留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黄土地基中能量桩温度场及热交换效率模型试验

曹卫平 张作鹏 何展朋 罗龙平 李庆 孔纲强

曹卫平, 张作鹏, 何展朋, 罗龙平, 李庆, 孔纲强. 黄土地基中能量桩温度场及热交换效率模型试验[J]. 交通运输工程学报, 2026, 26(1): 224-235. doi: 10.19818/j.cnki.1671-1637.2026.097
引用本文: 曹卫平, 张作鹏, 何展朋, 罗龙平, 李庆, 孔纲强. 黄土地基中能量桩温度场及热交换效率模型试验[J]. 交通运输工程学报, 2026, 26(1): 224-235. doi: 10.19818/j.cnki.1671-1637.2026.097
CAO Wei-ping, ZHANG Zuo-peng, HE Zhan-peng, LUO Long-ping, LI Qing, KONG Gang-qiang. Model tests on temperature field and heat exchange efficiency of energy pile in loess foundation[J]. Journal of Traffic and Transportation Engineering, 2026, 26(1): 224-235. doi: 10.19818/j.cnki.1671-1637.2026.097
Citation: CAO Wei-ping, ZHANG Zuo-peng, HE Zhan-peng, LUO Long-ping, LI Qing, KONG Gang-qiang. Model tests on temperature field and heat exchange efficiency of energy pile in loess foundation[J]. Journal of Traffic and Transportation Engineering, 2026, 26(1): 224-235. doi: 10.19818/j.cnki.1671-1637.2026.097

黄土地基中能量桩温度场及热交换效率模型试验

doi: 10.19818/j.cnki.1671-1637.2026.097
基金项目: 

国家自然科学基金项目 51078308

陕西省自然科学基础研究计划一般项目 2024JC-YBMS-299

详细信息
    作者简介:

    曹卫平(1969-),男,陕西杨凌人,教授,博士生导师,工学博士,E-mail: wp_cao@163.com

  • 中图分类号: U416

Model tests on temperature field and heat exchange efficiency of energy pile in loess foundation

Funds: 

National Natural Science Foundation of China 51078308

Natural Science Basic Research Program of Shaanxi Province 2024JC-YBMS-299

More Information
    Corresponding author: CAO Wei-ping, professor, PhD, E-mail: wp_cao@163.com
Article Text (Baidu Translation)
  • 摘要: 为研究黄土地基中能量桩热交换效率特性,开展了夏季/冬季模式下不同饱和度黄土中能量桩模型试验。试验采用了饱和度分别为42%、69%的重塑黄土,模型桩为钢筋混凝土预制桩,内置了U型、W型2种换热管,桩径采用了50、65、80 mm三种规格,利用埋入/静力压入2种方式将能量桩设置在黄土中。试验结果表明:桩土温度场表现出明显的三维特征,桩土热量交换以水平方向为主,能量桩温度水平影响范围不小于3倍桩径;桩侧土温度梯度与黄土饱和度、运行模式、施工挤土效应及换热管型式密切相关;整体上,夏季模式下能量桩热交换效率低于冬季模式,夏季模式下黄土饱和度较高时热交换效率也较高,而冬季模式下相反;不论冬季模式还是夏季模式,黄土饱和度相同时,W型换热管埋入桩热交换效率高于U型换热管静压桩,U型换热管埋入桩的热交换效率最低,桩径为50、65 mm能量桩的热交换效率基本相当,而桩径为80 mm能量桩的热交换效率显著降低;与非挤土桩相比,挤土桩能平均提高热交换效率约13.7%。

     

  • 图  1  模型试验装置(单位:mm)

    Figure  1.  Model test setup (unit: mm)

    图  2  能量桩

    Figure  2.  Energy piles

    图  3  直径50 mm能量桩夏季模式下的稳态温度场

    Figure  3.  Steady temperature field of energy piles in summer operation mode (D=50 mm)

    图  4  直径50 mm能量桩冬季模式下的稳态温度场

    Figure  4.  Steady temperature field of energy piles in winter operation mode (D=50 mm)

    图  5  直径65 mm能量桩夏季模式下的稳态温度场

    Figure  5.  Steady temperature field of energy piles in summer operation mode (D=65 mm)

    图  6  直径65 mm能量桩冬季模式下的稳态温度场

    Figure  6.  Steady temperature field of energy piles in winter operation mode (D=65 mm)

    图  7  直径80 mm能量桩夏季模式下的稳态温度场

    Figure  7.  Steady temperature field of energy piles in summer operation mode (D=80 mm)

    图  8  直径80 mm能量桩冬季模式下的稳态温度场

    Figure  8.  Steady temperature field of energy piles in winter operation mode (D=80 mm)

    图  9  黄土地基饱和度对能量桩热交换效率的影响

    Figure  9.  Effect of loess foundation saturation degree on heat exchange efficiency of energy piles

    图  10  换热管型式对能量桩热交换效率的影响

    Figure  10.  Effect of heat exchanger type on heat exchange efficiency of energy piles

    图  11  桩径对能量桩热交换效率的影响

    Figure  11.  Effect of pile diameter on heat exchange efficiency of energy piles

    图  12  能量桩施工方法对热交换效率的影响

    Figure  12.  Effect of energy pile construction method on heat exchange efficiency

    图  13  热交换效率综合对比

    Figure  13.  Comprehensive comparison of heat exchange efficiency

    表  1  黄土物理力学性质

    Table  1.   Physical and mechanical properties of loess

    土类型 含水量/% 密度/(g·cm-3) 孔隙比 土粒相对体积质量 饱和度/% 导热系数/(W·m-1·K-1) 比热容/(kJ·m-3·K-1)
    原状黄土 15.4 1.56 0.98 2.67 42 0.68 2 151
    重塑黄土① 15.2 1.58 0.95 42 0.68 2 177
    重塑黄土② 23.8 1.72 0.92 69 1.08 2 460
    下载: 导出CSV

    表  2  模型试验方案

    Table  2.   Model test schemes

    试验编号 桩径/mm 换热管型 土体饱和度/% 桩入土方式
    50 U型 42 埋入
    50 U型 42 静压
    50 U型 69 埋入
    50 U型 69 静压
    50 W型 42 埋入
    50 W型 69 埋入
    65 U型 42 埋入
    65 U型 42 静压
    65 U型 69 埋入
    65 U型 69 静压
    65 W型 42 埋入
    65 W型 69 埋入
    80 U型 42 埋入
    80 U型 42 静压
    80 U型 69 埋入
    80 U型 69 静压
    80 W型 42 埋入
    80 W型 69 埋入
    下载: 导出CSV
  • [1] 曹卫平, 李清源, 赵敏, 等. 间歇式运行模式下黄土地基中能量桩热-力特性模型试验[J]. 土木工程学报, 2024, 57(9): 123-134.

    CAO Wei-ping, LI Qing-yuan, ZHAO Min, et al. Model tests on thermal-mechanical behavior of energy piles in loess ground under intermittent operation mode[J]. China Civil Engineering Journal, 2024, 57(9): 123-134.
    [2] 陈忠购, 赵石娆, 张正威. 内置并联U形埋管能量桩的换热性能研究[J]. 工程力学, 2013, 30(5): 238-243.

    CHEN Zhong-gou, ZHAO Shi-rao, ZHANG Zheng-wei. Heat transfer analysis of energy piles with parallel connected U-tubes[J]. Engineering Mechanics, 2013, 30(5): 238-243.
    [3] 李任融, 孔纲强, 杨庆, 等. 流速对桩-筏基础中能量桩换热效率与热力耦合特性影响研究[J]. 岩土力学, 2020, 41(增1): 264-270, 298.

    LI Ren-rong, KONG Gang-qiang, YANG Qing, et al. Study on influence of flow velocity on heat transfer efficiency and thermal coupling characteristics of energy piles in pile-raft foundation[J]. Rock and Soil Mechanics, 2020, 41(S1): 264-270, 298.
    [4] HAMADA Y, SAITOH H, NAKAMURA M, et al. Field performance of an energy pile system for space heating[J]. Energy and Buildings, 2007, 39(5): 517-524. doi: 10.1016/j.enbuild.2006.09.006
    [5] LUO J, ZHANG Q, ZHAO H F, et al. Thermal and thermomechanical performance of energy piles with double U-loop and spiral loop heat exchangers[J]. Journal of Geotech-nical and Geoenvironmental Engineering, 2019, 145(12): 04019109. doi: 10.1061/(ASCE)GT.1943-5606.0002175
    [6] SANI A K, SINGH R M, DE HOLLANDA CAVALCANTI TSUHA C, et al. Pipe-pipe thermal interaction in a geother-mal energy pile[J]. Geothermics, 2019, 81: 209-223. doi: 10.1016/j.geothermics.2019.05.004
    [7] PARK S, LEE S, LEE D, et al. Effect of thermal interfe-rence on energy piles considering various configurations of heat exchangers[J]. Energy and Buildings, 2019, 199: 381-401. doi: 10.1016/j.enbuild.2019.07.008
    [8] 杨卫波, 张来军, 汪峰. 桩埋管参数对渗流下能量桩热-力耦合特性的影响[J]. 水文地质工程地质, 2022, 49(5): 176-185.

    YANG Wei-bo, ZHANG Lai-jun, WANG Feng. Effects of the pile buried pipe parameters on the thermal-mechanical coupling characteristics of energy pile under the groundwater seepage[J]. Hydrogeology & Engineering Geology, 2022, 49(5): 176-185.
    [9] YOU S, CHENG X H, GUO H X, et al. In-situ experi-mental study of heat exchange capacity of CFG pile geothermal exchangers[J]. Energy and Buildings, 2014, 79: 23-31. doi: 10.1016/j.enbuild.2014.04.021
    [10] 高伟, 张鹏, 潘雅静, 等. 双螺旋形埋管能量桩传热性能分析[J]. 青岛理工大学学报, 2022, 43(2): 28-36.

    GAO Wei, ZHANG Peng, PAN Ya-jing, et al. Analysis of heat transfer performance of double helix buried pipe energy pile[J]. Journal of Qingdao Technological University, 2022, 43(2): 28-36.
    [11] 任连伟, 徐健, 孔纲强, 等. 冬季工况多次温度循环下微型钢管桩群桩热力响应特性现场试验[J]. 岩土工程学报, 2019, 41(11): 2053-2060.

    REN Lian-wei, XU Jian, KONG Gang-qiang, et al. Field tests on thermal response characteristics of micro steel pile group under multiple temperature cycles in winter conditions[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 2053-2060.
    [12] FAIZAL M, BOUAZZA A, SINGH R M. An experimental investigation of the influence of intermittent and continuous operating modes on the thermal behaviour of a full scale geothermal energy pile[J]. Geomechanics for Energy and the Environment, 2016, 8: 8-29. doi: 10.1016/j.gete.2016.08.001
    [13] 赵嵩颖, 王梦娜, 郑浩男. 黏土地基中能量桩传热性能研究[J]. 吉林建筑大学学报, 2021, 38(3): 46-50.

    ZHAO Song-ying, WANG Meng-na, ZHENG Hao-nan. Research on heat transfer performance of energy pile in clay foundation[J]. Journal of Jilin Jianzhu University, 2021, 38(3): 46-50.
    [14] BRANDL H. Energy foundations and other thermo-active ground structures[J]. Géotechnique, 2006, 56(2): 81-122.
    [15] 龚宇烈. U型管桩埋换热器传热理论模拟与实验研究[D]. 天津: 天津大学, 2003.

    GONG Yu-lie. Thermal transfer theory simulation and experimental research of U-shaped pipe pile buried heat exchanger[D]. Tianjin: Tianjin University, 2003.
    [16] ALQAWASMEH Q I, NARSILIO G A, MAKASIS N, et al. The impact of soil layering and groundwater flow on energy pile thermal performance[J]. Geomechanics for Energy and the Environment, 2024, 38: 100538. doi: 10.1016/j.gete.2024.100538
    [17] DA SILVA OLIVEIRA MORAIS T, DE HOLLANDA CAVALCANTI TSUHA C, NETO L A B, et al. Effects of seasonal variations on the thermal response of energy piles in an unsaturated Brazilian tropical soil[J]. Energy and Buildings, 2020, 216: 109971. doi: 10.1016/j.enbuild.2020.109971
    [18] PARK S, LEE S, OH K, et al. Engineering chart for ther-mal performance of cast-in-place energy pile considering ther-mal resistance[J]. Applied Thermal Engineering, 2018, 130: 899-921. doi: 10.1016/j.applthermaleng.2017.11.065
    [19] 张亮, 穆永超, 张杰, 等. 能量桩换热性能影响因素的数值模拟研究[J]. 节能, 2024, 43(4): 5-9.

    ZHANG Liang, MU Yong-chao, ZHANG Jie, et al. Nume-rical simulation study on influencing factors of heat transfer performance of energy pile[J]. Energy Conservation, 2024, 43(4): 5-9.
    [20] TAYLOR R N. Geotechnical centrifuge technology[M]. Abingdon: Taylor & Francis, 1988.
    [21] 桂树强, 程晓辉. 能源桩换热过程中结构响应原位试验研究[J]. 岩土工程学报, 2014, 36(6): 1087-1094.

    GUI Shu-qiang, CHENG Xiao-hui. In-situ tests on structural responses of energy piles during heat exchanging process[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1087-1094.
    [22] 王铁行, 刘自成, 卢靖. 黄土导热系数和比热容的实验研究[J]. 岩土力学, 2007, 28(4): 655-658.

    WANG Tie-xing, LIU Zi-cheng, LU Jing. Experimental study on coefficient of thermal conductivity and specific volume heat of loess[J]. Rock and Soil Mechanics, 2007, 28(4): 655-658.
    [23] 姚永国. 湿陷性黄土场地挤土桩桩周土力学响应及负摩阻力研究[D]. 兰州: 兰州大学, 2018.

    YAO Yong-guo. Study on mechanical response and negative friction of soil around squeezing pile in collapsible loess site[D]. Lanzhou: Lanzhou University, 2018.
    [24] 邓友生, 李龙, 孙雅妮, 等. 水泥粉煤灰处理湿陷性黄土路基承载性能[J]. 交通运输工程学报, 2023, 23(4): 92-103. doi: 10.19818/j.cnki.1671-1637.2023.04.006

    DENG You-sheng, LI Long, SUN Ya-ni, et al. Bearing capability of collapsible loess subgrade through cement-fly ash treatment[J]. Journal of Traffic and Transportation Engi-neering, 2023, 23(4): 92-103. doi: 10.19818/j.cnki.1671-1637.2023.04.006
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  7
  • HTML全文浏览量:  5
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-19
  • 录用日期:  2025-11-27
  • 修回日期:  2025-11-09
  • 刊出日期:  2026-01-28

目录

    /

    返回文章
    返回