced track geometry evolution on the operation of high-speed trains on the bridge. The cutoff wavelength for smoothness management of track geometry was also identified. Based on a wavelength separation approach, the track irregularities were distinguished from the dynamic longitudinal profile of the bridge. A unified indicator system applicable to large-span suspension bridge scenarios was proposed in reference to the management standards of conventional railway lines. Furthermore, a quantitative analysis was performed to evaluate the contributions of different track geometry components to car body acceleration. Research results show that a cutoff wavelength of 120 m can be adopted for track smoothness management on long-span bridges. Based on this cutoff wavelength, an effective separation between track irregularities and the dynamic longitudinal bridge profile can be achieved, enabling the track management indicators for large-span suspension bridges to be unified with those of conventional railway lines. According to ride comfort limits, the management thresholds for track irregularities and bridge longitudinal profiles can be determined. An integrated track-bridge management framework can thus be established for large-span railway suspension bridges, providing guidance for their design and operation.
-
表 1 自振频率对比
Table 1. Comparison of natural frequencies
阶数 自振频率/Hz 偏差/% 本文模型 实测值 1 0.102 0.109 6.422 2 0.164 0.169 2.960 3 0.198 0.204 2.941 4 0.262 0.274 4.380 表 2 不同波段车体加速度功率谱密度占比
Table 2. Proportion of power spectral density of vehicle body acceleration in different frequency ranges
输入激励 整体升降温工况/℃ 不同波段的功率谱密度占比/% 0~120 m波长 120~200 m波长 随机不平顺+桥梁变形+设计纵断面 -10 98.8 0.5 -20 97.0 0.8 -30 93.1 1.7 +10 96.9 0.8 +20 92.9 1.7 +30 87.4 3.0 桥梁变形+设计纵断面 -10 3.3 0.3 -20 4.4 0.9 -30 4.7 1.6 +10 3.9 0.4 +20 4.7 0.9 +30 5.3 1.8 表 3 不同波段线形组成成分
Table 3. Composition of wavelength Bands
波长范围 0~120 m 120 m以上 线形组成 轨道随机不平顺+0~120 m波段的桥梁变形 设计纵断面+120 m以上波段桥梁变形 表 4 大跨桥线桥一体化管理指标
Table 4. Integrated management indexes for long-span bridge and track
线路 波段 0~120 m 120 m以上 加速度限值/(m·s-2) 区间线路 管理对象 轨道不平顺 设计纵断面 1.0 管理指标 300 m基线长矢距差法(长波)或60 m弦测值 曲线半径 限值 ≤10 mm ≥20 000 m 桥上线路 管理对象 桥上轨道不平顺(轨道随机不平顺+0~120 m波段的桥梁变形) 桥上动态纵断面(设计纵断面+120 m以上波段的桥梁变形) 1.3 管理指标 60 m弦测值 曲线半径 限值 ≤9 mm ≥10 000 m -
[1] GOU H Y, RAN Z W, YANG L C, et al. Mapping vertical bridge deformations to track geometry for high-speed railway[J]. Steel and Composite Structures, An International Journal, 2019, 4(32): 467-478. [2] 勾红叶, 刘畅, 班新林, 等. 高速铁路桥梁-轨道体系检测监测与行车安全研究进展[J]. 交通运输工程学报, 2022, 22(1): 1-23. doi: 10.19818/j.cnki.1671-1637.2022.01.001 GOU Hong-ye, LIU Chang, BAN Xin-lin, et al. Research progress of detection, monitoring and running safety of bridge-track system for high-speed railway[J]. Journal of Traffic and Transportation Engineering, 2022, 22(1): 1-23. doi: 10.19818/j.cnki.1671-1637.2022.01.001 [3] 贾东荣. 长联大跨部分斜拉桥上无砟轨道平顺性分析[J]. 铁道工程学报, 2023, 40(3): 20-26.JIA Dong-rong. Analysis of smoothness of ballastless track on long-span partial cable stayed bridge[J]. Journal of Railway Engineering Society, 2023, 40(3): 20-26. [4] 张鹏飞, 桂昊, 雷晓燕, 等. 列车荷载下桥上CRTS Ⅲ型板式无砟轨道挠曲力与位移[J]. 交通运输工程学报, 2018, 18(6): 61-72. doi: 10.19818/j.cnki.1671-1637.2018.06.007 ZHANG Peng-fei, GUI Hao, LEI Xiao-yan, et al. Deflection force and displacement of CRTS Ⅲ slab track on bridge under train load[J]. Journal of Traffic and Transportation Engineering, 2018, 18(6): 61-72. doi: 10.19818/j.cnki.1671-1637.2018.06.007 [5] 魏贤奎, 禹壮壮, 刘淦中, 等. 大跨度斜拉桥轨道的几何形位评估分析[J]. 铁道建筑, 2021, 61(5): 109-114.WEI Xian-kui, YU Zhuang-zhuang, LIU Gan-zhong, et al. Evaluation and analysis of track geometry of long span cable?stayed bridge[J]. Railway Engineering, 2021, 61(5): 109-114. [6] 杨飞, 刘丙强, 谭社会, 等. 高速铁路轨道静态几何不平顺弦测评价标准体系研究[J]. 铁道建筑, 2021, 61(6): 107-111, 120.YANG Fei, LIU Bing-qiang, TAN She-hui, et al. Research on evaluation standard system of chord measurement for track static geometric irregularity of high speed railway[J]. Railway Engineering, 2021, 61(6): 107-111, 120. [7] 李梦雪, 张敏, 左飞飞, 等. 基于中点弦测法的中低速磁浮轨道不平顺误差研究[J]. 铁道建筑, 2023, 63(7): 45-51.LI Meng-xue, ZHANG Min, ZUO Fei-fei, et al. Research on irregularity error of medium and low speed maglev track based on midpoint chord measurement method[J]. Railway Engineering, 2023, 63(7): 45-51. [8] ZENG C, GUO W, LIU H Y, et al. Gradient descent based restoration method of track irregularity in asymmetric chord reference method[J]. Journal of Central South University, 2024, 31(1): 288-301. doi: 10.1007/s11771-023-5449-7 [9] 李国龙, 孙宪夫, 高彦嵩, 等. 基于实车试验的大跨度桥梁轨道静态长波高低不平顺验收标准验证[J]. 铁道学报, 2024, 46(1): 120-128.LI Guo-long, SUN Xian-fu, GAO Yan-song, et al. Verification on acceptance standard for track static long-wave longitudinal level irregularity on long-span bridge based on real train test[J]. Journal of the China Railway Society, 2024, 46(1): 120-128. [10] 李小珍, 宁波涛, 王铭, 等. 大跨度铁路悬索桥时变变形对高速列车行车平稳性影响[J]. 中国铁道科学, 2025, 46(3): 80-88.LI Xiao-zhen, NING Bo-tao, WANG Ming, et al. Analysis of the impact of time-varying deformation of long-span railway suspension bridges on running stability of high-speed trains[J]. China Railway Science, 2025, 46(3): 80-88. [11] HE Q L, LI S H, YANG Y, et al. A novel modelling method for heavy-haul train-track-long-span bridge interaction considering an improved track-bridge relationship[J]. Mechanical Systems and Signal Processing, 2024, [12] ZHAI W M, HAN Z L, CHEN Z W, et al. Train-track-bridge dynamic interaction: A state-of-the-art review[J]. Vehicle System Dynamics, 2019, 57(7): 984-1027. doi: 10.1080/00423114.2019.1605085 [13] ZHAI W M, XIA H, CAI C B, et al. High-speed train-track-bridge dynamic interactions - Part Ⅰ: Theoretical model and numerical simulation[J]. International Journal of Rail Transportation, 2013, 1(1/2): 3-24. [14] WANG M, WANG X Y, LI X Z, et al. Influence of spatial track alignment of long-span arch bridge on train operational stability[J]. Vehicle System Dynamics, 2023, 12(61): 3161-3180. [15] 游颖川, 谢海清, 卢斌, 等. 高速铁路跨度250 m级连续刚构桥长波不平顺控制研究[J]. 铁道标准设计, 2024, 68(4): 102-108.YOU Ying-chuan, XIE Hai-qing, LU Bin, et al. Research on long-wave irregularity control of a continuous rigid frame bridge with main span of 250 m on high-speed railway[J]. Railway Standard Design, 2024, 68(4): 102-108. [16] WANG Y, TANG H Y, WANG P, et al. Multipoint chord reference system for track irregularity: Part Ⅱ-Numerical analysis[J]. Measurement, 2019, 138: 194-205. doi: 10.1016/j.measurement.2019.01.081 [17] WANG Y, TANG H Y, WANG P, et al. Multipoint chord reference system for track irregularity: Part Ⅰ-Theory and methodology[J]. Measurement, 2019, 138: 240-255. doi: 10.1016/j.measurement.2019.01.080 [18] LIU D J, LI X Z, MEI F L, et al. Effect of vertical vortex-induced vibration of bridge on railway vehicle's running performance[J]. Vehicle System Dynamics, 2023, 61(5): 1432-1447. [19] WANG M, WANG C F, HE H N, et al. Research on the beam-end regional deformation of long-span suspension bridges and train operating performance[J]. Engineering Structures, 2025, 327: 119589. doi: 10.1016/j.engstruct.2024.119589 [20] ZHAI W M. Two simple fast integration methods for large-scale dynamic problems in engineering[J]. International Journal of Numerical Methods in Engineering, 1996, 39: 4199-4214. [21] 刘德军. 风-列车-线路-桥梁系统耦合振动研究[D]. 成都: 西南交通大学, 2010.LIU De-jun, Coupling vibration study of wind-train-track-bridge system[D]. Chengdu: Southwest Jiaotong University, 2010. [22] LI X Z, HE H N, WANG M, et al. Influence of long-span bridge deformation on driving quality of high-speed trains[J]. International Journal of Rail Transportation, 2024, 12(4): 690-708. doi: 10.1080/23248378.2023.2198532 [23] 赵秀, 程益凡, 赵世豪, 等. 大跨度斜拉桥轨道不平顺演变规律及其对列车运行平稳性影响研究[J]. 中国铁道科学, 2025, 46(1): 87-95.ZHAO Xiu, CHENG Yi-fan, ZHAO Shi-hao, et al. Study on the evolution law of track irregularity of long-span cable-stayed bridge and its influence on train running stability[J]. China Railway Science, 2025, 46(1): 87-95. [24] WANG M, YANG C, NING B T, et al. Influence mechanism of vertical dynamic track irregularity on train operation stability of long-span suspension bridge[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2023, 237(8): 1037-1049. doi: 10.1177/09544097221148794 [25] 杨飞, 赵文博, 高芒芒, 等. 运营期高速铁路轨道长波不平顺静态测量方法及控制标准[J]. 中国铁道科学, 2020, 3(41): 41-49.YANG Fei, ZHAO Wen-bo, GAO Mang-mang, et al. Static measurement method and control standard for long-wave irregularity of high-speed railway track during operation period[J]. China Railway Science, 2020, 41(3): 41-49. -
下载: