| Citation: | FAN Ai-long, YAN Xin-ping, YIN Qi-zhi, SUN Xing, CHEN Qian-kun, ZHANG Yong-bo. Energy efficiency model of marine main engine[J]. Journal of Traffic and Transportation Engineering, 2015, 15(4): 69-76. doi: 10.19818/j.cnki.1671-1637.2015.04.009 |
| [1] |
Marine Environment Protection Committee. Prevention of air pollution from ships(Second IMO GHG Study 2009)[R]. London: International Maritime Organization, 2009.
|
| [2] |
Marine Environment Protection Committee. Prevention of air pollution from ships(Third IMO GHG Study 2014)[R]. London: International Maritime Organization, 2014.
|
| [3] |
BJILSMA S J. Minimal time route computation for ships with pre-specified voyage fuel consumption[J]. The Journal of Navigation, 2008, 61(4): 723-733. doi: 10.1017/S037346330800492X
|
| [4] |
LO K. A critical review of China's rapidly developing renewable energy and energy efficiency policies[J]. Renewable and Sustainable Energy Reviews, 2014, 29: 508-516. doi: 10.1016/j.rser.2013.09.006
|
| [5] |
BALLOU P J. Ship energy efficiency management requires a total solution approach[J]. Marine Technology Society Journal, 2013, 47(1): 83-95. doi: 10.4031/MTSJ.47.1.5
|
| [6] |
PSARAFTIS H N, KONTOVAS C A. Ship speed optimization: concepts, models and combined speed-routing scenarios[J]. Transportation Research Part C: Emerging Technologies, 2014, 44: 52-69. doi: 10.1016/j.trc.2014.03.001
|
| [7] |
SHAO Wei, ZHOU Pei-lin, THONG S K. Development of a novel forward dynamic programming method for weather routing[J]. Journal of Marine Science and Technology, 2012, 17(2): 239-251. doi: 10.1007/s00773-011-0152-z
|
| [8] |
LINDSTAD H, ASBJØRNSLETT B E, STRØMMAN A H. Reductions in greenhouse gas emissions and cost by shipping at lower speeds[J]. Energy Policy, 2011, 39(6): 3456-3464. doi: 10.1016/j.enpol.2011.03.044
|
| [9] |
NORSTAD I, FAGERHOLT K, LAPORTE G. Tramp ship routing and scheduling with speed optimization[J]. Transportation Research Part C: Emerging Technologies, 2011, 19(5): 853-865. doi: 10.1016/j.trc.2010.05.001
|
| [10] |
LEIFSSON L P, SAEVARSDOTTIR H, SIGUROSSON S P, et al. Grey-box modeling of an ocean vessel for operational optimization[J]. Simulation Modelling Practice and Theory, 2008, 16(8): 923-932. doi: 10.1016/j.simpat.2008.03.006
|
| [11] |
SHI Wei, GRIMMELIUS H. Comparison of modeling techniques for simulation of fuel consumption of dredgers[C]∥BERTRAM V. The 9th International Conference on Computer and IT Applications in the Maritime Industries. Gubbio: TUHHTechnologie GmbH, 2010: 382-395.
|
| [12] |
YANG Guo-hao, XU Yi-qun, LIN Rong-mo. Fuzzy evaluation of ship energy consumption[J]. Navigation of China, 2011, 34(4): 22-25, 50. (in Chinese). doi: 10.3969/j.issn.1000-4653.2011.04.006
|
| [13] |
YAN Xin-ping, SUN Xing, YIN Qi-zhi. Multiparameter sensitivity analysis of operational energy efficiency for inland river ships based on backpropagation neural network method[J]. Marine Technology Society Journal, 2015, 49(1): 148-153. doi: 10.4031/MTSJ.49.1.5
|
| [14] |
SALA A, CARLO F D, BUGLIONI G, et al. Energy performance evaluation of fishing vessels by fuel mass flow measuring system[J]. Ocean Engineering, 2011, 38(5/6): 804-809.
|
| [15] |
BARRO R D C, KIM J S, LEE D C. Real time monitoring of energy efficiency operation indicator on merchant ships[J]. Journal of the Korean Society of Marine Engineering, 2011, 35(3): 301-308.
|
| [16] |
SUN Xing, YAN Xin-ping, WU Bing, et al. Analysis of the operational energy efficiency for inland river ships[J]. Transportation Research Part D: Transport and Environment, 2013, 22: 34-39. doi: 10.1016/j.trd.2013.03.002
|
| [17] |
CHEN Qian-kun, YAN Xin-ping, YIN Qi-zhi, et al. Speed optimization for inland river ships based on EEOI[J]. Journal of Transport Information and Safety, 2014, 32(4): 87-91. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS201404016.htm
|
| [18] |
CORADDU A, FIGARI M, SAVIO S. Numerical investigation on ship energy efficiency by Monte Carlo simulation[J]. Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment, 2014, 228(3): 220-234. doi: 10.1177/1475090214524184
|
| [19] |
LI Ke-shun, LIU Yi-fan, SUN Pei-ting. Modeling and simulation of ship energy efficiency operation indicator[J]. Navigation of China, 2014, 37(2): 105-108, 121. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHH201402026.htm
|
| [20] |
YAN Lin. Research on energy efficiency index and CO2emission from ships in China[D]. Wuhan: Wuhan University of Technology, 2011. (in Chinese).
|
| [21] |
NI Jun-kai. Research on ship energy efficiency operational indicator[D]. Shanghai: Shanghai Jiaotong University, 2010. (in Chinese).
|
| [22] |
FAN Ai-long, YAN Xin-ping, YIN Qi-zhi, et al. Study of Yangtze River waterway partition based on cluster analysis[C]∥TRB. 94th Annual Meeting of the Transportation Research Board. Washington DC: TRB, 2015: 1-15.
|
| [23] |
Marine Environment Protection Committee. Guidelines for voluntary use of the ship energy efficiency operational indicator(EEOI)[R]. London: International Maritime Organization, 2009.
|
| [24] |
HOLTROP J, MENNEN G G. An approximate power prediction method[J]. International Shipbuilding Progress, 1982, 29: 166-170. doi: 10.3233/ISP-1982-2933501
|
| [25] |
ZHANG Shao-yang, GE Li-juan, AN Yi-sheng, et al. Research status and development of transportation data standards[J]. Journal of Traffic and Transportation Engineering, 2014, 14(2): 112-126. (in Chinese). http://transport.chd.edu.cn/article/id/201402016
|
| [26] |
ZHANG Di, WAN Cheng-peng, YAN Xin-ping. Navigation hindering risk assessment of the Yangtze River based on analysis of accident characteristics[J]. Navigation of China, 2013, 36(2): 94-99. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHH201302023.htm
|