留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁道车辆齿轮箱动力学与故障诊断研究综述

陈岳剑 李奕璠 凌亮 刘建新 金思勤 周凯

陈岳剑, 李奕璠, 凌亮, 刘建新, 金思勤, 周凯. 铁道车辆齿轮箱动力学与故障诊断研究综述[J]. 交通运输工程学报, 2026, 26(1): 176-199. doi: 10.19818/j.cnki.1671-1637.2026.058
引用本文: 陈岳剑, 李奕璠, 凌亮, 刘建新, 金思勤, 周凯. 铁道车辆齿轮箱动力学与故障诊断研究综述[J]. 交通运输工程学报, 2026, 26(1): 176-199. doi: 10.19818/j.cnki.1671-1637.2026.058
CHEN Yue-jian, LI Yi-fan, LING Liang, LIU Jian-xin, JIN Si-qin, ZHOU Kai. Research review on dynamics and fault diagnosis of railway vehicle gearboxes[J]. Journal of Traffic and Transportation Engineering, 2026, 26(1): 176-199. doi: 10.19818/j.cnki.1671-1637.2026.058
Citation: CHEN Yue-jian, LI Yi-fan, LING Liang, LIU Jian-xin, JIN Si-qin, ZHOU Kai. Research review on dynamics and fault diagnosis of railway vehicle gearboxes[J]. Journal of Traffic and Transportation Engineering, 2026, 26(1): 176-199. doi: 10.19818/j.cnki.1671-1637.2026.058

铁道车辆齿轮箱动力学与故障诊断研究综述

doi: 10.19818/j.cnki.1671-1637.2026.058
基金项目: 

国家自然科学基金联合基金项目 U2268210

国家自然科学基金青年基金项目 52405125

国家重点研发计划 2022YFB3402900

中国中车重大专项 2024CKA327

轨道交通运维技术与装备四川省重点实验室开放研究项目 2024YW003

详细信息
    作者简介:

    陈岳剑(1991-),男,浙江金华人,曼尼托巴大学助理教授,工学博士,E-mail: yuejian.chen@umanitoba.ca

    通讯作者:

    李奕璠(1985-),男,四川南充人,教授,工学博士, E-mail: liyifan@swjtu.edu.cn

  • 中图分类号: U279

Research review on dynamics and fault diagnosis of railway vehicle gearboxes

Funds: 

Joint Fund of National Natural Science Foundation of China U2268210

Youth Fund of National Natural Science Foundation of China 52405125

National Key R&D Program of China 2022YFB3402900

CRRC Major Project 2024CKA327

Open Research Project of Technology and Equipment of Rail Transit Operation and Maintenance Key Laboratory of Sichuan Province 2024YW003

More Information
Article Text (Baidu Translation)
  • 摘要: 从内外激励作用和故障状态下的动力学研究两方面综述了铁道车辆齿轮箱动力学建模、响应特性分析的研究进展,总结了不同模型在研究对象、考虑因素以及耦合复杂度上的优缺点,归纳了不同故障类型对齿轮箱动态特性的影响;系统阐释了信号处理方法和人工智能技术在铁道车辆齿轮箱故障诊断中的应用,探讨了现有方法的特点与不足之处。结果表明:铁道车辆齿轮箱的动力学建模和特性研究应充分考虑其特有的运行环境与结构特征,重点发展高精度的刚柔耦合多体动力学模型,并加强多物理场耦合建模与试验验证,为故障特征提取和健康状态评估提供更可靠的理论支持;加强对典型故障模式的故障演化机理研究,并结合混合建模、数字孪生等方法,开展复合故障场景模拟与全寿命仿真分析,为铁道车辆齿轮箱的故障预测与健康管理提供理论依据;开发更先进的故障诊断技术,并结合真实列车数据验证诊断方法的有效性,以满足铁道车辆故障诊断的高精度和实时性要求,推动铁道车辆齿轮箱全寿命周期健康管理与运维决策的理论和实践进展。

     

  • 图  1  牵引动力传动系统[9]

    Figure  1.  Traction power transmission system[9]

    图  2  高速列车齿轮箱[10]

    Figure  2.  High-speed train gearbox[10]

    图  3  CRH2齿轮箱基本结构(单位:mm)[11]

    Figure  3.  Basic structure of CRH2 gearbox (unit: mm)[11]

    图  4  CRH5齿轮箱基本结构[11]

    Figure  4.  Basic structure of CRH5 gearbox[11]

    图  5  车辆-轨道耦合动力学模型(主视图)[29]

    Figure  5.  Vehicle-track coupling dynamics model (front view)[29]

    图  6  车辆-轨道耦合动力学模型(平面图)[29]

    Figure  6.  Vehicle-track coupling dynamics model (plan view)[29]

    图  7  车辆-轨道耦合动力学模型(侧视图)[29]

    Figure  7.  Vehicle-track coupling dynamics model (side view)[29]

    图  8  铁道车辆齿轮箱故障类型总结[50-56]

    Figure  8.  Summary of fault types in railway vehicle gearboxes[50-56]

    图  9  铁道车辆动力学模型[69]

    Figure  9.  Railway vehicle dynamics model[69]

    图  10  刚柔建模框架[69]

    Figure  10.  Rigid-flexible modeling framework[69]

    图  11  联合算法流程[106]

    Figure  11.  Joint algorithm flowchart[106]

    图  12  多通道信息融合框架思路[111]

    Figure  12.  Schematic diagram of multi-channel information fusion framework[111]

    表  1  铁道车辆齿轮箱动力学研究综述

    Table  1.   Summary of dynamics studies on railway vehicle gearboxes

    研究主题 研究方法 研究模型 参考文献
    振动特性 LPM-FEM 模型A [12]、[14]
    模型b [15]
    模型C [22]、[27]、[32]、[36]、[37]、[42]、[46]、[47]
    模型D [43]
    LPM-TM、AM-TM 模型B [13]
    模型C [23]、[29]
    TM [18]~[21]、[26]、[45]
    LPM-FEM-TM 模型B [16]、[24]
    LPM、AM 模型a [25]
    模型C [28]
    模型D [30]、[44]
    应力分析 LPM-FEM 模型C [31]、[34]
    FEM-TM 模型A [33]
    TM [20]、[35]、[74]
    混沌特性 LPM 模型B [17]
    模型b [38]、[39]
    机电耦合振动 机电联合仿真 模型c [40]、[41]
    故障特性 LPM、AM 模型b [57]
    模型B [58]、[75]
    模型a [59]~[61]、[63]、[74]
    FEM 高速列车齿轮副有限元模型 [62]
    模型B [72]
    TM [67]、[70]、[71]
    LPM-FEM 模型A [69]
    模型C [76]、[77]
    下载: 导出CSV

    表  2  现有故障机理研究综述

    Table  2.   Summary of existing fault mechanism studies

    故障类型 参考文献 年份 总结
    轮齿裂纹 [57] 2020 当齿轮发生齿裂时,齿轮系统的振动幅值增大。转子系统的振动能量分布向较低的共振频带偏移,齿轮啮合频带出现明显的调制现象。动态啮合力、轮对纵向和垂向振动加速度的时频分析结果可以反映出齿裂故障特征频率
    [58] 2022
    [59] 2018
    [60]、[61] 2020、2018
    [63] 2019
    [64] 2023
    [62] 2017
    壳体裂纹 [67] 2006 由于轨道激励等的影响,齿轮箱发生局部共振,导致壳体特定区域的动应力幅值增大,从而导致裂纹。在车轮多边形磨损的影响下,齿轮箱壳体的使用寿命明显降低
    [69] 2019
    [70] 2017
    [71] 2018
    [72] 2018
    [73] 2024
    齿轮剥落 [74] 2023 从齿轮箱壳体振动的时频谱来看,齿轮剥落可能不会表现出明显的侧带。为了准确提取故障特征频率,需要有效的去噪和弱特征提取算法
    齿轮磨损 [75] 2019 从齿轮振动频谱来看,齿轮故障频率主要集中在齿轮啮合频带。在磨损失效的初始阶段,磨损对振动信号的均方根值、峭度和峰-峰值影响最大
    [58] 2022
    齿轮偏心 [76] 2021 齿轮偏心增大了动态啮合力和轮轨纵向蠕滑力的幅值
    轴承滚道剥离故障 [77] 2020 引起高频振动,导致齿轮箱内共振,从而增加齿轮啮合部件的振动幅度。轴承出现故障时,相比于齿轮故障,传动系统的振动能量大多分布在更高频段
    [78] 2020
    [58] 2022
    [79] 2025
    轴承滚动体故障 [80] 2025 滚动体局部缺陷与车轮多边形的阶次激励共同作用下,高阶激励会显著增强振动响应并引起复杂频谱变化,存在显著耦合效应
    下载: 导出CSV

    表  3  铁道车辆故障诊断研究总结

    Table  3.   Summary of fault diagnosis studies for railway vehicles

    技术类别 参考文献 关键技术 信号类型
    信号处理 [52] 互补集成经验模态分解 振动
    [82] 集合经验模态分解、希尔伯特变换 振动
    [83] 变尺度经验模态分解 振动
    [84] 经验模态分解、奇异值差分谱理论 振动
    [85] 改进谱峭度、自适应可调品质因子小波变换 振动
    [86] 双树复小波变换、全变分算法 振动
    [87] 最大相关峭度反卷积、天牛群优化算法 振动
    [88] 奇异值分解、多点优化最小熵解卷积修正 振动
    [89] 最小熵解卷积、参数优化变分模态分解 振动
    [90] 最大相关峰度反卷积、Morlet复小波滤波、小波包奇异谱熵、学习向量量化算法 振动
    [93] 小波能量熵、双树复小波变换 电流
    [94] 小波双谱、小波双谱熵 电流
    [95] 维纳状态退化过程、多传感器滤波 温度
    [96] 变分模态分解、局部均值分解 振动、温度
    [97] 时间序列独立成分分析 温度、电流
    传统机器学习 [98] 信念规则库、DS证据理论 温度
    [99] 深度慢特征分析、信念规则库 振动、温度
    [100] 经验模态分解、局部线性嵌入、支持向量机 振动
    [59] 主成分分析、灰色关联分析 振动
    [101] AdaBoost算法 三维CT数据
    [102] 加权支持向量机 声发射
    [103] 双目立体视觉技术 点云数据
    [104] 海灵格距离、慢特征分析、隐马尔可夫模型 温度
    [105] 慢特征分析 温度、振动
    [106] 自学习、模糊聚类算法 振动
    [107] 可拓理论 振动
    [108] 集合经验模态分解、自回归、支持向量回归 振动
    深度学习 [109] 错位时频表示、卷积神经网络 振动
    [110] 支持向量机、长短期记忆网络 温度
    [111] 深度卷积网络、多通道信息融合、迁移学习 声音
    下载: 导出CSV
  • [1] BERNAL E, SPIRYAGIN M, COLE C. Onboard condition monitoring sensors, systems and techniques for freight railway vehicles: A review[J]. IEEE Sensors Journal, 2019, 19(1): 4-24. doi: 10.1109/JSEN.2018.2875160
    [2] CHEN Y J, LI Y Z, NIU G, et al. Offline and online measurement of the geometries of train wheelsets: A review[J]. IEEE Transactions on Instrumentation and Measure-ment, 2022, 71: 1-15.
    [3] 朱海燕, 朱志和, 肖乾, 等. 高速列车齿轮箱疲劳可靠性及故障诊断研究现状[J]. 华东交通大学学报, 2021, 38(1): 113-121.

    ZHU Hai-yan, ZHU Zhi-he, XIAO Qian, et al. Research status of fatigue reliability and fault diagnosis of high-speed train gearbox[J]. Journal of East China Jiaotong University, 2021, 38(1): 113-121.
    [4] XIE S C, TAN H C, YANG C X, et al. A review of fault diagnosis methods for key systems of the high-speed train[J]. Applied Sciences, 2023, 13(8): 4790. doi: 10.3390/app13084790
    [5] ALEMI A, CORMAN F, LODEWIJKS G. Condition moni-toring approaches for the detection of railway wheel defects[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2017, 231(8): 961-981. doi: 10.1177/0954409716656218
    [6] FU W J, HE Q X, FENG Q B, et al. Recent advances in wayside railway wheel flat detection techniques: A review[J]. Sensors, 2023, 23(8): 3916. doi: 10.3390/s23083916
    [7] YAN G X, CHEN J, BAI Y, et al. A survey on fault diagnosis approaches for rolling bearings of railway vehicles[J]. Processes, 2022, 10(4): 724. doi: 10.3390/pr10040724
    [8] SHAIKH M Z, AHMED Z, CHOWDHRY B S, et al. State-of-the-art wayside condition monitoring systems for railway wheels: A comprehensive review[J]. IEEE Access, 2023, 11: 13257-13279. doi: 10.1109/ACCESS.2023.3240167
    [9] 陈再刚, 刘禹清, 周子伟, 等. 轨道交通牵引动力传动系统动力学研究综述[J]. 交通运输工程学报, 2021, 21(6): 31-49. doi: 10.19818/j.cnki.1671-1637.2021.06.003

    CHEN Zai-gang, LIU Yu-qing, ZHOU Zi-wei, et al. Summary of dynamics research on traction power transmission system of rail transits[J]. Journal of Traffic and Transportation Engineering, 2021, 21(6): 31-49. doi: 10.19818/j.cnki.1671-1637.2021.06.003
    [10] LIU Y M, CHEN Y. Dynamic reliability evaluation of high-speed train gearbox based on copula function[J]. IEEE Access, 2022, 10: 51792-51803. doi: 10.1109/ACCESS.2022.3174043
    [11] 王伯铭. 高速动车组总体及转向架[M]. 成都: 西南交通大学出版社, 2014.

    WANG Bo-ming. High-speed EMUs: General design and bogie systems[M]. Chengdu: Southwest Jiaotong University Press, 2014.
    [12] HUANG G H, ZHOU N, ZHANG W H. Effect of internal dynamic excitation of the traction system on the dynamic behavior of a high-speed train[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2016, 230(8): 1899-1907. doi: 10.1177/0954409715617787
    [13] ZHU W G, LIN H, SUN W, et al. Vibration performance of traction gearbox of a high-speed train: Theoretical analysis and experiments[J]. Actuators, 2023, 12(3): 103. doi: 10.3390/act12030103
    [14] REN Z S, XIN X, SUN G, et al. The effect of gear meshing on the high-speed vehicle dynamics[J]. Vehicle System Dynamics, 2021, 59(5): 743-764. doi: 10.1080/00423114.2020.1711955
    [15] 邱星慧, 杨建伟, 陈忠伟. 刚柔耦合地铁齿轮传动系统振动响应分析[J]. 机械传动, 2018, 42(3): 85-89.

    QIU Xing-hui, YANG Jian-wei, CHEN Zhong-wei. Analysis of vibration response of rigid-flexible coupled subway gear transmission system[J]. Journal of Mechanical Transmis-sion, 2018, 42(3): 85-89.
    [16] 胡玉飞, 张建超, 陈湛, 等. 内部激励下高速动车齿轮箱振动响应评估[J]. 北京交通大学学报, 2022, 46(4): 148-156.

    HU Yu-fei, ZHANG Jian-chao, CHEN Zhan, et al. Evalua-tion of gearbox vibration response in high-speed train under internal excitation[J]. Journal of Beijing Jiaotong University, 2022, 46(4): 148-156.
    [17] 魏静, 孙清朝, 孙伟, 等. 高速机车牵引齿轮传动系统动态特性及非线性因素影响研究[J]. 振动与冲击, 2012, 31(17): 38-43, 50.

    WEI Jing, Sun Qing-zhao, SUN Wei, et al. Dynamic analysis and effects of nonlinear factors of a gear transmission system for high speed locomotive[J]. Journal of Vibration and Shock, 2012, 31(17): 38-43, 50.
    [18] 周越, 王曦, 侯宇, 等. 内部激励下高速列车齿轮箱振动行为及轴承载荷特性实验研究[J]. 振动与冲击, 2023, 42(13): 242-250.

    ZHOU Yue, WANG Xi, HOU Yu, et al. Test study on vibration behavior and bearing load characteristics of high-speed train gearbox under internal excitation[J]. Journal of Vibration and Shock, 2023, 42(13): 242-250.
    [19] HOU Y, WANG X, SUN S G, et al. Measured load spectra of the bearing in high-speed train gearbox under different gear meshing conditions[J]. Railway Engineering Science, 2023, 31(1): 37-51. doi: 10.1007/s40534-022-00282-1
    [20] HOU Y, WANG X, QUE H B, et al. Variation in contact load at the most loaded position of the outer raceway of a bearing in high-speed train gearbox[J]. Acta Mechanica Sinica, 2021, 37(11): 1683-1695. doi: 10.1007/s10409-021-01141-8
    [21] 朱海燕, 朱志和, 邬平波, 等. 服役工况下高速动车组齿轮箱箱体振动特性分析[J]. 噪声与振动控制, 2021, 41(2): 15-20, 27.

    ZHU Hai-yan, ZHU Zhi-he, WU Ping-bo, et al. Vibration characteristics analysis of high-speed emu gearbox housings under service conditions[J]. Noise and Vibration Control, 2021, 41(2): 15-20, 27.
    [22] 曾庆涛. 轮轨激励下高速列车齿轮传动系统振动特性研究[D]. 南昌: 华东交通大学, 2023.

    ZENG Qing-tao. Research on vibration characteristics of high-speed train gear transmission system under wheel-rail excitation[D]. Nanchang: East China Jiaotong University, 2023.
    [23] YANG J W, ZHAO Y, WANG J H, et al. Influence of wheel flat on railway vehicle helical gear system under traction/braking conditions[J]. Engineering Failure Analysis, 2022, 134: 106022. doi: 10.1016/j.engfailanal.2021.106022
    [24] LIU P F, YANG S P, LIU Y Q. Full-scale test and numerical simulation of wheelset-gear box vibration excited by wheel polygon wear and track irregularity[J]. Mechanical Systems and Signal Processing, 2022, 167: 108515. doi: 10.1016/j.ymssp.2021.108515
    [25] ZHAO Y, LI Q, YANG J W, et al. A Lagrangian approach for the railway vehicle with gear system coupled model considering wheel polygonal faults under traction conditions[J]. Journal of Vibration and Control, 2023, 30(5/6): 1339-1352.
    [26] 杨广雪, 李广全, 刘志明, 等. 轮轨激励下高速列车齿轮箱箱体振动特性分析研究[J]. 铁道学报, 2017, 39(11): 46-52.

    YANG Guang-xue, LI Guang-quan, LIU Zhi-ming, et al. Vibration characteristics analysis of gearbox housing system of high-speed train subjected to wheel-rail excitation[J]. Journal of the China Railway Society, 2017, 39(11): 46-52.
    [27] 张博文. 复杂激励下高速列车齿轮箱箱体振动特性及疲劳寿命分析[D]. 石家庄: 石家庄铁道大学, 2024.

    ZHANG Bo-wen. Vibration characteristics and fatigue life analysis of high-speed train gearbox housing under complex excitation[D]. Shijiazhuang: Shijiazhuang Tiedao University, 2024.
    [28] 吴昊, 何嘉兴, 李佳汶. 高速列车齿轮传动系统机电耦合建模与振动特性分析[J]. 机车车辆工艺, 2024, 60(5): 1-7, 40.

    WU Hao, HE Jia-xing, LI Jia-wen. Electro-mechanical coupled modeling and vibration characteristics analysis of high-speed train transmission system[J]. Locomotive & Rolling Stock Technology, 2024, 60(5): 1-7, 40.
    [29] WANG Z W, MEI G M, XIONG Q, et al. Motor car-track spatial coupled dynamics model of a high-speed train with traction transmission systems[J]. Mechanism and Machine Theory, 2019, 137: 386-403. doi: 10.1016/j.mechmachtheory.2019.03.032
    [30] WANG Z W, YIN Z H, ALLEN P, et al. Dynamic analysis of enhanced gear transmissions in the vehicle-track coupled dynamic system of a high-speed train[J]. Vehicle System Dynamics, 2022, 60(8): 2716-2738. doi: 10.1080/00423114.2021.1928246
    [31] WANG Z W, ALLEN P, MEI G M, et al. Dynamic charac-teristics of a high-speed train gearbox in the vehicle-track coupled system excited by wheel defects[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2020, 234(10): 1210-1226. doi: 10.1177/0954409719890731
    [32] WANG Z W, MEI G M, ZHANG W H, et al. Effects of polygonal wear of wheels on the dynamic performance of the gearbox housing of a high-speed train[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2018, 232(6): 1852-1863. doi: 10.1177/0954409717752998
    [33] ZHU W G, SUN W, WU H. Vibration and stress response of high-speed train gearboxes under different excitations[J]. Applied Sciences, 2022, 12(2): 712. doi: 10.3390/app12020712
    [34] WU H, WU P B, XU K, et al. Research on vibration charac-teristics and stress analysis of gearbox housing in high-speed trains[J]. IEEE Access, 2019, 7: 102508-102518. doi: 10.1109/ACCESS.2019.2931424
    [35] 杨广雪, 安钱钱, 李爽, 等. 高速列车齿轮箱动应力分布特性研究[J]. 机械工程学报, 2022, 58(10): 152-159.

    YANG Guang-xue, AN Qian-qian, LI Shuang, et al. Research on dynamic stress distribution characteristics of high speed train gearbox[J]. Journal of Mechanical Engineering, 2022, 58(10): 152-159.
    [36] 黄冠华, 王兴宇, 梅桂明, 等. 内外激励下高速列车齿轮箱箱体动态响应分析[J]. 机械工程学报, 2015, 51(12): 95-100.

    HUANG Guan-hua, WANG Xing-yu, MEI Gui-ming, et al. Dynamic response analysis of gearbox housing system subjected to internal and external excitation in high-speed train[J]. Journal of Mechanical Engineering, 2015, 51(12): 95-100.
    [37] 孙刚, 任尊松, 辛欣, 等. 高速动车组齿轮传动系统振动特性[J]. 机械工程学报, 2019, 55(18): 104-111.

    SUN Gang, REN Zun-song, XIN Xin, et al. Dynamics of gear transmission system of high-speed vehicle[J]. Journal of Mechanical Engineering, 2019, 55(18): 104-111.
    [38] WANG J G, HE G Y, ZHANG J, et al. Nonlinear dynamics analysis of the spur gear system for railway locomotive[J]. Mechanical Systems and Signal Processing, 2017, 85: 41-55. doi: 10.1016/j.ymssp.2016.08.004
    [39] 王俊国, 肖遥, 杨旭峰, 等. 牵引电机扭矩激扰的机车齿轮传动系统非线性特性[J]. 中国机械工程, 2018, 29(11): 1296-1302.

    WANG Jun-guo, XIAO Yao, YANG Xu-feng, et al. Nonlinear characteristics of gear transmission systems of locomotive excited by torque fluctuation of traction motors[J]. China Mechanical Engineering, 2018, 29(11): 1296-1302.
    [40] ZHOU Z W, CHEN Z G, SPIRYAGIN M, et al. Dynamic response feature of electromechanical coupled drive subsystem in a locomotive excited by wheel flat[J]. Engineering Failure Analysis, 2021, 122: 105248. doi: 10.1016/j.engfailanal.2021.105248
    [41] ZHOU Z W, CHEN Z G, SPIRYAGIN M, et al. Dynamic performance of locomotive electric drive system under excitation from gear transmission and wheel-rail interaction[J]. Vehicle System Dynamics, 2022, 60(5): 1806-1828. doi: 10.1080/00423114.2021.1876887
    [42] WANG Z W, CHENG Y, MEI G M, et al. Torsional vibration analysis of the gear transmission system of high-speed trains with wheel defects[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2020, 234(2): 123-133. doi: 10.1177/0954409719833791
    [43] 豆硕, 刘志明, 李强, 等. 基于台架仿真模型的高速列车齿轮箱轴承动载荷获取方法[J]. 交通运输工程学报, 2022, 22(2): 219-232. doi: 10.19818/j.cnki.1671-1637.2022.02.017

    DOU Shuo, LIU Zhi-ming, LI Qiang, et al. Acquisition method of dynamic load of high-speed train gearbox bearing based on bench simulation model[J]. Journal of Traffic and Transportation Engineering, 2022, 22(2): 219-232. doi: 10.19818/j.cnki.1671-1637.2022.02.017
    [44] LIU Y Q, CHEN Z G, WANG K Y, et al. Dynamic charac-teristics analysis of gear transmission and its support bearings of high-speed train on the curve[J]. Vehicle System Dynamics, 2024, 62(3): 623-650. doi: 10.1080/00423114.2023.2186248
    [45] 屈升. 多源激励下高速列车牵引传动系统耦合振动机理试验研究[D]. 成都: 西南交通大学, 2023.

    QU Sheng. Experimental study on coupled vibration mechanism of high-speed train traction drive system under multi-source excitation[D]. Chengdu: Southwest Jiaotong University, 2023.
    [46] 龚道平. 重载机车驱动系统刚柔耦合动力学分析[D]. 成都: 西南交通大学, 2019.

    GONG Dao-ping. Rigid-flexible coupling dynamics analysis of drive system for the heavy haul locomotive[D]. Chengdu: Southwest Jiaotong University, 2019.
    [47] 邓晓宇, 张卫华. 基于刚柔耦合的高速列车齿轮传动系统动态特性研究[J]. 高速铁路技术, 2016, 7(4): 50-54.

    DENG Xiao-yu, ZHANG Wei-hua. Research on the dynamic characteristics of gear transmission system of high-speed train based on the rigid-flexible coupling dynamics[J]. High Speed Railway Technology, 2016, 7(4): 50-54.
    [48] 顾晓辉, 杨绍普, 刘文朋, 等. 高速列车轴箱轴承健康监测与故障诊断研究综述[J]. 力学学报, 2022, 54(7): 1780-1796.

    GU Xiao-hui, YANG Shao-pu, LIU Wen-peng, et al. Review of health monitoring and fault diagnosis of axle-box bearing of high-speed train[J]. Chinese Journal of Theore-tical and Applied, 2022, 54(7): 1780-1796.
    [49] SU C, BI T T, PAN A X, et al. Failure analysis on abnormal cracking of polycarbonate plates used in the gearbox oil level gauge for high-speed train[J]. Engineering Failure Analysis, 2023, 143: 106871. doi: 10.1016/j.engfailanal.2022.106871
    [50] HU W G, LIU Z M, LIU D K, et al. Fatigue failure analysis of high speed train gearbox housings[J]. Engineering Failure Analysis, 2017, 73: 57-71. doi: 10.1016/j.engfailanal.2016.12.008
    [51] 刘东一, 杨建伟, 李欣, 等. 运营工况下地铁齿轮箱斜齿轮齿根裂纹扩展路径与寿命预测[J]. 机械设计, 2020, 37(3): 59-66.

    LIU Dong-yi, YANG Jian-wei, LI Xin, et al. Crack propa-gation path and life prediction of helical gear root in metro gear boxes under the operating conditions[J]. Journal of Machine Design, 2020, 37(3): 59-66.
    [52] CHEN D Y, LIN J H, LI Y D. Modified complementary ensemble empirical mode decomposition and intrinsic mode functions evaluation index for high-speed train gearbox fault diagnosis[J]. Journal of Sound and Vibration, 2018, 424: 192-207. doi: 10.1016/j.jsv.2018.03.018
    [53] FENG K, JI J C, NI Q, et al. A review of vibration-based gear wear monitoring and prediction techniques[J]. Mechanical Systems and Signal Processing, 2023, 182: 109605. doi: 10.1016/j.ymssp.2022.109605
    [54] HU Y X, LIN J H, TAN A C. Failure analysis of gearbox in CRH high-speed train[J]. Engineering Failure Analysis, 2019, 105: 110-126. doi: 10.1016/j.engfailanal.2019.06.099
    [55] 周峻峰. 城轨车辆齿轮箱轴承保持架故障的诊断与对策[J]. 技术与市场, 2015, 22(11): 43-44.

    ZHOU Jun-feng. Diagnosis and countermeasures for faults in the bearing cage of urban rail vehicle gearboxes[J]. Tech-nology and Market, 2015, 22(11): 43-44.
    [56] 程相勋. 郑州地铁车辆齿轮箱典型故障分析及处理[J]. 城市轨道交通研究, 2022, 25(4): 225-228.

    CHENG Xiang-xun. Typical fault analysis and handling of zhengzhou metro vehicle gear box[J]. Urban Mass Transit, 2022, 25(4): 225-228.
    [57] WANG J G, LV B, SUN R, et al. Resonance and stability analysis of a cracked gear system for railway locomotive[J]. Applied Mathematical Modelling, 2020, 77: 253-266. doi: 10.1016/j.apm.2019.07.039
    [58] YANG L, ZHANG D B, YANG Y T, et al. Fault charac-teristics analysis of high-speed train transmission systems[J]. Shock and Vibration, 2022(1): 7109507.
    [59] LIU X C, SUN Q, CHEN C J. Damage degree detection of cracks in a locomotive gear transmission system[J]. Shock and Vibration, 2018(1): 5761064.
    [60] JIANG J Z, CHEN Z G, ZHAI W M, et al. Vibration characteristics of railway locomotive induced by gear tooth root crack fault under transient conditions[J]. Engineering Failure Analysis, 2020, 108: 104285. doi: 10.1016/j.engfailanal.2019.104285
    [61] JIANG J Z, CHEN Z G, HE C Y, et al. Fault vibration features of heavy-haul locomotive with tooth root crack in gear transmissions[C]//IEEE. 2018 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC). New York: IEEE, 2018: 113-118.
    [62] 李刚, 李秀红, 任家骏, 等. 高速列车齿轮副裂纹扩展寿命研究[J]. 机械传动, 2017, 41(2): 17-21.

    LI Gang, LI Xiu-hong, REN Jia-jun, et al. Study on the crack propagation life of the high-speed train gear[J]. Journal of Mechanical Transmission, 2017, 41(2): 17-21.
    [63] CHEN Z G, ZHAI W M, WANG K Y. Vibration feature evolution of locomotive with tooth root crack propagation of gear transmission system[J]. Mechanical Systems and Signal Processing, 2019, 115: 29-44. doi: 10.1016/j.ymssp.2018.05.038
    [64] 孙琦. 基于牵引电机定子电流信号的高速列车齿轮裂纹诊断研究[D]. 成都: 西南交通大学, 2023.

    SUN Qi. Research on the gear crack diagnosis in high-speed trains based on motor current signature analysis[D]. Chengdu: Southwest Jiaotong University, 2023.
    [65] ZHANG B, TAN A C C, LIN J H. Gearbox fault diagnosis of high-speed railway train[J]. Engineering Failure Analysis, 2016, 66: 407-420. doi: 10.1016/j.engfailanal.2016.04.020
    [66] ZHANG J, LI X, XIE H. Fatigue finite element analysis of certain type of EMU gearbox box[J]. Applied Mechanics and Materials, 2015, 789/790: 236-240.
    [67] MORGADO T L M, BRANCO C M, INFANTE V. A failure study of housing of the gearboxes of series 2 600 locomotives of the Portuguese Railway Company[J]. Engineering Failure Analysis, 2008, 15(1/2): 154-164.
    [68] MOON S I, CHO I J, YOON D. Fatigue life evaluation of mechanical components using vibration fatigue analysis technique[J]. Journal of Mechanical Science and Technology, 2011, 25(3): 631-637. doi: 10.1007/s12206-011-0124-6
    [69] WU H, WU P B, LI F S, et al. Fatigue analysis of the gearbox housing in high-speed trains under wheel polygonization using a multibody dynamics algorithm[J]. Engineering Failure Analysis, 2019, 100: 351-364. doi: 10.1016/j.engfailanal.2019.02.058
    [70] 李广全, 刘志明, 王文静, 等. 高速动车组齿轮箱疲劳裂纹机理分析研究[J]. 机械工程学报, 2017, 53(2): 99-105.

    LI Guang-quan, LIU Zhi-ming, WANG Wen-jing, et al. Fatigue crack mechanism study on high-speed EMU gearbox[J]. Journal of Mechanical Engineering, 2017, 53(2): 99-105.
    [71] 王文静, 张莹, 曲俊生, 等. 高速列车齿轮箱箱体动应力响应及疲劳可靠性研究[J]. 中国铁道科学, 2018, 39(6): 90-97.

    WANG Wen-jing, ZHANG Ying, QU Jun-sheng, et al. Dynamic stress response and fatigue reliability of gearbox housing for g-series high-speed train[J]. China Railway Science, 2018, 39(6): 90-97.
    [72] 何章涛, 马媛媛, 肖攀, 等. 高速客车传动齿轮箱强度和疲劳仿真分析及评价方法[J]. 机械传动, 2018, 42(4): 130-133.

    HE Zhang-tao, MA Yuan-yuan, XIAO Pan, et al. Simulation analysis of the strength and fatigue of high-speed train transmission gearbox and evaluation method[J]. Journal of Mechanical Transmission, 2018, 42(4): 130-133.
    [73] 豆硕, 刘鹏飞, 刘志明, 等. 高速列车齿轮箱箱体动态疲劳寿命评估方法[J]. 中南大学学报(自然科学版), 2024, 55(5): 1953-1965.

    DOU Shuo, LIU Peng-fei, LIU Zhi-ming, et al. Dynamic fatigue life assessment method for high-speed train gearbox housing[J]. Journal of Central South University (Science and Technology), 2024, 55(5): 1953-1965.
    [74] LIN Y L, LI J B, CHEN P X, et al. Dynamic characteristics and fault mechanism of the gear tooth spalling in railway vehicles under traction conditions[J]. Applied Sciences, 2023, 13(8): 4656. doi: 10.3390/app13084656
    [75] YANG J W, SUN R, YAO D C, et al. Nonlinear dynamic analysis of high speed multiple units gear transmission system with wear fault[J]. Mechanical Sciences, 2019, 10(1): 187-197. doi: 10.5194/ms-10-187-2019
    [76] WANG Z W, YIN Z H, WANG R C, et al. Coupled dynamic behaviour of a transmission system with gear eccentricities for a high-speed train[J]. Vehicle System Dynamics, 2021, 59(4): 613-634. doi: 10.1080/00423114.2019.1708008
    [77] CAI J F, LI Y F, LIU J X. Vibration features of high-speed train gearbox induced by bearing fault[C]//IEEE. 2020 Asia-pacific International Symposium on Advanced Reliability and Maintenance Modeling (APARM). New York: IEEE, 2020: 1-6.
    [78] 张阿中, 刘建新, 蔡久凤. 高速列车齿轮箱轴承剥离故障振动分析[J]. 机械传动, 2020, 44(12): 132-136, 145.

    ZHANG A-zhong, LIU Jian-xin, CAI Jiu-feng. Vibration analysis on spalling failure of gearbox bearing of high-speed train[J]. Journal of Mechanical Transmission, 2020, 44(12): 132-136, 145.
    [79] 蔡久凤. 高速列车齿轮传动系统部件故障激励及响应研究[D]. 成都: 西南交通大学, 2025.

    CAI Jiu-feng. Study on fault excitation and response of gear transmission system of high speed train[D]. Chengdu: Southwest Jiaotong University, 2025.
    [80] 付海阔. 考虑耦合故障激励的转向架齿轮箱轴承动力学特性研究[D]. 大连: 大连交通大学, 2025.

    FU Hai-kuo. Dynamic behavior analysis of bogie gearbox bearings under coupled fault excitations[D]. Dalian: Dalian Jiaotong University, 2025.
    [81] LEI Y G, LIN J, ZUO M J, et al. Condition monitoring and fault diagnosis of planetary gearboxes: A review[J]. Measurement, 2014, 48: 292-305. doi: 10.1016/j.measurement.2013.11.012
    [82] 万国强, 林建辉, 易彩. 高速列车齿轮箱振动特性分析与故障识别方法[J]. 机械科学与技术, 2018, 37(1): 115-119.

    WAN Guo-qiang, LIN Jian-hui, YI Cai. Vibration charac-teristic analysis and fault diagnosis of high speed train gear-box[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(1): 115-119.
    [83] 任彬, 杨绍普, 郝如江. 机车齿轮传动系统多元信号时变盲分离研究[J]. 机械工程学报, 2016, 52(20): 8-15.

    REN Bin, YANG Shao-pu, HAO Ru-jiang. Multivariate signal time-varying blind source separation for locomotive gear transmission[J]. Journal of Mechanical Engineering, 2016, 52(20): 8-15.
    [84] 于泽亮, 贺德强, 谭文举, 等. 基于EMD和奇异值差分谱理论的列车齿轮箱故障诊断研究及实现[J]. 机械设计与制造, 2018(9): 152-155, 160.

    YU Ze-liang, HE De-qiang, TAN Wen-ju, et al. The study and realization of train gearbox fault diagnosis based on EMD and singular value difference spectrum theory[J]. Machinery Design & Manufacture, 2018(9): 152-155, 160.
    [85] 龙莹, 苏燕辰, 高扬, 等. 高速列车齿轮箱轴承故障诊断的自适应TQWT方法[J]. 中国测试, 2019, 45(11): 108-113.

    LONG Ying, SU Yan-chen, GAO Yang, et al. Fault diagnosis of gearbox bearings of high-speed train applying adaptive TQWT[J]. China Measurement & Test, 2019, 45(11): 108-113.
    [86] 杨慧莹, 伍川辉, 李艳萍, 等. DTCWPT-TV在高速列车齿轮箱轴承故障诊断中的应用[J]. 机械设计与制造, 2020(9): 9-13, 16.

    YANG Hui-ying, WU Chuan-hui, LI Yan-ping, et al. Appli-cation of DTCWPT-TV in fault diagnosis of gearbox bearing in high-speed train[J]. Machinery Design & Manufacture, 2020(9): 9-13, 16.
    [87] 朱丹, 苏燕辰, 孙琦, 等. BSO-MCKD在高速列车齿轮箱轴承早期故障诊断中的应用[J]. 铁道机车车辆, 2020, 40(2): 14-19.

    ZHU Dan, SU Yan-chen, SUN Qi, et al. Application of BSO-MCKD in incipient fault diagnosis of gearbox bearings of high-speed train[J]. Railway Locomotive & Car, 2020, 40(2): 14-19.
    [88] 朱丹, 苏燕辰, 燕春光. 基于SVD-MOMEDA的高速列车齿轮箱轴承故障诊断[J]. 机车电传动, 2020(2): 144-148, 152.

    ZHU Dan, SU Yan-chen, YAN Chun-guang, et al. Fault diagnosis of gearbox bearings of high-speed train based on the SVD-MOMEDA[J]. Electric Drive for Locomotives, 2020(2): 144-148, 152.
    [89] 李长青, 林建辉, 胡永旭. 优化参数VMD和MED在列车齿轮箱滚动轴承故障诊断中的应用[J]. 机车电传动, 2020(3): 142-147.

    LI Chang-qing, LIN Jian-hui, HU Yong-xu. Application of optimization parameters VMD and MED in fault diagnosis of train gearbox rolling bearings[J]. Electric Drive for Loco-motives, 2020(3): 142-147.
    [90] 朱恩豪. 高速列车齿轮箱性能退化评估与故障预测方法研究[D]. 南昌: 华东交通大学, 2023.

    ZHU En-hao. Research on the method of performance degradation evaluation and fault prediction for the gearbox of the high-speed train[D]. Nanchang: East China Jiaotong University, 2023.
    [91] 张振. 基于机电耦合模型的HXD2型机车齿轮故障诊断方法研究[D]. 成都: 西南交通大学, 2020.

    ZHANG Zhen. Research on HXD2 locomotive gear fault diagnosis method based on electromechanical coupling model[D]. Chengdu: Southwest Jiaotong University, 2020.
    [92] HENAO H, KIA S H, CAPOLINO G A. Torsional-vibration assessment and gear-fault diagnosis in railway traction system[J]. IEEE Transactions on Industrial Electronics, 2011, 58(5): 1707-1717. doi: 10.1109/TIE.2011.2106094
    [93] ZHANG Z, YANG J T. Current-based gear fault detection for locomotive gearboxes[C]//IEEE. 2018 Prognostics and System Health Management Conference (PHM-Chongqing). New York: IEEE, 2018: 1200-1207.
    [94] ZHANG M M, YANG J T, ZHANG Z. Locomotive gear fault diagnosis based on wavelet bispectrum of motor current[J]. Shock and Vibration, 2021, 2021: 5554777. doi: 10.1155/2021/5554777
    [95] CHENG C, WANG W J, LUO H, et al. State-degradation-oriented fault diagnosis for high-speed train running gears system[J]. Sensors, 2020, 20(4): 1017. doi: 10.3390/s20041017
    [96] 王连富, 王梓帆, 董俭雄, 等. 基于改进变分模态分解和温振特征融合的高速列车齿轮箱轴承故障诊断方法[J]. 城市轨道交通研究, 2024, 27(7): 21-26.

    WANG Lian-fu, WANG Zi-fan, DONG Jian-xiong, et al. Fault diagnosis method for high-speed train gearbox bearing based on improved VMD and temperature-vibration[J]. Urban Mass Transit, 2024, 27(7): 21-26.
    [97] CHENG C, YANG S, SONG Y, et al. Time-series independent component analysis-aided fault detection for running gear systems[J]. International Journal of Control, Automation and Systems, 2022, 20(9): 2892-2901. doi: 10.1007/s12555-021-0276-9
    [98] CHENG C, WANG J H, ZHOU Z J, et al. A BRB-based effective fault diagnosis model for high-speed trains running gear systems[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(1): 110-121. doi: 10.1109/TITS.2020.3008266
    [99] CHENG C, QIAO X Y, LUO H, et al. Data-driven incipient fault detection and diagnosis for the running gear in high-speed trains[J]. IEEE Transactions on Vehicular Techno-logy, 2020, 69(9): 9566-9576. doi: 10.1109/TVT.2020.3002865
    [100] HE X Q, CHANG Y Q. A novel approach for reliable gearbox fault diagnosis in high-speed train driving system based on nonlinear feature extraction[J]. Modern Manufacturing Engineering, 2015(6): 31-39.
    [101] 艾轶博, 王楠, 阙红波, 等. 工业CT的高铁齿轮箱体材料缺陷识别[J]. 哈尔滨工业大学学报, 2015, 47(10): 45-49.

    AI Yi-bo, WANG Nan, QUE Hong-bo, et al. Material casting defect recognition of high-speed train gearbox shell based on industrial CT technology[J]. Journal of Harbin Institute of Technology, 2015, 47(10): 45-49.
    [102] AI Y B, SUN C, CUI H, et al. Characterization and damage identification of acoustic emission signal in tensile process of the material of high-speed train gearbox shell[C]//IEEE. 2016 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM). New York: IEEE, 2016: 1875-1878.
    [103] 刘世川. 基于双目立体视觉的高速列车齿轮箱表面缺陷检测研究[D]. 石家庄: 石家庄铁道大学, 2023.

    LIU Shi-chuan. Research on surface defect detection of high-speed train gearbox based on binocular stereo vision[D]. Shijiazhuang: Shijiazhuang Tiedao University, 2023.
    [104] CHENG C, LIU M, CHEN H T, et al. Slow feature analysis-aided detection and diagnosis of incipient faults for running gear systems of high-speed trains[J]. ISA Transactions, 2022, 125: 415-425. doi: 10.1016/j.isatra.2021.06.023
    [105] SONG Y, YANG S, CHENG C, et al. A novel fault detection method for running gear systems based on dynamic inner slow feature analysis[J]. IEEE Access, 2020, 8: 211371-211379. doi: 10.1109/ACCESS.2020.3039464
    [106] YAO H M, ULIANOV C, LIU F. Joint self-learning and fuzzy clustering algorithm for early warning detection of railway running gear defects[C]//IEEE. 2018 24th Inter-national Conference on Automation and Computing (ICAC). New York: IEEE, 2018: 1-8.
    [107] 刘玉梅, 赵聪聪, 熊明烨, 等. 可拓学在高速轨道车辆齿轮箱运行状态监测中的应用[J]. 北京理工大学学报, 2015, 35(11): 1135-1139.

    LIU Yu-mei, ZHAO Cong-cong, XIONG Ming-ye, et al. Application of extension theory to monitoring the running state of the high-speed railway's gearbox[J]. Transactions of Beijing Institute of Technology, 2015, 35(11): 1135-1139.
    [108] LIU Y M, QIAO N G, ZHAO C C, et al. Vibration signal prediction of gearbox in high-speed train based on monitoring data[J]. IEEE Access, 2018, 6: 50709-50719. doi: 10.1109/ACCESS.2018.2868197
    [109] WANG J H, YANG J W, WANG Y Z, et al. Ensemble decision approach with dislocated time-frequency represen-tation and pre-trained CNN for fault diagnosis of railway vehicle gearboxes under variable conditions[J]. International Journal of Rail Transportation, 2022, 10(5): 655-673. doi: 10.1080/23248378.2021.2000897
    [110] 李全隆. 高速列车齿轮箱轴承温度预测方法研究[D]. 兰州: 兰州交通大学, 2023.

    LI Quan-long. Research on temperature prediction method of gearbox bearing for high-speed train[D]. Lanzhou: Lanzhou Jiaotong University, 2023.
    [111] 吴佳敏, 王发令, 邹鹤敏, 等. 基于深度卷积迁移学习的机车齿轮箱故障诊断[J]. 机械设计与研究, 2023, 39(5): 82-88.

    WU Jia-min, WANG Fa-ling, ZOU He-min, et al. Fault diagnosis of gearbox based on deep convolutional neural network and transfer learning[J]. Machine Design & Research, 2023, 39(5): 82-88.
    [112] 高超. 基于热流耦合高速列车齿轮箱温度场的数值研究[D]. 成都: 西南交通大学, 2019.

    GAO Chao. Numerical study of temperature field of high speed train gearbox based on heat-fluid coupling[D]. Chengdu: Southwest Jiaotong University, 2023.
    [113] 杨冰振. 声发射技术在高铁齿轮箱箱体损伤检测中的应用研究[D]. 石家庄: 石家庄铁道大学, 2023.

    YANG Bing-zhen. Application research of acoustic emission technology in damage detection of high speed train gearbox shell[D]. Shijiazhuang: Shijiazhuang Tiedao University, 2023.
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  26
  • HTML全文浏览量:  11
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-02
  • 录用日期:  2025-09-26
  • 修回日期:  2025-09-01
  • 刊出日期:  2026-01-28

目录

    /

    返回文章
    返回