留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

公轨合用钢桁架桥梁抗火研究进展

张岗 丁宇航 熊鑫 赵晓翠 陆泽磊 王世超 侯旭

张岗, 丁宇航, 熊鑫, 赵晓翠, 陆泽磊, 王世超, 侯旭. 公轨合用钢桁架桥梁抗火研究进展[J]. 交通运输工程学报, 2026, 26(1): 31-45. doi: 10.19818/j.cnki.1671-1637.2026.01.002
引用本文: 张岗, 丁宇航, 熊鑫, 赵晓翠, 陆泽磊, 王世超, 侯旭. 公轨合用钢桁架桥梁抗火研究进展[J]. 交通运输工程学报, 2026, 26(1): 31-45. doi: 10.19818/j.cnki.1671-1637.2026.01.002
ZHANG Gang, DING Yu-hang, XIONG Xin, ZHAO Xiao-cui, LU Ze-lei, WANG Shi-chao, HOU Xu. Research review on fire resistance of highway and railway steel truss bridge[J]. Journal of Traffic and Transportation Engineering, 2026, 26(1): 31-45. doi: 10.19818/j.cnki.1671-1637.2026.01.002
Citation: ZHANG Gang, DING Yu-hang, XIONG Xin, ZHAO Xiao-cui, LU Ze-lei, WANG Shi-chao, HOU Xu. Research review on fire resistance of highway and railway steel truss bridge[J]. Journal of Traffic and Transportation Engineering, 2026, 26(1): 31-45. doi: 10.19818/j.cnki.1671-1637.2026.01.002

公轨合用钢桁架桥梁抗火研究进展

doi: 10.19818/j.cnki.1671-1637.2026.01.002
基金项目: 

国家自然科学基金项目 52378476

陕西省杰出青年科学基金项目 2022JC-23

陕西省科技创新团队计划 2023-CX-TD-38

长安大学中央高校基本科研业务费专项资金项目 300102214903

长安大学中央高校基本科研业务费专项资金项目 300102215711

详细信息
    作者简介:

    张岗(1980-),男,甘肃庆阳人,教授,工学博士,E-mail: zhangg_2004@126.com

  • 中图分类号: U448.13

Research review on fire resistance of highway and railway steel truss bridge

Funds: 

National Natural Science Foundation of China 52378476

Natural Science Basic Research Project of Shaanxi Province 2022JC-23

Innovation Capability Support Program of Shaanxi Province 2023-CX-TD-38

Fundamental Research Funds for the Central Universities, CHD 300102214903

Fundamental Research Funds for the Central Universities, CHD 300102215711

More Information
Article Text (Baidu Translation)
  • 摘要: 为提升公轨合用钢桁架桥梁(亦称低碳桥梁)抵抗火灾、结构与公轨车辆荷载联合作用的性能指标,延长公轨合用钢桁架桥梁的全寿命服役周期,通过调研现有文献、收集桥梁火灾资料、统计桥梁火灾数据,研究了桥梁火灾事故发展态势,剖析了钢桁架桥梁火灾事故特征,总结了国内外钢桁架桥梁火灾事故发生的各类原因;分析了公轨合用钢桁架桥梁的差异化火灾场景,归纳总结了公轨合用钢桁架桥梁的空间桁杆表面温度和截面升温特点;对比分析了火灾环境桥梁的热-力耦合非线性分析方法,阐明了公轨合用钢桁架桥梁的火灾破坏模式,以及抗火设计方法所需考虑的事项。研究结果表明:桥梁火灾呈逐年上升趋势,且钢桁架结构桥梁遭遇严重火灾时易发生快速连续垮塌事故;公轨合用钢桁架桥梁火灾场景、荷载布置、桁杆升温、破坏模式受其结构几何特征的影响显著;下层半封闭空间桁架结构呈现串并联及桁杆之间的多点热辐射路径,桁杆截面升温又具有薄壁多室空腔结构辐射的传热特征;桁杆的连接关系、构件的屈曲失效路径、结构的时变约束条件是抗火分析与设计中的难点;火灾环境公轨合用钢桁架桥梁在场景重构、快速评价、韧性提升和消防救援方面存在的关键问题,需要深入研究,以期对公轨合用钢桁架桥梁抗火研究与设计提供新的分析视角和指导依据。

     

  • 图  1  钢桁架结构桥梁火灾

    Figure  1.  Steel truss structural bridge fire

    图  2  公轨合用钢桁架桥梁火灾场景

    Figure  2.  Fire scenarios of highway and railway steel truss bridges

    图  3  试验火灾条件下钢桁架结构桥梁破坏模式[60, 68]

    Figure  3.  Failure modes of steel truss structural bridge under test fire condition[60, 68]

    表  1  部分钢桁架桥梁火灾事故统计

    Table  1.   Statistics of fire accidents in steel truss bridges

    序号 用途 发生地 桥名 火灾时间 火灾起因 火损程度
    1 铁路桥 印度尼西亚 雅加达钢桁架桥梁 2023年7月 客运列车与货车相撞 桁杆烧损,公路与铁路交通均中断
    2 人行桥 中国 某钢桁架桥梁 2022年6月 桥底电缆起火 弦杆烧损,腹杆烧黑
    3 公路桥 意大利 台伯河工业桥 2021年10月 桥下燃油管道燃烧 主跨钢桁架坍塌,陆路交通中断
    4 铁路桥 美国 亚利桑那州坦佩镇湖铁路大桥 2020年7月 化学物品货运列车碰撞起火 部分桥跨钢桁架倾覆式垮塌
    5 人行桥 美国 恩诺拉小径桥 2018年4月 人为纵火 桁杆烧损发黑
    6 公路桥 美国 埃德·科赫·昆斯伯勒大桥 2013年8月 载货牵引拖车在下层桥面起火 上层桥梁小纵梁烧损变形,部分交通中断
    7 铁路桥 美国 科罗拉多河铁路大桥 2013年5月 油罐列车相撞起火 多米诺骨牌效应式垮塌
    8 公路桥 墨西哥 墨西哥Mezcala大桥 2007年3月 2辆校车和1辆卡车在中跨发生事故起火 多根拉索护套烧损,1根斜拉索断裂
    9 公路桥 喀麦隆 蒙戈大桥 2004年7月 油罐车撞击大桥铁轨,左侧倾覆,起火并爆炸 整跨钢桁架桥梁坍塌
    下载: 导出CSV

    表  2  公轨合用双层钢桁架桥梁差异化火灾场景

    Table  2.   Distinct fire scenarios of highway and railway steel truss bridge

    火灾场景 双层钢桁架桥 普通钢桥
    结构类型 正交异性钢桥面板与桁架的组合结构,断面宽,层间净空高。通常用于较大跨径斜拉桥、悬索桥、矮塔斜拉桥等 钢箱梁、钢板梁、钢混组合梁、普通钢桁梁
    主要结构火灾脆弱性与安全隐患 桁杆受损、断裂,导致连续垮塌[8];火灾后列车运行存在安全隐患 构件屈曲、失效,主梁大变形,结构发生垮塌
    公轨合用桥梁的差异化风险场景 火焰特征受桥下净空、腹杆布置与环境风速的耦合影响;多节列车起火时受火长度长;荷载规律性强,动载效应显著,需开展布载的专项研究;列车脱轨引发撞击和火灾事故
    下载: 导出CSV

    表  3  桥梁火灾场景及参数

    Table  3.   Fire scenarios and parameters of bridges

    火灾场景 火源诱因 燃烧特征 影响的桥梁构件 火灾行为
    车辆火灾 燃油及危化品泄露起火;
    锂电池热失控或机械电气故障[36-37]
    热释放速率为3~300 MW[6, 20];电车火灾热释放速率为6.51~7.25 MW[37] 结构主要承载构件(主梁、主塔根部、桁杆、桥面系);
    高度较低的斜拉索、缆索、吊杆;预应力钢束
    事故频次高;油罐车火灾计算温度峰值达1 400 ℃[6, 20],电池模组火灾温度可达1 500 ℃[38]
    电缆火灾 索面敷设照明设施短路;
    轨道交通电力设施故障;
    以有机高聚物材料为主要燃料
    单位面积热释放速率为100~300 KW[39-40];火灾水平蔓延速率为0.3~0.9 mm·s-1[39] 系杆结构、拉索 火焰易在索结构护套表面燃烧并沿索长度方向扩散;索结构易在高温高应力状态下断裂
    轨道交通火灾 运输易燃易爆品的特殊货运列车脱轨;电气设备故障短路引发火灾;人为因素 高速列车单节车厢热释放速率为15~70 MW[28, 41]
    重载单节罐车热释放速率计算值约为95 MW[20]
    公轨合用双层桥梁主要承载构件(主桁及正交异性钢桥面板);轨道结构 高速列车燃烧温度为800 ℃~1 000 ℃[28]
    受火后影响范围广;车厢密闭空间加速火焰与有毒烟雾扩散
    下载: 导出CSV

    表  4  双层钢桁架桥梁抗火设计与防护方法

    Table  4.   Fire resistance design and protection method of double-layer steel truss bridges

    时间 参考文献 结构类型 火灾场景 影响参数 设计、计算与防护方法
    2024年11月 文献[34] 双层钢桁架悬索桥 火源位置为上下层桥面应急车道;
    火源类型为车辆火灾(3~200 MW);
    火源模型为线性增长模型
    风速为0~8 m·s-1 建议桁架腹杆与上层桥面底部设防火保护,并限制下层桥面的油罐车通行
    2023年6月 文献[93] 公轨两用双层钢桁架悬索桥 火源位置为上下层桥面应急车道、桥面中央;
    火源类型为油罐车火灾(200 MW);
    火源模型为平方增长模型;
    活载类型为车道荷载+地铁As型车
    火灾场景;
    不同构件耐火涂层厚度设置为1~5 mm
    全桥吊索与主缆的防护范围;建议防护厚度不低于6 mm;吊索设防高度13 m;
    主缆设防长度30 m
    2023年5月 文献[35] 双层钢桁架悬索桥 火源位置为下层桥面应急车道;
    火源类型为油罐车火灾;
    火源模型为平方增长模型
    风速为0.4~4.0 m·s-1
    上层桥面横梁间距为3~4 m
    密横梁火灾温度场智能预测模型
    2023年5月 文献[94] 双层钢桁架悬索桥 火源位置为上下层桥面;
    火源类型为车辆火灾(50~300 MW);
    火源模型为平方增长模型
    风速为2~5 m·s-1
    主桁尺寸(主桁宽度×主桁高度)为45 m×13.5 m、33 m×10 m、33 m×13.5 m
    水平风作用下空间温度场预测模型
    2023年5月 文献[95] 双层钢桁架悬索桥 火源位置为上下层桥面应急车道;
    火源类型为油罐车火灾(100 MW);
    火源模型为线性增长模型
    风速为1.34~3.87 m·s-1
    层间净高为3~15 m
    无量纲火源功率、桁架构件无量纲最高温升预测模型
    2016年6月 文献[96] 双层钢桁架悬索桥 火源位置为上下层桥面;
    火源类型为油罐车火灾(200 MW);
    火源模型为线性增长模型
    不同构件耐火涂层厚度设置为1~5 mm 考虑结构耐火性能的构件防火涂料设防标准;综合考虑车辆通行及结构安全的消防应急措施
    2022年8月 文献[97] 双层钢桁架悬索桥 火源位置为下层桥面应急车道;
    火源类型为油罐车火灾(200 MW);
    火源模型为线性增长模型
    风速为2 m·s-1
    主桁高度为9.8~13.8 m
    量纲为1顶棚烟气与桁架构件温升预测模型
    2010年2月 文献[98] 双层钢桁架斜拉桥 火源位置为上下层桥面;
    火源类型为车辆火灾
    闵浦大桥全桥预测油罐车火灾重现期约为70.6年 “预防为主,结合消防”;
    实施危化品车辆通行申报、引导制;建立交通监控系统;设大桥消防站系统
    下载: 导出CSV
  • [1] 中华人民共和国交通运输部. 关于推进公路钢结构桥梁建设的指导意见[EB/OL]. (2016-07-01). https://xxgk.mot.gov.cn/2020/jigou/glj/202006/t20200623_3312470.html.

    Ministry of Transport of the People's Republic of China. Several opinions of the ministry of transport on promoting the construction of highway steel structure bridges[EB/OL]. (2016-07-01). https://xxgk.mot.gov.cn/2020/jigou/glj/202006/t20200623_3312470.html.
    [2] ZHAO X C, ZHANG G, DING Y H, et al. An approach for predicting fire response of steel truss-concrete composite bridge girders subjected to semi-open fires[J]. Engineering Structures, 2025, 335: 120390. doi: 10.1016/j.engstruct.2025.120390
    [3] 黄烈. 沿线危化品公路运输对高铁运营安全风险评价及对策研究[D]. 北京: 中国铁道科学研究院, 2024.

    HUANG Lie. Risk assessment & countermeasures of hazardous chemicals road transportation on operation safety nearby[D]. Beijing: China Academy of Railway Sciences, 2024.
    [4] 国家消防救援局. 全年接报90.8万起消防部门盘点2024全国火灾五个特点[EB/OL]. (2025-01-24). https://www.119.gov.cn/qmxfxw/mtbd/wzbd/2025/48022.shtml.

    National Fire and Rescue Administration. 908, 000 fires reported nationwide in 2024: fire department summarizes five key characteristics[EB/OL]. (2025-01-24). https://www.119.gov.cn/qmxfxw/mtbd/wzbd/2025/48022.shtml.
    [5] BAO Y W, ZHANG F, CHENG J J, et al. Simulation on heat transfer and emergency protection of tanks in a tank farm under fire scenario[J]. International Journal of Environmental Research and Public Health, 2023, 20(7): 5348. doi: 10.3390/ijerph20075348
    [6] KOSEKI H. Large scale pool fires: Results of recent experiments[J]. Fire Safety Science, 2000, 6: 115-132. doi: 10.3801/IAFSS.FSS.6-115
    [7] 姚箭, 王海洋, 王翠华, 等. 油箱明火烤燃燃爆特性实验研究[J]. 爆炸与冲击, 2017, 37(4): 779-784.

    YAO Jian, WANG Hai-yang, WANG Cui-hua, et al. Experimental study of cook-off performance of fuel tanks[J]. Explosion and Shock Waves, 2017, 37(4): 779-784.
    [8] ZHANG G, ZHAO X C, LU Z L, et al. Review and discussion on fire behavior of bridge girders[J]. Journal of Traffic and Transportation Engineering (English Edition), 2022, 9(3): 422-446. doi: 10.1016/j.jtte.2022.05.002
    [9] KODUR V K R, NASER M Z. Designing steel bridges for fire safety[J]. Journal of Constructional Steel Research, 2019, 156: 46-53. doi: 10.1016/j.jcsr.2019.01.020
    [10] 张岗, 贺拴海, 宋超杰, 等. 钢结构桥梁抗火研究综述[J]. 中国公路学报, 2021, 34(1): 1-11.

    ZHANG Gang, HE Shuan-hai, SONG Chao-jie, et al. Review on fire resistance of steel structural bridge girders[J]. China Journal of Highway and Transport, 2021, 34(1): 1-11.
    [11] 张岗, 赵晓翠, 宋超杰, 等. 桥梁火灾科学与安全保障技术综述[J]. 交通运输工程学报, 2023, 23(6): 94-113. doi: 10.19818/j.cnki.1671-1637.2023.06.004

    ZHANG Gang, ZHAO Xiao-cui, SONG Chao-jie, et al. Review on bridge fire science and safety guarantee technology[J]. Journal of Traffic and Transportation Engineering, 2023, 23(6): 94-113. doi: 10.19818/j.cnki.1671-1637.2023.06.004
    [12] 汤陈皓. 组合钢桁架桥梁耐火性能研究[D]. 西安: 长安大学, 2024.

    TANG Chen-hao. Study on fire resistance of composite steel truss bridge[D]. Xi'an: Chang'an University, 2022.
    [13] KODUR V, GIL A. Fire hazard in concrete bridges: Review, assessment and mitigation strategies[J]. Structure and Infrastructure Engineering, 2024, 20(10): 1577-1594. doi: 10.1080/15732479.2022.2152465
    [14] 宋超杰. 半开放环境下预应力混凝土薄腹梁抗火性能与设计方法[D]. 西安: 长安大学, 2022.

    SONG Chao-jie. Fire performance and design method of prestressed concrete thin-web girders under semi-open environment[D]. Xi'an: Chang'an University, 2022.
    [15] KODUR V K R, GIL A M, NASER M Z. Fire-induced collapse of an I-95 overpass in Philadelphia: Causes, collapse mechanism, and mitigation strategies[J]. Engineering Structures, 2024, 303: 117578. doi: 10.1016/j.engstruct.2024.117578
    [16] AHRENS M, EVARTS B. Fire loss in the United States during 2020[R]. Quincy: National Fire Protection Association, 2021.
    [17] FRANCHINI A, BARAKE B, GALASSO C, et al. Integrating fire safety into bridge design is essential for resilient infrastructure[J]. Nature Communications, 2024, 15(1): 6629. doi: 10.1038/s41467-024-49593-3
    [18] WAN H, ZHANG G, XIONG X. A chain approach for evaluating thermal behaviors downwind of rectangular fires[J]. International Communications in Heat and Mass Transfer, 2025, 161: 108533. doi: 10.1016/j.icheatmasstransfer.2024.108533
    [19] HOWARD J D, PAYA-ZAFORTEZA I, PERIS-SAYOL G. Parametric fire curves for Ⅰ-girder bridges submitted to under deck tanker fires[J]. Engineering Structures, 2024, 306: 117810. doi: 10.1016/j.engstruct.2024.117810
    [20] 李雪红, 杨星墀, 徐秀丽, 等. 大跨桥梁油罐车燃烧火灾模型计算方法研究[J]. 中国公路学报, 2022, 35(6): 147-157.

    LI Xue-hong, YANG Xing-chi, XU Xiu-li, et al. Research on calculation method for tank truck fire model on large-span bridge[J]. China Journal of Highway and Transport, 2022, 35(6): 147-157.
    [21] 吴明洋, 余敏, 唐智, 等. 钢筋混凝土地铁上盖平台车辆火灾模拟试验[J]. 哈尔滨工业大学学报, 2021, 53(4): 31-40.

    WU Ming-yang, YU Min, TANG Zhi, et al. Simulation experiment on reinforced concrete top-head platform of metro car depot under vehicle fire[J]. Journal of Harbin Institute of Technology, 2021, 53(4): 31-40.
    [22] 张岗, 宋超杰, 李徐阳, 等. 燃油火灾下预应力混凝土梁耐火试验[J]. 中国公路学报, 2022, 35(1): 210-221.

    ZHANG Gang, SONG Chao-jie, LI Xu-yang, et al. Experimental study on fire resistance of prestressed concrete girders under fuel fire exposure[J]. China Journal of Highway and Transport, 2022, 35(1): 210-221.
    [23] 吴海军, 袁光杰, 屈浩然, 等. 常见中小跨混凝土梁桥的恒活载效应比例关系研究[J]. 重庆交通大学学报(自然科学版), 2019, 38(8): 33-38.

    WU Hai-jun, YUAN Guang-jie, QU Hao-ran, et al. Constant live-load effect ratio of common small and medium span concrete beam bridges[J]. Journal of Chongqing Jiaotong University (Natural Science), 2019, 38(8): 33-38
    [24] DICK S, CONNOR R, KORKMAZ C, et al. Development of a fatigue load for railway bridges: Final report for rail safety IDEA project 45[R]. Washington DC: Transportation Research Board, 2022.
    [25] 赵煜, 贾梦怡, 周勇军, 等. 超大跨径公铁两用桥斜拉索疲劳荷载模型分析[J/OL]. 哈尔滨工业大学学报, 2025, https://link.cnki.net/urlid/23.1235.T.20250314.1033.002.

    ZHAO Yu, JIA Meng-yi, ZHOU Yong-jun, et al. Analysis of fatigue load models for stayed cables of ultra-long span rail-road combined bridges[J/OL]. Journal of Harbin Institute of Technology, 2025, https://link.cnki.net/urlid/23.1235.T.20250314.1033.002.
    [26] KODUR V, AZIZ E, DWAIKAT M. Evaluating fire resistance of steel girders in bridges[J]. Journal of Bridge Engineering, 2013, 18(7): 633-643. doi: 10.1061/(ASCE)BE.1943-5592.0000412
    [27] 鞠晓臣, 刘晓光, 赵欣欣, 等. 基于大涡模拟法的铁路桥梁火灾场景研究[J]. 桥梁建设, 2019, 49(6): 78-83.

    JU Xiao-chen, LIU Xiao-guang, ZHAO Xin-xin, et al. Study of fire disaster scenarios for railway bridge based on large eddy simulation method[J]. Bridge Construction, 2019, 49(6): 78-83.
    [28] 马伟斌, 王志伟, 韩自力, 等. 国内外典型列车火灾燃烧特性研究综述[J]. 铁道建筑, 2021, 61(9): 161-166.

    MA Wei-bin, WANG Zhi-wei, HAN Zi-li, et al. Summary of research on combustion characteristics of typical train fires at home and abroad[J]. Railway Engineering, 2021, 61(9): 161-166.
    [29] 李桂林. 超大跨度铁路桥梁列车加载长度研究[J]. 铁道标准设计, 2015, 59(3): 64-68.

    LI Gui-lin. Research on train loading length on super-long span railway bridge[J]. Railway Standard Design, 2015, 59(3): 64-68.
    [30] 田茂鹏. GQ70型轻油罐车罐体结构优化设计[D]. 大连: 大连交通大学, 2020.

    TIAN Mao-peng. Optimization design of tank structure of GQ70 light oil tanker[D]. Dalian: Dalian Jiaotong University, 2020.
    [31] LEITE R M, CENTENO F R. Effect of tank diameter on thermal behavior of gasoline and diesel storage tanks fires[J]. Journal of Hazardous Materials, 2018, 342: 544-552. doi: 10.1016/j.jhazmat.2017.08.052
    [32] SONG X F, WANG Z, GE S K, et al. Study on flame height and temperature distribution of double-deck bridge fire based on large-scale fire experiments[J]. Thermal Science and Engineering Progress, 2024, 47: 102319. doi: 10.1016/j.tsep.2023.102319
    [33] SONG X F, JIA X, SHI L, et al. Experimental study on temperature distribution of key structural components of double-deck bridges during fire affected by wind and deck height[J]. International Communications in Heat and Mass Transfer, 2024, 159: 108266. doi: 10.1016/j.icheatmasstransfer.2024.108266
    [34] SHI B B, JIA K, GE S K, et al. Numerical simulation study on temperature characteristics of double-deck suspension bridge in vehicle fires[J]. Case Studies in Thermal Engineering, 2025, 65: 105626. doi: 10.1016/j.csite.2024.105626
    [35] 王维. 双层悬索桥密横梁火灾温度分布规律及智能预测研究[D]. 徐州: 中国矿业大学, 2023.

    WANG Wei. Research on fire temperature distribution and intelligent prediction of dense cross beam of double deck suspension bridge[D]. Xuzhou: China University of Mining and Technology, 2023.
    [36] WANG G Q, PING P, ZHANG Y, et al. Modeling thermal runaway propagation of lithium-ion batteries under impacts of ceiling jet fire[J]. Process Safety and Environmental Protection, 2023, 175: 524-540. doi: 10.1016/j.psep.2023.05.047
    [37] KANG S, KWON M, YOON CHOI J, et al. Full-scale fire testing of battery electric vehicles[J]. Applied Energy, 2023, 332: 120497. doi: 10.1016/j.apenergy.2022.120497
    [38] SHEN R Q, QUAN Y F, MCINTOSH J D, et al. Fire safety of battery electric vehicles: Hazard identification, detection, and mitigation[J]. SAE International Journal of Electrified Vehicles, 2024, 13(3): 279-294. doi: 10.4271/14-13-03-0024
    [39] MCGRATTAN K B, LOCK A J, MARSH N D, et al. Cable heat release, ignition, and spread in tray installations during fire (CHRISTIFIRE) phase 1: Horizontal trays[R]. Gaithersburg: National Institute of Standards and Technology, 2012.
    [40] MCGRATTAN K B, BAREHAM S. Cable heat release, ignition, and spread in tray installations during fire (CHRISTIFIRE) phase 2: Vertical shafts and corridors[R]. Gaithersburg: National Institute of Standards and Technology, 2013.
    [41] 初智杰. 中低速磁浮铁路火灾事故仿真及对轨道及其下桥梁的影响研究[D]. 北京: 北京交通大学, 2019.

    CHU Zhi-jie. Simulation research on fire accidents of medium and low speed maglev railway and its impact on tracks and its lower bridges[D]. Beijing: Beijing Jiaotong University, 2019.
    [42] 李国强, 吉蔚, 楼国彪, 等. 双跨门式刚架钢结构火灾下倒塌模式[J]. 同济大学学报(自然科学版), 2022, 50(4): 518-527.

    LI Guo-qiang, JI Wei, LOU Guo-biao, et al. Collapse modes of double span steel portal frames under fire[J]. Journal of Tongji University (Natural Science), 2022, 50(4): 518-527.
    [43] ALOS-MOYA J, PAYA-ZAFORTEZA I, HOSPITALER A, et al. Valencia bridge fire tests: Experimental study of a composite bridge under fire[J]. Journal of Constructional Steel Research, 2017, 138: 538-554. doi: 10.1016/j.jcsr.2017.08.008
    [44] 张岗, 宋超杰, 李徐阳, 等. 碳氢火灾下钢-混组合梁破坏试验研究[J]. 中国公路学报, 2022, 35(6): 135-146.

    ZHANG Gang, SONG Chao-jie, LI Xu-yang, et al. Experimental study on failure of steel-concrete composite bridge girders under hydrocarbon fire exposure conditions[J]. China Journal of Highway and Transport, 2022, 35(6): 135-146.
    [45] WANG S C, ZHANG G, LI J, et al. Temperature response of double-layer steel truss bridge girders[J]. Buildings, 2023, 13(11): 2889. doi: 10.3390/buildings13112889
    [46] 杜咏, 黄雷, 李国强, 等. 火灾高温下热铸锚抗拔性能研究[J]. 建筑结构学报, 2023, 44(10): 222-233.

    DU Yong, HUANG Lei, LI Guo-qiang, et al. Study on bond behaviour of hot-cast anchors under fire at elevated temperature[J]. Journal of Building Structures, 2023, 44(10): 222-233.
    [47] DU Y, SUN Y K, JIANG J, et al. Effect of cavity radiation on transient temperature distribution in steel cables under ISO834 fire[J]. Fire Safety Journal, 2019, 104: 79-89. doi: 10.1016/j.firesaf.2019.01.002
    [48] 朱美春, 孟凡钦, 张海良, 等. 预应力拉索锚头抗火性能试验[J]. 中国公路学报, 2020, 33(1): 111-119.

    ZHU Mei-chun, MENG Fan-qin, ZHANG Hai-liang, et al. Fire tests on prestressed cable sockets[J]. China Journal of Highway and Transport, 2020, 33(1): 111-119.
    [49] 王紫珮, 楼国彪, 饶雯婷, 等. 圆钢管混凝土柱火灾升温试验及钢管温度计算方法[J]. 建筑钢结构进展, 2018, 20(6): 46-56.

    WANG Zi-pei, LOU Guo-biao, RAO Wen-ting, et al. Fire test of circular concrete-filled steel tubular columns and thermal analysis of steel tube[J]. Progress in Steel Building Structures, 2018, 20(6): 46-56.
    [50] KOTSOVINOS P, ATALIOTI A, MCSWINEY N, et al. Analysis of the thermomechanical response of structural cables subject to fire[J]. Fire Technology, 2020, 56(2): 515-543. doi: 10.1007/s10694-019-00889-7
    [51] 万豪, 张岗. 开放火灾下拉索截面温度效应计算方法[J]. 工程力学, 2023, 40(12): 113-123.

    WAN Hao, ZHANG Gang. Method for calculating the temperature effect of stay cable cross-section near open-air fire[J]. Engineering Mechanics, 2023, 40(12): 113-123.
    [52] PAYÁ-ZAFORTEZA I, GARLOCK M E M. A numerical investigation on the fire response of a steel girder bridge[J]. Journal of Constructional Steel Research, 2012, 75: 93-103. doi: 10.1016/j.jcsr.2012.03.012
    [53] 熊鑫, 王世超, 赵鹏, 等. 油罐车火灾下双层钢桁架结构桥梁力学行为分析[J]. 中国公路, 2023(22): 114-115.

    XIONG Xin, WANG Shi-chao, ZHAO Peng, et al. Mechanical behavior of double-layer steel truss bridge under oil-tanker fire[J]. China Highway, 2023(22): 114-115.
    [54] LI Y Z, WANG M J, LI G Q, et al. Mechanical properties of hot-rolled structural steels at elevated temperatures: A review[J]. Fire Safety Journal, 2021, 119: 103237. doi: 10.1016/j.firesaf.2020.103237
    [55] DU Y, PENG J Z, RICHARD LIEW J Y, et al. Mechanical properties of high tensile steel cables at elevated temperatures[J]. Construction and Building Materials, 2018, 182: 52-65. doi: 10.1016/j.conbuildmat.2018.06.012
    [56] ALHAMAD A, YEHIA S, LUBLÓY É, et al. Performance of different concrete types exposed to elevated temperatures: A review[J]. Materials, 2022, 15(14): 5032. doi: 10.3390/ma15145032
    [57] LIU Z, SILVA J C G, HUANG Q, et al. Coupled CFD-FEM simulation methodology for fire-exposed bridges[J]. Journal of Bridge Engineering, 2021, 26(10): 04021074. doi: 10.1061/(ASCE)BE.1943-5592.0001770
    [58] SILVA J C G, LANDESMANN A, RIBEIRO F L B. Fire-thermomechanical interface model for performance-based analysis of structures exposed to fire[J]. Fire Safety Journal, 2016, 83: 66-78. doi: 10.1016/j.firesaf.2016.04.007
    [59] ZHAO X C, ZHANG G, TANG C H, et al. Evaluating fire performance of through continuous composite steel Warren-truss bridge girders: Experimental and numerical investigation [J]. Engineering Structures, 2025, 326: 119591. doi: 10.1016/j.engstruct.2024.119591
    [60] ZHAO X C, ZHANG G, DING Y H, et al. Fire resistance of steel truss-concrete composite bridge girders: Experimental study and case analysis[J]. Engineering Structures, 2025, 345: 121510. doi: 10.1016/j.engstruct.2025.121510
    [61] GONG X, AGRAWAL A K. Numerical simulation of fire damage to a long-span truss bridge[J]. Journal of Bridge Engineering, 2015, 20(10): 04014109. doi: 10.1061/(ASCE)BE.1943-5592.0000707
    [62] 姜健, 蔡文玉, 陈伟, 等. 基于分条壳单元模拟带压型钢板组合楼板抗火性能[J]. 建筑结构学报, 2019, 40(增1): 31-40.

    JIANG Jian, CAI Wen-yu, CHEN Wei, et al. Thermal-structural analysis of composite slabs with profiled steel decking using shell elements[J]. Journal of Building Structures, 2019, 40(S1): 31-40.
    [63] 蔡新江, 蒋伟杰, 毛小勇, 等. 震后火作用下多层钢框架基于火灾荷载密度的易损性分析[J]. 防灾减灾工程学报, 2022, 42(2): 269-275.

    CAI Xin-jiang, JIANG Wei-jie, MAO Xiao-yong, et al. Vulnerability analysis of multi story steel frames under post-earthquake fire based on fire load density[J]. Journal of Disaster Prevention and Mitigation Engineering, 2022, 42(2): 269-275.
    [64] NASER M Z, KODUR V K R. Comparative fire behavior of composite girders under flexural and shear loading[J]. Thin-walled Structures, 2017, 116: 82-90. doi: 10.1016/j.tws.2017.03.003
    [65] KODUR V K R, NASER M Z. Approach for shear capacity evaluation of fire exposed steel and composite beams[J]. Journal of Constructional Steel Research, 2018, 141: 91-103. doi: 10.1016/j.jcsr.2017.11.011
    [66] SONG C J, ZHANG G, LI X Y, et al. Experimental and numerical study on failure mechanism of steel-concrete composite bridge girders under fuel fire exposure[J]. Engineering Structures, 2021, 247: 113230. doi: 10.1016/j.engstruct.2021.113230
    [67] ZHANG G, KODUR V, SONG C J, et al. A numerical model for evaluating fire performance of composite box bridge girders[J]. Journal of Constructional Steel Research, 2020, 165: 105823. doi: 10.1016/j.jcsr.2019.105823
    [68] 汤陈皓, 张岗, 李徐阳, 等. 碳氢火灾下钢桁-混凝土组合梁耐火试验研究[J]. 建筑结构学报, 2024, 45(3): 160-173.

    TANG Chen-hao, ZHANG Gang, LI Xu-yang, et al. Experimental study on fire resistance of steel truss-concrete composite bridge girder under HC fire conditions[J]. Journal of Building Structures, 2024, 45(3): 160-173.
    [69] 郑小博, 张岗, 黄来喜, 等. 钢桁-混凝土组合结构梁桥连续破坏-倒塌动态行为研究[J]. 中国公路学报, 2022, 35(11): 147-159.

    ZHENG Xiao-bo, ZHANG Gang, HUANG Lai-xi, et al. Research on the progressive failure-collapse dynamic behavior of steel truss-concrete composite bridge[J]. China Journal of Highway and Transport, 2022, 35(11): 147-159.
    [70] DING Y H, ZHANG G, ZHAO X C, et al. Shear performance of horizontally curved steel box bridge girders under hydrocarbon fire exposure conditions: Numerical investigation and design implications[J]. Thin-walled Structures, 2024, 205: 112479. doi: 10.1016/j.tws.2024.112479
    [71] ZHANG G, LI X Y, TANG C H, et al. Behavior of steel box bridge girders subjected to hydrocarbon fire and bending-torsion coupled loading[J]. Engineering Structures, 2023, 296: 116906. doi: 10.1016/j.engstruct.2023.116906
    [72] 张岗, 汤陈皓, 李徐阳, 等. 钢桁-混凝土组合结构桥梁耐火性能研究[J]. 建筑结构学报, 2023, 44(9): 214-226.

    ZHANG Gang, TANG Chen-hao, LI Xu-yang, et al. Fire resistance of steel truss-concrete composite bridge girder[J]. Journal of Building Structures, 2023, 44(9): 214-226.
    [73] NASER M Z, KODUR V K R. A probabilistic assessment for classification of bridges against fire hazard[J]. Fire Safety Journal, 2015, 76: 65-73. doi: 10.1016/j.firesaf.2015.06.001
    [74] KODUR V K, GIL A. Enhancing fire resistance of steel bridges through composite action[J]. Steel and Composite Structures: An International Journal, 2022, 43(3): 353-362.
    [75] DE SILVA D, MIANO A, DE ROSA G, et al. Analitycal fire fragility assessment for bridges considering fire scenarios variability[J]. Engineering Structures, 2025, 325: 119442. doi: 10.1016/j.engstruct.2024.119442
    [76] GALLO M, DE SILVA D, NIGRO E. Fire vulnerability assessment of bridges: A performance-based approach procedure with unconventional fire scenarios[J]. Structures, 2025, 71: 108019. doi: 10.1016/j.istruc.2024.108019
    [77] MORADI M J, MEHRPOUR G, ADELZADEH M, et al. Structural damage levels of bridges in vehicular collision fires: Predictions using an artificial neural network (ANN) model[J]. Engineering Structures, 2023, 295: 116840. doi: 10.1016/j.engstruct.2023.116840
    [78] 韩林海, 宋天诣, 谭清华. 钢-混凝土组合结构抗火设计原理研究[J]. 工程力学, 2011, 28(增2): 54-66.

    HAN Lin-hai, SONG Tian-yi, TAN Qing-hua. Fire resistance design of steel-concrete composite structures[J]. Engineering Mechanics, 2011, 28(S2): 54-66.
    [79] 赖柄霖, 温安平, 舒赣平, 等. 超高强型钢混凝土组合柱受力性能及设计方法[J]. 建筑结构学报, 2023, 44(8): 139-148.

    LAI Bing-lin, WEN An-ping, SHU Gan-ping, et al. Structural performance and design method of ultra-high strength steel reinforced concrete composite columns[J]. Journal of Building Structures, 2023, 44(8): 139-148.
    [80] PERIS-SAYOL G, PAYA-ZAFORTEZA I, ALOS-MOYA J, et al. Analysis of the influence of geometric, modeling and environmental parameters on the fire response of steel bridges subjected to realistic fire scenarios[J]. Computers & Structures, 2015, 158: 333-345.
    [81] LI X Y, ZHANG G, KODUR V, et al. Designing method for fire safety of steel box bridge girders[J]. Steel and Composite Structures: An International Journal, 2021, 38(6): 657-670.
    [82] 李徐阳, 张岗, 宋超杰, 等. 复杂环境下连续弯钢箱梁耐火性能提升方法[J]. 中国公路学报, 2022, 35(6): 192-204.

    LI Xu-yang, ZHANG Gang, SONG Chao-jie, et al. Methods for improving fire resistance of continuous curved steel box bridge girders exposed to complex environments[J]. China Journal of Highway and Transport, 2022, 35(6): 192-204.
    [83] 宋超杰, 张岗, 贺拴海, 等. 钢-混凝土组合连续弯箱梁抗火性能与设计方法[J]. 交通运输工程学报, 2021, 21(4): 139-149. doi: 10.19818/j.cnki.1671-1637.2021.04.010

    SONG Chao-jie, ZHANG Gang, HE Shuan-hai, et al. Fire resistance performance and design method of steel-concrete composite continuous curved box girders[J]. Journal of Traffic and Transportation Engineering, 2021, 21(4): 139-149. doi: 10.19818/j.cnki.1671-1637.2021.04.010
    [84] SONG C J, ZHANG G, LU Z L, et al. Fire resistance tests on polypropylene-fiber-reinforced prestressed concrete box bridge girders[J]. Engineering Structures, 2023, 282: 115800. doi: 10.1016/j.engstruct.2023.115800
    [85] 张岗, 陆泽磊, 袁卓亚, 等. 油轮爆火环境悬索桥安全性能预测与预警方法研究[J]. 中国公路学报, 2024, 37(9): 17-33.

    ZHANG Gang, LU Ze-lei, YUAN Zhuo-ya, et al. Research on safety performance prediction and warning methods of suspension bridges exposed to oil tanker explosion environments[J]. China Journal of Highway and Transport, 2024, 37(9): 17-33.
    [86] PIAO X Y, KIM R E. Post-fire nonlinear vehicle-bridge interaction analysis considering hysteretic material behavior[J]. Advances in Structural Engineering, 2023, 26(8): 1410-1424. doi: 10.1177/13694332231161105
    [87] JIN H, YANG Y K, ZHAO X X, et al. Changes in material properties and damage mechanism of plate ballastless track under fire and high temperature[J]. Buildings, 2025, 15(12): 1987. doi: 10.3390/buildings15121987
    [88] 李师洋. 钢桥抗火隔热一体化板的设计及性能研究[D]. 南京: 东南大学, 2023.

    LI Shi-yang. Design and performance analysis of steel bridge fire-resistant and heat-insulation integrated plate[D]. Nanjing: Southeast University, 2023.
    [89] 吕晋贤, 吴昊, 方秦. 爆炸作用下高层框架结构倒塌分析与设计建议[J]. 建筑结构学报, 2023, 44(11): 114-128.

    LYU Jin-xian, WU Hao, FANG Qin. Collapse analysis and design recommendations of high-rise frame structures under blast loadings[J]. Journal of Building Structures, 2023, 44(11): 114-128.
    [90] 李明菲. 上海美的全球创新园区项目大跨斜拉和悬挑桁架结构防连续倒塌设计[J]. 建筑结构, 2025, 55(12): 83-90.

    LI Ming-fei. Design of progressive collapse resistance of large-span cable-stayed and cantilever truss structure in Shanghai Midea Innovation Campus project[J]. Building Structure, 2025, 55(12): 83-90.
    [91] JIANG J, LI G Q. Progressive collapse analysis of 3D steel frames with concrete slabs exposed to localized fire[J]. Engineering Structures, 2017, 149: 21-34. doi: 10.1016/j.engstruct.2016.07.041
    [92] 王凌波, 郭欣军, 赵鹏, 等. 基于响应面的上加劲双层钢桁梁桥多目标优化算法[J]. 交通运输工程学报, 2025, 25(2): 252-269. doi: 10.19818/j.cnki.1671-1637.2025.02.016

    WANG Ling-bo, GUO Xin-jun, ZHAO Peng, et al. Multi-objective optimization algorithm for upper stiffened double-deck steel truss girder bridge based on response surface[J]. Journal of Traffic and Transportation Engineering, 2025, 25(2): 252-269. doi: 10.19818/j.cnki.1671-1637.2025.02.016
    [93] 龙彬. 火灾下空间索面悬索桥缆索结构性能分析及抗火设计研究[D]. 重庆: 重庆交通大学, 2023.

    LONG Bin. Study on mechanical performance and fire resistance design of cable of spatial cable suspension bridge under fire[D]. Chongqing: Chongqing Jiaotong University, 2023.
    [94] 张继东. 水平风作用下双层悬索桥结构抗火性能研究[D]. 徐州: 中国矿业大学, 2023.

    ZHANG Ji-dong. Study on structure fire resistance of double-deck suspension bridge with horizontal wind[D]. Xuzhou: China University of Mining and Technology, 2023.
    [95] 施磊. 多因素影响下双层悬索桥火灾燃烧特性及温度分布规律研究[D]. 徐州: 中国矿业大学, 2023.

    SHI Lei. Fire combustion characteristics and temperature distribution of double-deck suspension bridge under the influence of multiple factors[D]. Xuzhou: China University of Mining and Technology, 2023.
    [96] 王莹. 基于热-结构耦合的双层悬索桥高温建模方法与性能研究[D]. 武汉: 武汉理工大学, 2016.

    WANG Ying. Heat modeling method and performance research for double suspension bridge based on thermal-structure coupling[D]. Wuhan: Wuhan University of Technology, 2016.
    [97] AN W G, SHI L, WANG H L, et al. Study on the effect of bridge deck spacing on characteristics of smoke temperature field in a bridge fire[J]. Fire, 2022, 5(4): 114. doi: 10.3390/fire5040114
    [98] 吴青峰, 邓青儿, 马骉, 等. 闵浦大桥双层钢结构抗火设计[J]. 上海公路, 2010(1): 22-25, 37, 15.

    WU Qing-feng, DENG Qing-er, MA Biao, et al. Fire-resistant design of double-deck steel structure of Minpu Bridge[J]. Shanghai Highways, 2010(1): 22-25, 37, 15.
  • 加载中
图(3) / 表(4)
计量
  • 文章访问数:  18
  • HTML全文浏览量:  4
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-25
  • 录用日期:  2025-08-25
  • 修回日期:  2025-07-21
  • 刊出日期:  2026-01-28

目录

    /

    返回文章
    返回