留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

LNG运输船MARK Ⅲ型液货舱围护系统结构力学性能综述

高大威 李诚 师桂杰

高大威, 李诚, 师桂杰. LNG运输船MARK Ⅲ型液货舱围护系统结构力学性能综述[J]. 交通运输工程学报, 2026, 26(1): 132-157. doi: 10.19818/j.cnki.1671-1637.2026.056
引用本文: 高大威, 李诚, 师桂杰. LNG运输船MARK Ⅲ型液货舱围护系统结构力学性能综述[J]. 交通运输工程学报, 2026, 26(1): 132-157. doi: 10.19818/j.cnki.1671-1637.2026.056
GAO Da-wei, LI Cheng, SHI Gui-jie. Review on structural mechanics performance of MARK Ⅲ cargo containment system for LNG carrier[J]. Journal of Traffic and Transportation Engineering, 2026, 26(1): 132-157. doi: 10.19818/j.cnki.1671-1637.2026.056
Citation: GAO Da-wei, LI Cheng, SHI Gui-jie. Review on structural mechanics performance of MARK Ⅲ cargo containment system for LNG carrier[J]. Journal of Traffic and Transportation Engineering, 2026, 26(1): 132-157. doi: 10.19818/j.cnki.1671-1637.2026.056

LNG运输船MARK Ⅲ型液货舱围护系统结构力学性能综述

doi: 10.19818/j.cnki.1671-1637.2026.056
基金项目: 

国家自然科学基金项目 52175239

上海市自然科学基金项目 24ZR1436100

稳定支持基金 WDZC70202030304

详细信息
    作者简介:

    高大威(1979-),女,辽宁抚顺人,教授,工学博士;E-mail:gddwww1999@163.com

    通讯作者:

    师桂杰(1984-),男,山东德州人,高级工程师,工学博士,E-mail:sgj2004@sjtu.edu.cn

  • 中图分类号: U663.9

Review on structural mechanics performance of MARK Ⅲ cargo containment system for LNG carrier

Funds: 

National Natural Science Foundation of China 52175239

Natural Science Foundation of Shanghai Municipality 24ZR1436100

Stable Support Foundation WDZC70202030304

More Information
Article Text (Baidu Translation)
  • 摘要: 为液化天然气运输船液货舱围护系统(CCS)的研究和制造提供参考,总结MARK Ⅲ型CCS在结构力学方面的研究成果,对其结构组成、材料应用、制造工艺、试验与理论方法等进行了概括。从标准试件试验、静载力学性能、交变载荷性能、冲击载荷性能等多个方面,总结了MARK Ⅲ型CCS相关研究进展,分析其中波纹板、层合板、绝热层泡沫、次屏壁等核心部分的力学性能,指出目前研究和方法上存在的不足,提出未来研究建议。研究结果表明:MARK Ⅲ型CCS在常规工况下,能应对航行中由风浪引起的静载、冲击、疲劳载荷,但在液货低温泄漏情况下的严重晃荡冲击可能导致CCS应力集中区域的脆性断裂失效;目前的落锤冲击试验方法未充分考虑实际航行海况中的动力学特性,未来需聚焦于液货冲击载荷的评估转化及落水冲击的试验方法;MARK Ⅲ型CCS属于薄膜型围护系统,无需额外支撑结构,相对于MOSS型和SPB型围护系统,具有小体积和轻质量的特性,因而具有更高的运输经济效益,未来薄膜型CCS的研发应重点关注小厚度、轻质量、一体化、高承载能力等指标;现有层合板和次屏壁的研究主要针对标准试件的力学性能,缺乏在复杂载荷下的实船应用场景,未来的相关研究应从实船结构出发,测试层合板和次屏壁的力学性能。本研究对MARK Ⅲ型CCS结构力学性能进行综述,可为未来研究和相关规范的制定提供参考。

     

  • 图  1  MARK Ⅲ型CCS结构力学性能的研究路线

    Figure  1.  Research route for the structural mechanics performance of MARK Ⅲ CCS

    图  2  MARK Ⅲ型CCS的结构[20-22]

    Figure  2.  Structure of MARK Ⅲ CCS[20-22]

    图  3  MARK Ⅲ型CCS的各层材料[23-27]

    Figure  3.  Materials for each layer of MARK Ⅲ CCS[23-27]

    图  4  波纹板的载荷条件和拉伸试验[23, 28]

    Figure  4.  Load conditions and tensile tests of the stainless-steel membrane[23, 28]

    图  5  层合板的标准试件试验及失效特征[24, 32]

    Figure  5.  Standard specimen testing and failure characteristics of polywood[24, 32]

    图  6  绝热层泡沫的标准试件试验及失效特征[20, 33]

    Figure  6.  Standard specimen testing and failure characteristics of PUF[20, 33]

    图  7  次屏壁的拉伸试验及热疲劳试验[26, 36]

    Figure  7.  Tensile test and thermal fatigue test of secondary barrier[26, 36]

    图  8  波纹板的承载性能试验[28, 39]

    Figure  8.  Load bearing performance test of the corrugated sheet[28, 39]

    图  9  绝热层泡沫的静态载荷相关研究[42-44]

    Figure  9.  Studies on static load of insulation foam[42-44]

    图  10  MARK Ⅲ型CCS整体承载能力研究[6, 48]

    Figure  10.  Research on the bearing capacity of MARK Ⅲ of CCS[6, 48]

    图  11  各向异性破坏准则分析程序[49]

    Figure  11.  Anisotropic failure criterion analysis procedure[49]

    图  12  交变载荷试验及S-N曲线[21, 51]

    Figure  12.  Alternating load test and S-N curves[21, 51]

    图  13  缩尺比例模型的晃荡试验[52]

    Figure  13.  Sloshing experiment of scaled model[52]

    图  14  液货晃荡造成的冲击[38]

    Figure  14.  Impact caused by liquid cargo sloshing[38]

    图  15  波纹板在冲击载荷下的相关研究[27, 31, 61]

    Figure  15.  Researches on the stainless steel membrane under impact load[27, 31, 61]

    图  16  绝热层泡沫在冲击载荷下的材料特征[21, 43, 63, 64]

    Figure  16.  Material characteristics of PUF under impact load[21, 43, 63, 64]

    图  17  冲击试验的失效形式[19, 66]

    Figure  17.  Failure modes of impact tests[19, 66]

    图  18  减轻晃荡载荷失效的方法

    Figure  18.  Methods to reduce the failure of sloshing loads

    图  19  MARK Ⅲ型CCS的失效形式总结[21, 24, 26, 28, 33, 39, 51]

    Figure  19.  Summary of failure modes of the Mark Ⅲ CCS[21, 24, 26, 28, 33, 39, 51]

    表  1  MARK Ⅲ型液货舱围护系统各层厚度[14]

    Table  1.   Thicknesses of MARK Ⅲ CCS layers[14]

    名称 厚度/mm
    波纹板 1.2
    顶层合板 12
    主绝热层泡沫 88
    次屏壁 0.7
    次绝热层泡沫 161
    底层合板 9
    下载: 导出CSV

    表  2  MARK Ⅲ型CCS常温及低温极限承载能力

    Table  2.   Ultimate capacity of MARK Ⅲ CCS at room temperature and low temperature

    部件 常温(25 ℃) 低温(-163 ℃、-110 ℃) 参考文献
    波纹板承载能力/MPa 抗拉: 模量195 000, 强度170 抗拉: 模量195 000, 强度700 [27]、[28]
    层合板承载能力/MPa 抗压: 模量80,强度6.11抗拉: 强度65.81抗弯: 模量5 680,强度55.90 抗压: 模量210,强度81.00抗拉: 强度67.70抗弯:模量: 9 490,强度92.70 [24]、[32]
    绝热层泡沫承载能力/MPa 抗压: 模量67,强度1.56抗拉: 模量134,强度2.52 抗压: 模量142,强度1.97 [63]、[34]
    次屏壁承载能力/MPa 抗拉: 模量6 400,强度187 抗拉: 模量10 822,强度369 [26]、[36]
    围护系统整体疲劳循环次数 法向: 不小于163 面内(-110 ℃): 不小于7 050;法向(-163 ℃): 不小于145 [6]、[21]
    下载: 导出CSV
  • [1] DEN ELZEN M, FEKETE H, HÖHNE N, et al. Greenhouse gas emissions from current and enhanced policies of China until 2030: Can emissions peak before 2030?[J]. Energy Policy, 2016, 89: 224-236. doi: 10.1016/j.enpol.2015.11.030
    [2] IEA. Energy and air pollution special report: The environmental case for natural gas[R]. Paris: International Energy Agency, 2016.
    [3] YIN Y W, LAM J S L. Bottlenecks of LNG supply chain in energy transition: A case study of China using system dynamics simulation[J]. Energy, 2022, 250: 123803. doi: 10.1016/j.energy.2022.123803
    [4] Oxford Energy. What drives international gas prices in competitive markets? Four fallacies and a hypothesis[R]. Oxford: Oxford Institute for Energy Studies, 2024.
    [5] YAN Z J, YANG G H, HE R, et al. "Ship-port-country" multi-dimensional research on the fine analysis of China's LNG trade[J]. Journal of Transport Geography, 2023, 110: 103619. doi: 10.1016/j.jtrangeo.2023.103619
    [6] HYEON S K, MIN S C, JAE M L, et al. A comparative evaluation of fatigue and fracture characteristics of structural components of liquefied natural gas carrier insulation system[J]. Journal of Pressure Vessel Technology, 2013, 135(2): 021405. doi: 10.1115/1.4007473
    [7] FERNÁNDEZ I A, GÓMEZ M R, GÓMEZ J R, et al. Review of propulsion systems on LNG carriers[J]. Renewable and Sustainable Energy Reviews, 2017, 67: 1395-1411. doi: 10.1016/j.rser.2016.09.095
    [8] YIN L, JU Y L. Review on the design and optimization of BOG re-liquefaction process in LNG ship[J]. Energy, 2022, 244: 123065. doi: 10.1016/j.energy.2021.123065
    [9] LI T T, HE X, GAO P. Analysis of offshore LNG storage and transportation technologies based on patent informatics[J]. Cleaner Engineering and Technology, 2021, 5: 100317. doi: 10.1016/j.clet.2021.100317
    [10] MURMU S B. Alternatives derived from renewable natural fibre to replace conventional polyurethane rigid foam insulation[J]. Cleaner Engineering and Technology, 2022, 8: 100513. doi: 10.1016/j.clet.2022.100513
    [11] DIAS F, GHIDAGLIA J M. Slamming: Recent progress in the evaluation of impact pressures[J]. Annual Review of Fluid Mechanics, 2018, 50: 243-273. doi: 10.1146/annurev-fluid-010816-060121
    [12] MALENICA S, DIEBOLD L, KWON S H, et al. Sloshing assessment of the LNG floating units with membrane type containment system where we are?[J]. Marine Structures, 2017, 56: 99-116. doi: 10.1016/j.marstruc.2017.07.004
    [13] LIU L S, GUO T, ZHOU Y Y, et al. Review of the design and optimization of BOG re-liquefaction process for LNG carriers[J]. Cryogenics, 2024, 142: 103924. doi: 10.1016/j.cryogenics.2024.103924
    [14] 崔连德. GTT薄膜CCS进化史[J]. 中国船检, 2022, (4): 85-88.

    CUI Lian-de. Evolution history of GTT membrane cargo containment system[J]. China Ship Survey, 2022, (4): 85-88.
    [15] 楼丹平, 杨春华. LNG船技术发展趋势[J]. 船舶, 2023, 34(4): 19-27.

    LOU Dan-ping, YANG Chun-hua. Technology development trends of LNG carrier[J]. Ship & Boat, 2023, 34(4): 19-27.
    [16] 冯明, 刘艳年. LNG液舱围护系统发展现状及趋势分析[J]. 船电技术, 2021, 41(12): 25-30.

    FENG Ming, LIU Yan-nian. Status and development trend of LNG tank containment system[J]. Marine Electric & Electronic Engineering, 2021, 41(12): 25-30.
    [17] 刘碧涛, 曹林, 王江超, 等. LNG运输船液货舱围护系统建造工艺及关键技术[J]. 船舶工程, 2023, 45(8): 127-134, 181.

    LIU Bi-tao, CAO Lin, WANG Jiang-chao, et al. Construction processing and key technology of containment system of liquid cargo tank of LNG carrier[J]. Ship Engineering, 2023, 45(8): 127-134, 181.
    [18] 陈振款, 何建萍, 李芳, 等. MARK Ⅲ型液货围护系统波纹板焊接研究现状[J]. 船舶与海洋工程, 2023, 39(5): 1-7.

    CHEN Zhen-kuan, HE Jian-ping, LI Fang, et al. Study of corrugated membranes welding for MARK Ⅲ liquid cargo containment[J]. Naval Architecture and Ocean Engineering, 2023, 39(5): 1-7.
    [19] Gaztransport Technigaz. Vessels & land storages on order[R]. Saint-Remy-les-Chevreuse: Gaztransport Technigaz, 2024.
    [20] LEE C S, LEE J M. Failure analysis of reinforced polyurethane foam-based LNG insulation structure using damage-coupled finite element analysis[J]. Composite Structures, 2014, 107: 231-245. doi: 10.1016/j.compstruct.2013.07.044
    [21] KIM M H, KIL Y P, LEE J M, et al. Cryogenic fatigue strength assessment for MARK Ⅲ insulation system of LNG carriers[J]. Journal of Offshore Mechanics and Arctic Engineering, 2011, 133(4): 041401. doi: 10.1115/1.4003389
    [22] BAE J H, HWANG B K, KIM S K, et al. Statistical estimation of extreme sloshing impact pressure and its validation based on dynamic behavior of insulation materials[J]. Functional Composites and Structures, 2020, 2(1): 015001. doi: 10.1088/2631-6331/ab628c
    [23] KIM M S, KWON S B, KIM S K, et al. Impact failure analysis of corrugated steel plate in LNG containment cargo system[J]. Journal of Constructional Steel Research, 2019, 156: 287-301. doi: 10.1016/j.jcsr.2019.02.008
    [24] CHA S J, KIM J D, KIM S K, et al. Effect of temperature on the mechanical performance of plywood used in membrane-type LNG carrier insulation systems[J]. Journal of Wood Science, 2020, 66(1): 28. doi: 10.1186/s10086-020-01875-2
    [25] YU Y H, NAM S, LEE D, et al. Cryogenic impact resistance of chopped fiber reinforced polyurethane foam[J]. Composite Structures, 2015, 132: 12-19. doi: 10.1016/j.compstruct.2015.05.021
    [26] JEONG Y J, KIM H T, KIM J H, et al. Analysis of glass fiber reinforced composites in membrane-type LNG cargo containment system for structural safety using experimentally defined mechanical properties[J]. Composite Structures, 2021, 276: 114532. doi: 10.1016/j.compstruct.2021.114532
    [27] JEON S G, KIM J H, KIM J D, et al. Impact failure characteristics of LNG carrier cargo containment system[J]. International Journal of Mechanical Sciences, 2023, 240: 107938. doi: 10.1016/j.ijmecsci.2022.107938
    [28] KIM J H, KIM S K, KIM M H, et al. Numerical model to predict deformation of corrugated austenitic stainless steel sheet under cryogenic temperatures for design of liquefied natural gas insulation system[J]. Materials & Design, 2014, 57: 26-39.
    [29] BO S, SOO Y. Fatigue life assessment of KC-1 membrane considering the effects of cryogenic temperature and plastic deformation[J]. International Journal of Precision Engineering and Manufacturing, 2020, 21(5): 905-914. doi: 10.1007/s12541-019-00273-z
    [30] SOHN J M, BAE D M, BAE S Y, et al. Nonlinear structural behaviour of membrane-type LNG carrier cargo containment systems under impact pressure loads at -163 ℃[J]. Ships and Offshore Structures, 2017, 12(5): 722-733. doi: 10.1080/17445302.2016.1218111
    [31] KIM M S, KIM J H, KIM S K, et al. Experimental investigation of structural response of corrugated steel sheet subjected to repeated impact loading: Performance of LNG cargo containment system[J]. Applied Sciences, 2019, 9(8): 1558. doi: 10.3390/app9081558
    [32] KIM J H, PARK D H, LEE C S, et al. Effects of cryogenic thermal cycle and immersion on the mechanical characteristics of phenol-resin bonded plywood[J]. Cryogenics, 2015, 72: 90-102. doi: 10.1016/j.cryogenics.2015.09.007
    [33] PARK S B, LEE C S, CHOI S W, et al. Polymeric foams for cryogenic temperature application: Temperature range for non-recovery and brittle-fracture of microstructure[J]. Composite Structures, 2016, 136: 258-269. doi: 10.1016/j.compstruct.2015.10.002
    [34] HAN D S, PARK I B, KIM M H, et al. The effects of glass fiber reinforcement on the mechanical behavior of polyurethane foam[J]. Journal of Mechanical Science and Technology, 2010, 24(1): 263-266. doi: 10.1007/s12206-009-1136-3
    [35] PARK K B, KIM H T, HER N Y, et al. Variation of mechanical characteristics of polyurethane foam: Effect of test method[J]. Materials, 2019, 12(17): 2672. doi: 10.3390/ma12172672
    [36] JEONG Y J, KIM H T, KIM J D, et al. Evaluation of mechanical properties of glass fiber-reinforced composites depending on length and structural anisotropy[J]. Results in Engineering, 2023, 17: 101000. doi: 10.1016/j.rineng.2023.101000
    [37] KIM S K, LEE C S, KIM J H, et al. Computational evaluation of resistance of fracture capacity for SUS304L of liquefied natural gas insulation system under cryogenic temperatures using ABAQUS user-defined material subroutine[J]. Materials & Design, 2013, 50: 522-532.
    [38] PARK J S, KIM J H, JEONG Y C, et al. Effect of corrugated sheet diameter on structural behavior under cryogenic temperature and hydrodynamic load[J]. Metals, 2022, 12(3): 521. doi: 10.3390/met12030521
    [39] JEONG Y J, KIM H T, KIM S K, et al. Evaluation of the pressure-resisting capability of membrane-type corrugated sheet under hydrodynamic load[J]. Thin-walled Structures, 2021, 162: 107388. doi: 10.1016/j.tws.2020.107388
    [40] CHUL KIM B, HO YOON S, GIL LEE D. Pressure resistance of the corrugated stainless steel membranes of LNG carriers[J]. Ocean Engineering, 2011, 38(4): 592-608. doi: 10.1016/j.oceaneng.2010.12.013
    [41] LEE D, KIM K H, CHOI I, et al. Pressure-resisting capability of the knot area of the primary barrier for a LNG containment system[J]. Ocean Engineering, 2015, 95: 128-133. doi: 10.1016/j.oceaneng.2014.11.021
    [42] KIM J M, KIM J H, AHN J H, et al. Synthesis of nanoparticle- enhanced polyurethane foams and evaluation of mechanical characteristics[J]. Composites Part B: Engineering, 2018, 136: 28-38. doi: 10.1016/j.compositesb.2017.10.025
    [43] OH J H, BAE J H, KIM J H, et al. Effects of Kevlar pulp on the enhancement of cryogenic mechanical properties of polyurethane foam[J]. Polymer Testing, 2019, 80: 106093. doi: 10.1016/j.polymertesting.2019.106093
    [44] KIM J D, KIM J H, LEE D-H, et al. Synthesis and investigation of cryogenic mechanical properties of chopped-glass-fiber-reinforced polyisocyanurate foam[J]. Materials, 2021, 14(2): 446. doi: 10.3390/ma14020446
    [45] CHOI I, YU Y H, LEE D G. Cryogenic sandwich-type insulation board composed of E-glass/epoxy composite and polymeric foams[J]. Composite Structures, 2013, 102: 61-71. doi: 10.1016/j.compstruct.2013.02.017
    [46] PARK K J, KIM J H, KIM S K, et al. Material characteristics of random glass-mat-reinforced thermoplastic under cryogenic thermal cycles[J]. Science and Engineering of Composite Materials, 2019, 26(1): 270-281. doi: 10.1515/secm-2019-0013
    [47] YU Y H, KIM B G, LEE D G. Cryogenic reliability of the sandwich insulation board for LNG ship[J]. Composite Structures, 2013, 95: 547-556. doi: 10.1016/j.compstruct.2012.07.007
    [48] CHUN M S, KIM M H, KIM W S, et al. Experimental investigation on the impact behavior of membrane-type LNG carrier insulation system[J]. Journal of Loss Prevention in the Process Industries, 2009, 22(6): 901-907. doi: 10.1016/j.jlp.2008.09.011
    [49] JEONG H K, YANG Y S. Strength analysis of mark Ⅲ cargo containment system using anisotropic failure criteria[J]. Journal of Advanced Research in Ocean Engineering, 2015, 1(4): 211-226. doi: 10.5574/JAROE.2015.1.4.211
    [50] HOLMES J, SOMMACAL S, DAS R, et al. Digital image and volume correlation for deformation and damage characterisation of fibre-reinforced composites: A review[J]. Composite Structures, 2023, 315: 116994. doi: 10.1016/j.compstruct.2023.116994
    [51] OH D J, LEE J M, CHUN M S, et al. Reliability evaluation of a LNGC insulation system with a metallic secondary barrier[J]. Composite Structures, 2017, 171: 43-52. doi: 10.1016/j.compstruct.2017.03.040
    [52] AHN Y, LEE J, PARK T, et al. Long-term approach for assessment of sloshing loads in LNG carrier, Part Ⅱ: Grouping method[J]. Marine Structures, 2023, 89: 103398. doi: 10.1016/j.marstruc.2023.103398
    [53] GRACZYK M, MOAN T. A probabilistic assessment of design sloshing pressure time histories in LNG tanks[J]. Ocean Engineering, 2008, 35(8/9): 834-855.
    [54] ZHAO Y C, CHEN H C. Numerical simulation of 3D sloshing flow in partially filled LNG tank using a coupled level-set and volume-of-fluid method[J]. Ocean Engineering, 2015, 104: 10-30. doi: 10.1016/j.oceaneng.2015.04.083
    [55] LUO M, WANG X, JIN X, et al. Three-dimensional sloshing in a scaled membrane LNG tank under combined roll and pitch excitations[J]. Ocean Engineering, 2020, 211: 107578. doi: 10.1016/j.oceaneng.2020.107578
    [56] JU H B, JANG B S, YIM K H. Prediction of sloshing pressure and structural response of LNG CCS[J]. Ocean Engineering, 2022, 266: 112298. doi: 10.1016/j.oceaneng.2022.112298
    [57] JU H B, JANG B S, CHOI J, et al. Structural safety assessment procedure for membrane-type LNG CCS considering hydroelasticity effect[J]. Marine Structures, 2021, 78: 102962. doi: 10.1016/j.marstruc.2021.102962
    [58] JIAO J L, ZHAO M M, JIA G Y, et al. SPH simulation of two side-by-side LNG ships' motions coupled with tank sloshing in regular waves[J]. Ocean Engineering, 2024, 297: 117022. doi: 10.1016/j.oceaneng.2024.117022
    [59] CAO Z X, XUE M A, XU G H, et al. Experimental and numerical study on effects of different excitations and liquid levels on sloshing in a large-scale LNG tank[J]. Ocean Engineering, 2024, 308: 118343. doi: 10.1016/j.oceaneng.2024.118343
    [60] AHN Y, KIM Y, KIM S Y. Database of model-scale sloshing experiment for LNG tank and application of artificial neural network for sloshing load prediction[J]. Marine Structures, 2019, 66: 66-82. doi: 10.1016/j.marstruc.2019.03.005
    [61] LEE D, KIM K H, CHOI I, et al. Dynamic properties of the corrugated stainless steel membrane reinforced with the glass composite pressure resisting structure for LNG carriers[J]. Composite Structures, 2014, 107: 382-388. doi: 10.1016/j.compstruct.2013.08.014
    [62] KIM K H, YOON S H, LEE D G. Vibration isolation of LNG containment systems due to sloshing with glass fiber composite[J]. Composite Structures, 2012, 94(2): 469-476. doi: 10.1016/j.compstruct.2011.08.008
    [63] KIM D H, KIM J H, KIM H T, et al. Evaluation of PVC-type insulation foam material for cryogenic applications[J]. Polymers, 2023, 15(6): 1401. doi: 10.3390/polym15061401
    [64] HWANG B K, KIM S K, KIM J H, et al. Dynamic compressive behavior of rigid polyurethane foam with various densities under different temperatures[J]. International Journal of Mechanical Sciences, 2020, 180: 105657. doi: 10.1016/j.ijmecsci.2020.105657
    [65] LEE D J, KIM M K, WALSH J, et al. Experimental characterization of temperature dependent dynamic properties of glass fiber reinforced polyurethane foams[J]. Polymer Testing, 2019, 74: 30-38. doi: 10.1016/j.polymertesting.2018.12.013
    [66] EHLERS S, GUIARD M, KUBICZEK J, et al. Experimental and numerical analysis of a membrane cargo containment system for liquefied natural gas[J]. Ships and Offshore Structures, 2017, 12(S1): S257-S267.
    [67] BOS R W, DEN BESTEN J H, KAMINSKI M L. A reduced order model for structural response of the Mark Ⅲ LNG cargo containment system[J]. International Shipbuilding Progress, 2020, 66(4): 295-313. doi: 10.3233/ISP-190272
    [68] LEE C S, CHO J R, KIM W S, et al. Evaluation of sloshing resistance performance for LNG carrier insulation system based on fluid-structure interaction analysis[J]. International Journal of Naval Architecture and Ocean Engineering, 2013, 5(1): 1-20. doi: 10.2478/IJNAOE-2013-0114
    [69] BAE J H, HWANG B K, KIM J H, et al. Cumulative damage of hollow glass microsphere weight fraction in polyurethane foam in response to cryogenic temperatures and repeated impact loading[J]. Cryogenics, 2020, 107: 103057. doi: 10.1016/j.cryogenics.2020.103057
    [70] BOGAERT H, BROSSET L, KAMINSKI M. Interaction between wave impacts and corrugations of Mark Ⅲ Containment System for LNG carriers: Findings from the Sloshel project[C]//ISOPE. Proceedings of the 20th International Offshore and Polar Engineering Conference. Cupertino: ISOPE, 2010: 32.
    [71] BOGAERT H, LEONARD S, MARHEM M, et al. Hydro-structural behaviour of LNG membrane containment systems under breaking wave impacts: Findings from the Sloshel project[C]//ISOPE. Proceedings of the 20th International Offshore and Polar Engineering Conference. Cupertino: ISOPE, 2010: 98-108.
    [72] WANG B, SHIN Y. Full-scale sloshing impact test and coupled fluid-structure FE modeling of LNG containment system[C]//ISOPE. Proceedings of the 19th International Offshore and Polar Engineering Conference. Cupertino: ISOPE, 2009: 39.
    [73] WANG B, SHIN Y. Full-scale test and FE analysis of LNG MK Ⅲ containment system under sloshing loads[C]//ISOPE. Proceedings of the 21st International Offshore and Polar Engineering Conference. Cupertino: ISOPE, 2011: 88.
    [74] LAFEBER W, BOGAERT H, BROSSET L. Comparison of wave impact tests at large and full scale: Results from the Sloshel project[C]//ISOPE. Proceedings of the 22nd International Offshore and Polar Engineering Conference. Cupertino: ISOPE, 2012: 374.
    [75] BROSSET L, MRAVAK Z, KAMINSKI M, et al. Overview of Sloshel project[C]//ISOPE. Proceedings of the 19th International Offshore and Polar Engineering Conference. Cupertino: ISOPE, 2009: 115-124.
    [76] KAMINSKI M L, BOGAERT H. Full-scale sloshing impact tests[C]//ISOPE. International Ocean and Polar Engineering Conference. Cupertino: ISOPE, 2009: 9-36.
    [77] KAMINSKI M L, BOGAERT H. Full-scale sloshing impact tests—Part I[J]. International Journal of Offshore and Polar Engineering, 2010, 20(1): 24.
    [78] MAGUIRE JR, WHITWORTH S, OGUIBE CN, et al. Sloshing dynamics-numerical simulations in support of the Sloshel project[C]//ISOPE. Proceedings of the 19th International Offshore and Polar Engineering Conference. Cupertino: ISOPE, 2009: 428.
    [79] BROSSET L, MARHEM M, LAFEBER W, et al. A MARK Ⅲ panel subjected to a flip-through wave impact: Results from the Sloshel project[C]//ISOPE. Proceedings of the 21st International Offshore and Polar Engineering Conference. Cupertino: ISOPE, 2011: 29.
    [80] MALENICA S, KOROBKIN A A, TEN I, et al. Combined semi-analytical and finite element approach for hydro structure interactions during sloshing impact - "Sloshel project"[C]//ISOPE. Proceedings of the 19th International Ocean and Polar Engineering Conference. Cupertino: ISOPE, 2009: 143-152.
    [81] CHUN M S, SEO Y S, HISASI I, et al. A comparative study on the impact damage of membrane type LNGC cargo containment system[C]//ASME. International Conference on Offshore Mechanics and Arctic Engineering. Honolulu: ASME, 2009: 255-264.
    [82] CHUN S E, HWANG J O, CHUN M S, et al. Direct assessment of structural capacity against sloshing loads using nonlinear dynamic FE analysis including hull structural interactions[C]//ISOPE. Proceedings of the 21st International Offshore and Polar Engineering Conference. Cupertino: ISOPE, 2011: 473.
    [83] HWANG J O, CHUN S E, JOH K H, et al. Direct assessment of structural capacity against sloshing using dynamic nonlinear FE analysis[C]//ISOPE. Proceedings of the 24th International Offshore and Polar Engineering Conference. Cupertino: ISOPE, 2014: 469.
    [84] GAO D W, LI C, SHI G J. Impact load capacity assessment of cargo containment system considering various loading area and duration characteristics[J]. Ocean Engineering, 2025, 333: 121471. doi: 10.1016/j.oceaneng.2025.121471
    [85] 林文虎, 华学明, 吴毅雄, 等. 大型液化天然气船围护系统及其低温金属材料焊接技术[J]. 海洋工程装备与技术, 2014, 1(2): 160-165.

    LIN Wen-hu, HUA Xue-ming, WU Yi-xiong, et al. Reviews of the cargo containment systems of large scale LNG carriers and the welding of related low temperature metals[J]. Ocean Engineering Equipment and Technology, 2014, 1(2): 160-165.
    [86] 罗敬华, 陈春建, 韦玮. LNG运输船NO96薄膜型围护系统设计更迭分析[J]. 上海船舶运输科学研究所学报, 2024, 47(2): 14-20.

    LUO Jing-hua, CHEN Chun-jian, WEI Wei. Design evolution of NO96 membrane cargo containment system for LNG vessels[J]. Journal of Shanghai Ship and Shipping Research Institute, 2024, 47(2): 14-20.
    [87] YOUN I H, KIM S C. Preventive maintenance topic models for LNG containment systems of LNG marine carriers using dock specifications[J]. Applied Sciences, 2019, 9(6): 1202. doi: 10.3390/app9061202
    [88] ABDELMALEK M, GUEDES SOARES C. Review of risk analysis studies in the maritime LNG sector[J]. Journal of Marine Science and Application, 2023, 22(4): 693-715. doi: 10.1007/s11804-023-00376-0
    [89] AMMAR N R. Environmental and cost-effectiveness comparison of dual fuel propulsion options for emissions reduction onboard lng carriers[J]. Brodogradnja, 2019, 70(3): 61-77. doi: 10.21278/brod70304
    [90] GONZÁLEZ G C, SUÁREZ D L F S, BONELLO J M, et al. An empirical analysis on the operational profile of liquefied natural gas carriers with steam propulsion plants[J]. Journal of Navigation, 2021, 74(2): 273-292. doi: 10.1017/S0373463320000612
  • 加载中
图(19) / 表(2)
计量
  • 文章访问数:  24
  • HTML全文浏览量:  6
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-15
  • 录用日期:  2025-09-26
  • 修回日期:  2025-09-05
  • 刊出日期:  2026-01-28

目录

    /

    返回文章
    返回