留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞机可持续滑行技术理论进展与应用挑战

唐铁桥 曹峰 王芃 王涛 闫娜

唐铁桥, 曹峰, 王芃, 王涛, 闫娜. 飞机可持续滑行技术理论进展与应用挑战[J]. 交通运输工程学报, 2026, 26(1): 8-30. doi: 10.19818/j.cnki.1671-1637.2026.01.001
引用本文: 唐铁桥, 曹峰, 王芃, 王涛, 闫娜. 飞机可持续滑行技术理论进展与应用挑战[J]. 交通运输工程学报, 2026, 26(1): 8-30. doi: 10.19818/j.cnki.1671-1637.2026.01.001
TANG Tie-qiao, CAO Feng, WANG Peng, WANG Tao, YAN Na. Theoretical advances and application challenges of sustainable aircraft taxiing technology[J]. Journal of Traffic and Transportation Engineering, 2026, 26(1): 8-30. doi: 10.19818/j.cnki.1671-1637.2026.01.001
Citation: TANG Tie-qiao, CAO Feng, WANG Peng, WANG Tao, YAN Na. Theoretical advances and application challenges of sustainable aircraft taxiing technology[J]. Journal of Traffic and Transportation Engineering, 2026, 26(1): 8-30. doi: 10.19818/j.cnki.1671-1637.2026.01.001

飞机可持续滑行技术理论进展与应用挑战

doi: 10.19818/j.cnki.1671-1637.2026.01.001
基金项目: 

国家自然科学基金项目 72231001

国家自然科学基金项目 72288101

杭州市北京航空航天大学国际创新研究院科研启动经费 2024KQ054

详细信息
    作者简介:

    唐铁桥(1977-),男,湖南邵阳人,教授,博士生导师,工学博士,E-mail: tieqiaotang@buaa.edu.cn

  • 中图分类号: U8

Theoretical advances and application challenges of sustainable aircraft taxiing technology

Funds: 

National Natural Science Foundation of China 72231001

National Natural Science Foundation of China 72288101

Research Start-up Funds of Hangzhou International Innovation Institute of Beihang University 2024KQ054

More Information
Article Text (Baidu Translation)
  • 摘要: 概述了飞机可持续滑行技术的主要类型与技术路线,围绕单引擎滑行、调度牵引滑行和机载系统滑行等典型技术,明确了不同滑行技术的作业原理、操作流程及关键控制节点;回顾了可持续滑行技术在环境效能建模与评估、物理特性分析及系统设计等方面的理论研究进展,提炼了不同滑行技术在滑行阶段的燃油消耗与污染物排放计量方法;结合国内外机场与航空公司的工程实践,整理了可持续滑行技术的应用现状,对不同技术在运行效率、设备适配性和操作复杂性方面的差异进行了对比讨论;在此基础上,从技术性能、成本效益、运行安全和适用场景等方面,对现有可持续滑行技术的局限性与适用条件进行了综合评估,并结合中国民航运行特点,对相关技术的推广应用进行了总结分析。结果表明:可持续滑行技术在降低飞机滑行阶段燃油消耗、碳排放和噪声污染方面具有显著潜力,不同技术在节能减排效果和运行特性上存在明显差异;单引擎滑行技术具有实施成本低、操作方式相对成熟等优势,适合在现有运行体系下推广应用;调度牵引滑行与机载系统滑行能够进一步减少主发动机使用时间,在节能减排方面表现更为突出,但对设备条件和运行组织提出了更高要求;总体而言,可持续滑行技术的规模化应用仍受制于技术成熟度、经济性、运行管理复杂性及法规认证等因素,应结合机场运行环境和机型结构,分技术路径推进试点应用与标准完善。

     

  • 图  1  可持续滑行技术研究体系

    Figure  1.  Research system of sustainable taxiing technology

    图  2  全引擎滑行作业原理

    Figure  2.  Operation principle of full-engine taxiing

    图  3  单引擎滑行作业原理

    Figure  3.  Operation principle of single-engine taxiing

    图  4  调度牵引/机载系统滑行作业原理

    Figure  4.  Operation principle of dispatch towing/onboard system taxiing

    图  5  飞机滑行动力学分析

    Figure  5.  Dynamics analysis of aircraft taxiing

    图  6  牵引车-飞机耦合系统运动学模型

    Figure  6.  Kinematic model of tractor-aircraft coupled system

    图  7  机载电动滑行系统组成

    Figure  7.  Composition of onboard electric taxiing system

    表  1  不同滑行技术特征对比

    Table  1.   Characteristics comparison of different taxiing technologies

    滑行技术 全引擎滑行 单引擎滑行 牵引滑行 机载系统滑行
    滑行动力源 飞机主发动机 飞机主发动机 飞机牵引车 飞机辅助动力装置
    滑行过程主发动机状态 全部开启 部分开启 全部关闭 全部关闭
    滑行过程飞机控制者 飞行员 飞行员 飞行员/牵引车驾驶人 飞行员
    技术优势 操作便捷,符合现有设计规范 操作较为简单,节省燃油 地面操作安全性高,发动机保持冷却 自主性强,无需外部牵引设备
    技术限制 燃油消耗大,排放高 操作复杂,增加飞行员负担 增加场面交通流量,牵引车需求量大 需对飞机进行改造,增加自重与APU能耗
    下载: 导出CSV

    表  2  全引擎滑行标准操作流程

    Table  2.   Standard operating procedure for full-engine taxiing

    程序 流程 操作对象
    机组 空管 地勤
    滑入ATC向机组发出滑行至停机位的详细指令
    机组接收滑行指令,控制飞机沿指定滑行路径滑行至预定停机位
    机组与地勤协调进行停机操作,确保飞机停稳
    飞机停稳后,机组进行发动机冷却和关闭过程
    舱门开启和乘客下机
    推出 地勤准备牵引设备,与飞机建立机械和通信连接
    机组从ATC获取推出许可,向GH发出推出信号
    GH操作牵引车将飞机推出至指定位置
    GH断开牵引车与飞机的连接,完成必须地面服务
    机组启动发动机,准备滑行
    滑出 机组从ATC接收滑出许可,确认滑行路线
    机组根据ATC指令控制飞机滑行至跑道入口
    飞机到达跑道入口,机组完成起飞前检查并向ATC发出起飞申请
    机组从ATC接收滑出许可,确认滑行路线
    下载: 导出CSV

    表  3  滑入阶段不同滑行技术的操作程序及涉及对象

    Table  3.   Operational procedures and relevant parties for different taxiing technologies in taxi-in phase

    阶段 全引擎滑行 单引擎滑行 调度牵引滑行 机载系统滑行
    离开跑道 操作程序 飞机降落后由机组根据ATC指令操纵飞机脱离跑道 飞机降落后由机组根据ATC指令操纵飞机脱离跑道 飞机降落后由机组根据ATC指令操纵飞机脱离跑道 飞机降落后由机组根据ATC指令操纵飞机脱离跑道
    涉及对象 机组、空管 机组、空管 机组、空管 机组、空管
    滑行至机位 操作程序 机组根据ATC指令操纵飞机滑行至指定机位 机组开启部分发动机根据ATC指令滑行至指定机位 专用牵引车与飞机连接提供滑行动力,机组操纵飞机根据ATC指令滑行至指定机位 电动滑行系统提供滑行动力,机组操纵飞机根据ATC指令滑行至指定机位
    涉及对象 机组、空管 机组、空管 机组、空管、地勤 机组、空管
    发动机冷却/关闭 操作程序 机组在飞机到达机位后执行冷却程序,冷却完成后关闭发动机 飞机在脱离跑道后,机组执行部分发动机的冷却和关闭程序,到达机位后执行剩余发动机的冷却和关闭程序 飞机在脱离跑道后,机组执行全部发动机的冷却和关闭程序 飞机在脱离跑道后,机组执行全部发动机的冷却和关闭程序
    涉及对象 机组 机组 机组 机组
    下载: 导出CSV

    表  4  滑出阶段不同滑行技术的操作程序及涉及对象

    Table  4.   Operational procedures and relevant parties for different taxiing technologies in taxi-out phase

    阶段 全引擎滑行 单引擎滑行 调度牵引滑行 机载系统滑行
    推出操作 操作程序 地勤使用PB truck进行推出,机组协助,ATC批准 地勤使用PB truck进行推出,机组协助,ATC批准 地勤使用专用牵引车进行推出,机组协助,ATC批准 机组通过电动滑行系统推出,无需牵引车
    涉及对象 机组、地勤、空管 机组、地勤、空管 机组、地勤、空管 机组、空管
    滑行至跑道 操作程序 机组操纵飞机根据ATC指令滑行至跑道入口 机组开启部分发动机根据ATC指令滑行至跑道入口 专用牵引车提供滑行动力,机组操纵飞机根据ATC指令滑行至跑道入口 电动滑行系统提供滑行动力,机组操纵飞机根据ATC指令滑行至跑道入口
    涉及对象 机组、空管 机组、空管 机组、空管、地勤 机组、空管
    发动机启动/预热 操作程序 在到达指定推出位置后机组启动全部发动机并预热 在到达指定推出位置后机组启动部分发动机并预热,在滑行过程中启动并预热其他发动机 在滑行过程中启动并预热全部发动机 在滑行过程中启动并预热全部发动机
    涉及对象 机组 机组 机组 机组
    起飞许可 操作程序 机组申请并获得ATC的起飞许可 机组申请并获得ATC的起飞许可 机组申请并获得ATC的起飞许可 机组申请并获得ATC的起飞许可
    涉及对象 机组、空管 机组、空管 机组、空管 机组、空管
    下载: 导出CSV

    表  5  滑行技术多维度对比分析

    Table  5.   Multidimensional comparative analysis of taxiing technologies

    滑行技术 环保效益 运行成本 运行安全性 技术适配难度 主要局限性
    全引擎滑行 中等 能耗高,排放重,环保性能差
    单引擎滑行 中等 操作复杂,发动机启停管理难,维护负担增加
    调度牵引滑行 高(初期投资高) 中等 中等 地面交通协调复杂,连接脱离耗时长
    机载系统滑行 高(飞机改造成本高) 中等 重量增加,能源管理复杂,系统维护成本高
    下载: 导出CSV
  • [1] 马思萌, 汤慧娟, 郑宸, 等. 基于运行仿真的机场飞机排放本地化修正模型及应用[J/OL]. 交通运输工程学报, (2025-12-26). https://doi.org/10.19818/j.cnki.1671-1637.2026.027.

    MA Si-meng, TANG Hui-juan, ZHENG Chen, et al. Localized correction model for airport aircraft emissions based on operational simulation and its application[J/OL]. Journal of Traffic and Transportation Engineering, (2025-12-26). https://doi.org/10.19818/j.cnki.1671-1637.2026.027.
    [2] International Civil Aviation Organization. Carbon offsetting and reduction scheme for international aviation (CORSIA)[EB/OL]. https://www.icao.int/environmental-protection/CORSIA/Pages/default.aspx.
    [3] International Air Transport Association. Our commitment to fly net zero by 2050[EB/OL]. (2024-09-15). https://www.iata.org/en/programs/environment/flynetzero/.
    [4] European Council. Fit for 55[EB/OL]. (2025-03-17). https://www.consilium.europa.eu/de/policies/green-deal/fit-for-55-the-eu-plan-for-a-green-transition/.
    [5] 中国民用航空局. "十四五"民航绿色发展专项规划[EB/OL]. (2021-12-27). https://www.caac.gov.cn/XXGK/XXGK/FZGH/202201/P020220127574907790924.pdf.

    Civil Aviation Administration of China. The 14th five-year plan for civil aviation green development[EB/OL]. (2021-12-27). https://www.caac.gov.cn/XXGK/XXGK/FZGH/202201/P020220127574907790924.pdf.
    [6] Dublin Airport. Carbon reduction strategy[EB/OL]. https://www.dublinairport.com/docs/default-source/sustainability-reports/dublin-airport-carbon-reduction-strategy.pdf.
    [7] KPMG. Decarbonizing ground operations: A long-haul journey[EB/OL]. (2022-06-01). https://assets.kpmg.com/content/dam/kpmg/ie/pdf/2022/09/ie-aviation-2030-decarbonisation-of-ground-ops.pdf.
    [8] OAG Aviation. Which part of a flight uses the most fuel[EB/OL]. (2022-02-03). https://www.oag.com/blog/which-part-flight-uses-most-fuel.
    [9] Eurocontrol. Sustainable taxi operations[EB/OL]. (2024-07-16). https://www.eurocontrol.int/publication/sustainable-taxi-operations.
    [10] KAMENÍKOVÁ I, KAMENÍK M, CAPOUŠEK L, et al. Application of the single-engine taxi-out procedure for commercial transport, focusing on the Airbus A320 fleet[J]. Transportation Research Procedia, 2022, 65: 126-132. doi: 10.1016/j.trpro.2022.11.015
    [11] Taxibot. Operations[EB/OL]. https://taxibot-international.com/operations/.
    [12] Aeroreport. Before the flight: Taxiing-the high art of ground maneuvers[EB/OL]. (2022-02-15). https://aeroreport.de/ en/good-to-know/before-the-flight-taxiing-the-high-art-of-ground-maneuvers.
    [13] 张威, 李开伟, 王伟, 等. 飞机电动机轮设计及电动滑行系统仿真研究[J]. 中国机械工程, 2018, 29(13): 1547-1552.

    ZHANG Wei, LI Kai-wei, WANG Wei, et al. Research on design of aircraft electric wheels and simulation for ETS[J]. China Mechanical Engineering, 2018, 29(13): 1547-1552.
    [14] 新浪军事. 资料: 空中客车A320系列客机[EB/OL]. (2007-04-19). http://mil.news.sina.com.cn/2007-04-19/1425440622.html.

    SINA Military. Data: Airbus a320 series aircraft[EB/OL]. (2007-04-19). http://mil.news.sina.com.cn/2007-0419/1425440622.html.
    [15] European Union Aviation Safety Agency. ICAO aircraft engine emissions databank[EB/OL]. (2025-06-06). https://www.easa.europa.eu/en/domains/environment/icao-aircraft-engine-emissions-databank.
    [16] 冯永胜. 飞机电滑行系统的功率需求分析[J]. 科技资讯, 2011(27): 43, 45.

    FENG Yong-sheng. Power demand analysis of electric taxiing systems for aircraft[J]. Science & Technology Information, 2011(27): 43, 45.
    [17] IAI. Innovative TaxiBot now used in real flight operations [EB/OL]. (2015-02-19). https://www.iai.co.il/innovative-taxibot-now-used-real-flight-operations.
    [18] HOSPODKA J. Electric taxiing-taxibot system[J]. MAD-Magazine of Aviation Development, 2014, 2(10): 17. doi: 10.14311/MAD.2014.10.03
    [19] Verge Archives. Electric plane motors could save fuel and reduce delays[EB/OL]. (2013-06-22). https://www.theverge.com/2013/6/22/4454560/honeywell-safran-electric-green-taxiing-system.
    [20] International Air Transport Association. IATA ground operations manual[EB/OL]. https://www.iata.org/en/publications/manuals/iata-ground-operations-manual/.
    [21] Openairlines. Best practice: Engine-out taxi-in[EB/OL]. https://info.openairlines.com/engine-out-taxi-in-whitepaper.
    [22] Aviation Services. Aircraft taxiing: Techniques and procedures[EB/OL]. (2023-06-04). https://an.aero/aircraft-taxiing-techniques-and-procedures/.
    [23] International Federation of Air Line Pilots' Associations. Engine-out taxi[EB/OL]. (2016-07-06). https://www.ifalpa.org/media/2093/16pos03-engine-out-taxi.pdf.
    [24] Federal Aviation Administration. Advisory circular[EB/OL]. (2024-03-25). https://www.faa.gov/regulations_policies/advisory_circulars/.
    [25] SP'S Airbuz. Revolutionising taxiing[EB/OL]. (2024-09-27). https://www.spsairbuz.com/story/?id=408&h=Revolutionising-Taxiing.
    [26] Aircraft IT Operations. Case study: Lufthansa fuel saving[EB/OL]. (2016-10-01). https://www.aircraftit.com/articles/lufthansa-fuel-saving/.
    [27] AEON Project. Engine-off taxiing operations[EB/OL]. https://www.aeon-project.eu/engine-off-taxiing-operations/.
    [28] Schiphol. Sustainable taxiing uses half the fuel of standard taxi process[EB/OL]. (2021-03-30). https://news.schiphol.com/sustainable-taxiing-uses-half-the-fuel-of-standard-taxi-process/.
    [29] Schiphol. Sustainable taxiing: TaxiBot trial[EB/OL]. (2021-04-22). https://www.schiphol.nl/en/innovation/blog/sustainable-taxiing-taxibot-trial/.
    [30] Airport Technology. Frankfurt airport deploys fuel-saving taxibot for taxiing aircraft[EB/OL]. (2015-02-19). https://www.airport-technology.com/news/newsfrankfurt-airport-deploys-fuel-saving-taxibot-for-taxiing-aircraft-4517031/.
    [31] The New Indian Express. Delhi's IGI Airport first in world to register 1000 taxibot movements[EB/OL]. (2021-05-07). https://www.newindianexpress.com/cities/delhi/2021/May/07/delhis-igi-airport-first-in-world-to-register-1000-taxibot-movements-2299515.html.
    [32] Airport Indutry Review. Driving sustainability with Amsterdam Schiphol Airport's taxibot[EB/OL]. https://airport.nridigital.com/air_aug20/sustainable_airport_taxiing.
    [33] Business Isle of Man. WheelTug: Bringing sustainability to ground operations[EB/OL]. (2023-09-15). https://www.businessisleofman.com/news/wheeltug-bringing-sustainability-to-ground-operations/.
    [34] Airside International. WheelTug demonstration shows off wide range of benefits[EB/OL]. (2020-11-17). https://airsideint.com/issue-article/wheeltug-demonstration-shows-off-wide-range-of-benefits/.
    [35] Simple Flying. How wheelTug will revolutionize airport pushbacks [EB/OL]. (2020-09-10). https://simpleflying.com/how-wheeltug-will-revolutionize-airport-pushbacks/.
    [36] Aviation Pros. WheelTug announces albastar as launch customer [EB/OL]. (2022-07-29). https://www.aviationpros.com/engines-components/aircraft-airframe-accessories/wheels-brakes/press-release/21275726/wheeltug-plc-wheeltug-announces-albastar-as-launch-customer.
    [37] International Civil Aviation Organization. Guidance on airport air quality[EB/OL]. https://www.icao.int/environmental-protection/Pages/LAQ_GuidanceMaterial.aspx.
    [38] KHAMMASH L, MANTECCHINI L, REIS V. Micro-simulation of airport taxiing procedures to improve operation sustainability: Application of semi-robotic towing tractor[C]//IEEE. 2017 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS). New York: IEEE, 2017: 616-621.
    [39] STOCKFORD J A, LAWSON C, LIU Z. Benefit and performance impact analysis of using hydrogen fuel cell powered e-taxi system on A320 class airliner[J]. The Aeronautical Journal, 2019, 123(1261): 378-397. doi: 10.1017/aer.2018.156
    [40] 杨芮. 面向节能减排的机场地面滑行分析与控制策略研究[D]. 天津: 中国民航大学, 2019.

    YANG Rui. Analysis and control strategy of airport ground taxiing for energy saving and emission reduction[D]. Tianjin: Civil Aviation University of China, 2019.
    [41] DUINKERKEN M B, SELDERBEEK T, LODEWIJKS G. Reducing emissions of taxiing at airports[C]//EUROSIS. 27th Annual European Simulation and Modelling Conference. Ghent: EUROSIS, 2013: 331-335.
    [42] DI MASCIO P, CORAZZA M V, ROSA N R, et al. Optimization of aircraft taxiing strategies to reduce the impacts of landing and take-off cycle at airports[J]. Sustainability, 2022, 14(15): 9692. doi: 10.3390/su14159692
    [43] GUO R, ZHANG Y, WANG Q. Comparison of emerging ground propulsion systems for electrified aircraft taxi operations[J]. Transportation Research Part C: Emerging Technologies, 2014, 44: 98-109. doi: 10.1016/j.trc.2014.03.006
    [44] CAO F, TANG T Q, GAO Y Q, et al. Calculation and analysis of new taxiing methods on aircraft fuel consumption and pollutant emissions[J]. Energy, 2023, 277: 127618. doi: 10.1016/j.energy.2023.127618
    [45] 李楠, 张红飞. 航空器场面滑行污染物排放计算研究[J]. 环境科学学报, 2017, 37(5): 1872-1876.

    LI Nan, ZHANG Hong-fei. Calculating aircraft pollutant emissions during taxiing at the airport[J]. Acta Scientiae Circumstantiae, 2017, 37(5): 1872-1876.
    [46] 刘思涵, 张明, 李慧盈. 考虑环境限制的飞机滑行油耗和排放评估方法[J]. 航空计算技术, 2020, 50(5): 71-75.

    LIU Si-han, ZHANG Ming, LI Hui-ying. Assessment method of fuel consumption and emissions of aircraft during taxiing on airport surface considering environmental restraints[J]. Aeronautical Computing Technique, 2020, 50(5): 71-75.
    [47] 张红飞. 航空器低排放场面滑行策略研究[D]. 天津: 中国民航大学, 2017.

    ZHANG Hong-fei. Research on the strategy of aircraft low emission taxiing on the airports[D]. Tianjin: Civil Aviation University of China, 2017.
    [48] 黄倩文. 面向航空器油耗和排放的场面滑行方式和多目标优化研究[D]. 南京: 南京航空航天大学, 2020.

    HUANG Qian-wen. Research on surface taxiing mode and multi-objective optimization for aircraft fuel consumption and emission[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020.
    [49] 万莉莉. 面向环境保护的空中交通运行优化方法研究[D]. 南京: 南京航空航天大学, 2015.

    WAN Li-li. Research on the optimization method of air traffic operation for environmental protection[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015.
    [50] 周丽杰. 舰船上牵引车-飞机系统稳定性研究[D]. 哈尔滨: 哈尔滨工程大学, 2012.

    ZHOU Li-jie. Research of stability for tractor-airplane system on ship[D]. Harbin: Harbin Engineering University, 2012.
    [51] 朱俊伟. 飞机无杆牵引车多工况牵引的动力学分析[D]. 天津: 中国民航大学, 2019.

    ZHU Jun-wei. Dynamic analysis of aircraft towbarless tow vehicles under multi-operating conditions[D]. Tianjin: Civil Aviation University of China, 2019.
    [52] 杨慧. 飞机牵引滑行运动学建模与仿真研究[D]. 天津: 中国民航大学, 2023.

    YANG Hui. Research on kinematics modeling and simulation of aircraft traction taxiing[D]. Tianjin: Civil Aviation University of China, 2023.
    [53] 杨宇. 飞机牵引系统的轨迹规划控制研究[D]. 秦皇岛: 燕山大学, 2024.

    YANG Yu. Research on trajectory planning control of aircraft traction system[D]. Qinhuangdao: Yanshan University, 2024.
    [54] 孙艳坤, 杨慧, 张威, 等. 飞机牵引滑行入港安全运动路径生成及其轨迹跟踪控制方法[J]. 交通信息与安全, 2022, 40(5): 91-101.

    SUN Yan-kun, YANG Hui, ZHANG Wei, et al. A method for safe moving paths and tracking & control of the trajectory of towed taxiing-in aircrafts[J]. Journal of Transport Information and Safety, 2022, 40(5): 91-101.
    [55] 孙艳坤, 张威, 杨雄伟, 等. 飞机牵引滑行技术综述[J]. 交通运输工程学报, 2023, 23(3): 23-43. doi: 10.19818/j.cnki.1671-1637.2023.03.002

    SUN Yan-kun, ZHANG Wei, YANG Xiong-wei, et al. Review on aircraft towing taxi technologies[J]. Journal of Traffic and Transportation Engineering, 2023, 23(3): 23-43. doi: 10.19818/j.cnki.1671-1637.2023.03.002
    [56] 祝恒佳, 吕晓, 张柏枝, 等. 考虑柔性车架的无杆飞机牵引系统平顺性研究[J]. 机械科学与技术, 2022, 41(9): 1458-1467.

    ZHU Heng-jia, LYU Xiao, ZHANG Bai-zhi, et al. Study on ride comfort of towbarless aircraft taxiing system considering vehicle frame flexibility[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(9): 1458-1467.
    [57] 鲁鑫, 孙宇宁, 唐杰, 等. 考虑机轮形变的车辆-飞机牵引滑出系统运动学特性分析[J]. 北京航空航天大学学报, 2025, 51(2): 478-486.

    LU Xin, SUN Yu-ning, TANG Jie, et al. Kinematic characteristics analysis of vehicle-aircraft towing taxi system considering wheel deformation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2025, 51(2): 478-486.
    [58] 祝恒佳, 齐凯, 王立文, 等. 湿滑道面飞机牵引滑行系统纵向动力学建模与制动性能[J]. 航空学报, 2024, 45(16): 129-139.

    ZHU Heng-jia, QI Kai, WANG Li-wen, et al. Longitudinal dynamics modeling and braking performance of towbarless aircraft taxiing system on wet roads[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(16): 129-139.
    [59] 史守文. 飞机滑行牵引车举升随动系统设计[D]. 天津: 中国民航大学, 2012.

    SHI Shou-wen. Design of aircraft taxi-mover lifting servo system[D]. Tianjin: Civil Aviation University of China, 2012.
    [60] 徐盛. 飞机牵引车夹持举升机构构型设计及控制算法研究[D]. 哈尔滨: 哈尔滨工业大学, 2023.

    XU Sheng. Research on the configuration design and control algorithm of the clamping and lifting mechanism of aircraft tractor[D]. Harbin: Harbin Institute of Technology, 2023.
    [61] 胡博, 李晓云, 杨雄伟, 等. 新牵引滑行方式中前起落架实验与仿真研究[C]//中国航空学会. 第六届中国航空科学技术大会论文集. 北京: 中国航空学会, 2023: 161-166.

    HU Bo, LI Xiao-yun, YANG Xiong-wei, et al. Experimental and simulation study on front landing gear in the new traction sliding mode[C]//Chinese Society of Aeronautics and Astronautics. Proceedings of the 6th China Aviation Science and Technology Conference. Beijing: Chinese Society of Aeronautics and Astronautics, 2023: 161-166.
    [62] 李晓云, 柴怡君, 杨雄伟, 等. 飞机新牵引滑出方式下前起落架动响应分析[C]//中国振动工程学会. 第十四届全国振动理论及应用学术会议(NVTA2021)摘要集. 南京: 中国振动工程学会, 2021: 83.

    LI Xiao-yun, CHAI Yi-jun, YANG Xiong-wei, et al. Dynamic response analysis of the nose landing gear in aircraft new towing and taxiing mode[C]//Chinese Society for Vibration Engineering. Proceedings of the 14th National Conference on Vibration Theory and Applications (NVTA2021). Nanjing: Chinese Society for Vibration Engineering, 2021: 83.
    [63] 李跃明, 李晓云, 柴怡君, 等. 飞机新牵引滑出方式下前起落架动响应分析[J]. 航空学报, 2022, 43(6): 214-227.

    LI Yue-ming, LI Xiao-yun, CHAI Yi-jun, et al. Dynamic response analysis of the nose landing gear in aircraft new towing and taxiing mode[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 214-227.
    [64] 黄鸣阳. 大型民用飞机绿色滑行机轮电驱动系统关键技术研究[D]. 南京: 南京航空航天大学, 2018.

    HUANG Ming-yang. Research on key technologies of electric green taxi system with powered wheel drive for large civil aircraft[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018.
    [65] 李开伟. 飞机地面电动滑行系统性能研究[D]. 天津: 中国民航大学, 2018.

    LI Kai-wei. Research on the performance of an aircraft electric ground taxiing system[D]. Tianjin: Civil Aviation University of China, 2018.
    [66] 陈国慧, 赵珊, 周子舜, 等. 基于模型的飞机绿色电滑行系统设计与研究[J]. 民用飞机设计与研究, 2023(4): 88-95.

    CHEN Guo-hui, ZHAO Shan, ZHOU Zi-shun, et al. Design of aircraft electric taxiing system based on MBSE[J]. Civil Aircraft Design and Research, 2023(4): 88-95.
    [67] 张娟, 陈国慧, 张博强, 等. 基于需求的绿色滑行电驱动装置的设计与研究[C]//中国航空学会. 第十七届中国航空测控技术年会论文集. 北京: 中国航空学会, 2020: 447-449.

    ZHANG Juan, CHEN Guo-hui, ZHANG Bo-qiang, et al. Requirement-based electric drive device of green taxiing system[C]//Chinese Society of Aeronautics and Astronautics. Proceedings of the 17th China Aviation Measurement and Control Technology Annual Conference. Beijing: Chinese Society of Aeronautics and Astronautics, 2020: 447-449.
    [68] 张博强, 陆峰, 王东峰, 等. 基于ZigBee的民用飞机绿色滑行机轮速度采集系统的设计[C]//中国航空学会. 第十七届中国航空测控技术年会论文集. 北京: 中国航空学会, 2020: 61-65.

    ZHANG Bo-qiang, LU Feng, WANG Dong-feng, et al. Wheel speed acquisition system of civil aircraft electric green taxiing based on ZigBee[C]//Chinese Society of Aeronautics and Astronautics. Proceedings of the 17th China Aviation Measurement and Control Technology Annual Conference. Beijing: Chinese Society of Aeronautics and Astronautics, 2020: 61-65.
    [69] 苏静, 李胜军. 飞机绿色电滑行研究概述[C]//中国航空学会. 2017年(第三届)中国航空科学技术大会论文集(上册). 北京: 中国航空学会, 2017: 244-248.

    SU Jing, LI Sheng-jun. Overview of the research progress of green electric taxiing of aircraft[C]//Chinese Society of Aeronautics and Astronautics. Proceedings of the 3rd China Aviation Science and Technology Conference (Vol. 1). Beijing: Chinese Society of Aeronautics and Astronautics, 2017: 244-248.
    [70] 唐建军, 郭卫东, 徐东光, 等. 飞机电动滑行系统驱动特性及节能减排性能分析[J]. 北京航空航天大学学报, 2020, 46(8): 1545-1554.

    TANG Jian-jun, GUO Wei-dong, XU Dong-guang, et al. Driving characteristics and energy saving and emission reduction performance of aircraft electric taxiing system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46 (8): 1545-1554.
    [71] 孙毅刚, 雷因特, 孙爽. 飞机电动滑行系统应用研究与收益分析[J]. 航空科学技术, 2022, 33(11): 64-69.

    SUN Yi-gang, LEI Yin-te, SUN Shuang. Application research and revenue analysis on aircraft electric taxiing system[J]. Aeronautical Science & Technology, 2022, 33(11): 64-69.
    [72] 赵松泽. 电滑行系统对机场场面运行影响分析[D]. 天津: 中国民航大学, 2020.

    ZHAO Song-ze. Analysis of the influence of electric taxiing system on airport surface operation[D]. Tianjin: Civil Aviation University of China, 2020.
    [73] International Airport Review. A survey of airline pilots regarding fuel conservation procedures for taxi operations[EB/OL]. (2010-06-09). https://www.internationalairportreview.com/article/2582/a-survey-of-airline-pilots-regarding-fuel-conservation-procedures-for-taxi-operations/.
    [74] Airbus. Single engine taxi without auxiliary power unit-SETWA [EB/OL]. [2024-10-05]. https://www.aircraft.airbus.com/en/services/enhance/system-upgrades/single-engine-ta-xi-without-auxiliary-power-unit-setwa.
    [75] ANA. CO2 emissions reduction results[EB/OL]. https://www.ana.co.jp/en/us/offers-and-announcements/ana-future-promise/ana-green-jet/co2-reduction/.
    [76] Fluglärmkommission Frankfurt. Flugzeugschlepper: Taxibot-realtest seit juni 2013 in Frankfurt[EB/OL]. https://www.flk-frankfurt.de/seite/de/flk/721/-/zurueck.html.
    [77] TLD Group. Towbarless aircraft tractors[EB/OL]. https://www.tld-group.com/products/towbarless-aircraft-tractors/.
    [78] Mototok. Ground handling mro/fbo/airlines[EB/OL]. https://www.mototok.com/ground-handling-companies-mro-fbo-airlines.
    [79] Wheeltug. Home[EB/OL]. https://www.wheeltug.com/.
    [80] Simple Flying. Explained: The advantages of Vueling's 'WheelTug' electric pushback system[EB/OL]. (2023-06-24). https://simpleflying.com/vueling-wheeltug-electric-pushback-advantages-explanation/.
    [81] The National News. WheelTug: Helping aircraft taxi to a cleaner future[EB/OL]. (2024-05-17). https://www.thenationalnews.com/climate/road-to-net-zero/2024/05/17/wheeltug-helping-aircraft-taxi-to-a-cleaner-future/.
    [82] Honeywell & Safran. EGTS demonstration at Paris Air Show[EB/OL]. (2013-06-16). https://www.prnewswire.com/news-releases/honeywell-and-safran-to-demonstrate-electric-green-taxiing-system-at-paris-air-show-211723781.html.
    [83] 孙艳坤, 张威, 杨雄伟, 等. 飞机牵引滑行技术综述[J]交通运输工程学报, 2023, 23(3): 23-43. doi: 10.19818/j.cnki.1671-1637.2023.03.002

    SUN Yan-kun, ZHANG Wei, YANG Xiong-wei, et al. Review on aircraft towing taxi technologies[J]. Journal of Traffic and Transportation Engineering, 2023, 23(3): 23-43. doi: 10.19818/j.cnki.1671-1637.2023.03.002
    [84] 姚烨. 空中客车联手霍尼韦尔和赛峰共同推进A320系列飞机电动滑行解决方案[J]. 民航管理, 2013(12): 32.

    YAO Ye. Airbus teamed up with Honeywell and Safran to jointly promote the electric taxiing solution for A320 series aircraft[J]. Civil Aviation Management, 2013(12): 32.
    [85] 吴明奎. 绿色电动滑行系统在低能见度运行中的应用设想[J]. 交通企业管理, 2017, 32(5): 31-33.

    WU Ming-kui. Application of green electric taxiing system in low visibility operation[J]. Transportation Enterprise Management, 2017, 32(5): 31-33.
    [86] 彭少虎. 展望绿色滑行技术的未来[J]. 现代制造, 2013(41): 22.

    PENG Shao-hu. Looking forward to the future of green sliding technology[J]. Maschinen Markt, 2013(41): 22.
    [87] 中国南方航空. 南航2020年社会责任报告[EB/OL]. (2021-12-28). https://www.csairgroup.cn/cn/xxgk9/xxgkml46/lxshzr60/360119/5d7ae1f020a84032816982fe2ceb7fd2/index.html.

    China Southern Airlines. 2020 CSR Report[EB/OL]. (2021-12-28). https://www.csairgroup.cn/cn/xxgk9/xxgkml46/lxshzr60/360119/5d7ae1f020a84032816982fe2ceb7fd2/index.html.
    [88] 中国国际航空公司. 单发滑行统计系统项目中选结果公告[EB/OL]. (2022-07-05). https://pur.airchina.com.cn/001/001004/20220705/93708b74-87e5-4e3b-820c-5f533105b424.html.

    Air China. Announcement of the selected bidder for the single-engine taxiing statistical system project[EB/OL]. (2022-07-05). https://pur.airchina.com.cn/001/001004/20220705/93708b74-87e5-4e3b-820c-5f533105b424.html.
    [89] 威海广泰空港设备股份有限公司. 无拖把飞机牵引车[EB/OL]. http://www.guangtai.com.cn/product/show-574.html.

    Weihai Guangtai Airport Equipment Co., Ltd. Towbarless aircraft tractor[EB/OL]. http://www.guangtai.com.cn/product/show-574.html.
    [90] SOLTANI M, AHMADI S, AKGUNDUZ A, et al. An eco-friendly aircraft taxiing approach with collision and conflict avoidance[J]. Transportation Research Part C: Emerging Technologies, 2020, 121: 102872. doi: 10.1016/j.trc.2020.102872
    [91] RE F. Viability and state of the art of environmentally friendly aircraft taxiing systems[C]//IEEE. 2012 Electrical Systems for Aircraft, Railway and Ship Propulsion. New York: IEEE, 2012: 1-6.
    [92] ROLING P C, SILLEKENS P, CURRAN R, et al. The effects of electric taxi systems on airport surface congestion[C]//AIAA. 15th AIAA Aviation Technology, Integration, and Operations Conference. Washington DC: AIAA, 2015, https://doi.org/10.2514/6.2015-2592.
    [93] 侯乐毅, 朱刚. A380飞机绿色电滑行系统的功率需求分析[C]//中国航空学会. 飞机机电系统理论与实践——第二届民用飞机机电系统国际论坛论文集. 北京: 中国航空学会, 2015: 100-102.

    HOU Le-yi, ZHU Gang. Power demand analysis of the green taxiing system for A380 aircraft[C]//Chinese Society of Aeronautics and Astronautics. Theory and Practice of Aircraft Electromechanical Systems — Proceedings of the 2nd Civil Aircraft Mechatronics Systems International Forum. Beijing: Chinese Society of Aeronautics and Astronautics, 2015: 100-102.
    [94] DAIDZIC N E. Determination of taxiing resistances for transport category airplane tractive propulsion[J]. Advances in Aircraft and Spacecraft Science, 2017, 4(6): 651-677.
    [95] 秦嘉浩, 申杰, 吴昊, 等. 牵引滑行模式下的飞机牵引车关键参数优化[C]//中国航空学会. 第六届中国航空科学技术大会论文集. 北京: 中国航空学会, 2023: 1460-1469.

    QIN Jia-hao, SHEN Jie, WU Hao, et al. Key parameter optimization of aircraft towing tractor under traction taxiing mode[C]//Chinese Society of Aeronautics and Astronautics. Proceedings of the 6th Chinese Aeronautics Science and Technology Conference. Beijing: Chinese Society of Aeronautics and Astronautics, 2023: 1460-1469.
    [96] 孙艳坤, 陈银, 张威, 等. 飞机牵引滑行工况下前起落架疲劳寿命仿真分析[J]. 兵器装备工程学报, 2024, 45(6): 246-252.

    SUN Yan-kun, CHEN Yin, ZHANG Wei, et al. Simulation analysis of nose landing gear fatigue life under aircraft towing taxiing condition[J]. Journal of Ordnance Equipment Engineering, 2024, 45(6): 246-252.
    [97] 孙艳坤, 睢乐, 张威, 等. 飞机高速牵引滑行制动模式分析[J]. 机械设计, 2024, 41(3): 106-111.

    SUN Yan-kun, SUI Le, ZHANG Wei, et al. Analysis on aircraft high-speed towing-taxiing braking mode[J]. Journal of Mechanical Design, 2024, 41(3): 106-111.
    [98] 睢乐. 飞机高速牵引滑行纵向动力学及其制动模式研究[D]. 天津: 中国民航大学, 2023.

    SUI Le. Research on the longitudinal dynamics and braking mode of aircraft high-speed towing taxiing[D]. Tianjin: Civil Aviation University of China, 2023.
    [99] BERNATZKY T, KEMMERZELL M, KLINGAUF U, et al. Development and evaluation of a speed guidance interface for trajectory-based dispatch towing[C]//IEEE. 2017 IEEE/AIAA 36th Digital Avionics Systems Conference (DASC). New York: IEEE, 2017: 1-8.
    [100] HUANG M Y. Optimization of powered wheels for commercial aircraft and design of test scheme[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2023, 237(7): 1751-1764. doi: 10.1177/09544070221093182
    [101] KEÇECI M, COLPAN C O, KARAKOÇ T H. Reducing the fuel consumption and emissions with the use of an external fuel cell hybrid power unit for electric taxiing at airports[J]. International Journal of Hydrogen Energy, 2022, 47(95): 40502-40512. doi: 10.1016/j.ijhydene.2022.04.279
    [102] SUN S, LIAO Y, DING S, et al. Analysis of the application and benefits of aircraft electric wheel systems during taxi and take-off[J]. International Transactions on Electrical Energy Systems, 2023, 2023: 3118713.
    [103] Airbus. Taxibots spool up as project HERON winds down[EB/OL]. (2025-07-03). https://www.airbus.com/en/newsroom/stories/2025-07-taxibots-spool-up-as-project-heron-winds-down.
    [104] Avionics International. Electric taxiing systems: Past, present and the possible future[EB/OL]. (2019-05-01). https://interactive.aviationtoday.com/avionicsmagazine/may-2019/electric-taxiing-systems-past-present-and-the-possible-future/.
    [105] 中国民用航空局. 《"十四五"民用航空发展规划》开启多领域民航强国建设新征程[EB/OL]. (2022-01-07). https://www.caac.gov.cn/XXGK/XXGK/ZCJD/202201/t20220107_210800.html.

    Civil Aviation Administration of China. The 14th Five-Year Plan for civil aviation development[EB/OL]. (2022-01-07). https://www.caac.gov.cn/XXGK/XXGK/ZCJD/202201/t20220107_210800.html.
    [106] 中国民用航空局. 关于深入推进民航绿色发展的实施意见[EB/OL]. (2018-11-16). https://www.caac.gov.cn/XXGK/XXGK/ZFGW/201811/t20181116_192928.html.

    Civil Aviation Administration of China. Opinions on deepening the green development of civil aviation[EB/OL]. (2018-11-16). https://www.caac.gov.cn/XXGK/XXGK/ZFGW/201811/t20181116_192928.html.
    [107] 中国民用航空局. 民航局关于印发《"十四五" 民航绿色发展专项规划》的通知[EB/OL]. (2021-12-21). https://www.caac.gov.cn/XXGK/XXGK/FZGH/202201/t20220127_211345.html.

    Civil Aviation Administration of China. Notice on issuing the 14th Five-Year Plan for green development of civil aviation [EB/OL]. (2021-12-21). https://www.caac.gov.cn/XXGK/XXGK/FZGH/202201/t20220127_211345.html.
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  21
  • HTML全文浏览量:  7
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-22
  • 录用日期:  2025-08-25
  • 修回日期:  2025-07-08
  • 刊出日期:  2026-01-28

目录

    /

    返回文章
    返回