ZHANG Ya-dong, ZHANG Ji-ye, DONG Da-wei, YAN Bing, HUA Chun-rong. Optimization of aerodynamic noise for vehicle alternator[J]. Journal of Traffic and Transportation Engineering, 2015, 15(6): 61-67. doi: 10.19818/j.cnki.1671-1637.2015.06.008
Citation: ZHANG Ya-dong, ZHANG Ji-ye, DONG Da-wei, YAN Bing, HUA Chun-rong. Optimization of aerodynamic noise for vehicle alternator[J]. Journal of Traffic and Transportation Engineering, 2015, 15(6): 61-67. doi: 10.19818/j.cnki.1671-1637.2015.06.008

Optimization of aerodynamic noise for vehicle alternator

doi: 10.19818/j.cnki.1671-1637.2015.06.008
More Information
  • Author Bio:

    ZHANG Ya-dong(1987-), male, doctoral student, +86-28-86466040, aliyzyd@163.com

    ZHANG Ji-ye(1965-), male, professor, PhD, +86-28-86466040, jyzhang@home.swjtu.edu.cn

  • Received Date: 2015-07-30
  • Publish Date: 2015-12-25
  • The large eddy simulation method and the FW-H acoustic model were adopted to simulate the aerodynamic noise of vehicle alternator.The vector composition method was used to optimize the front-blade distribution angle of alternator.Aiming at low noise, high flow and optimizing spectrum structure to reduce the single-frequency rotational noise, the aerodynamic noise properties of alternator were analyzed.Analysis result shows that the numerical simulation and test results have good consistencies on sound pressure level, main influencing orders and magnitudes of alternator noise.The aerodynamic noise sources of vehicle alternator are front and back blades.The main influencing orders of overall noise are orders 6, 8, 10, 12 and 18, and the main energy centers on 1 120-5 600 Hz.The maximum prediction error of overall noise is 6.97 dB, and the prediction errors of rotational noise on orders 12 and 18 are 2.30 dB and 3.30 dB respectively.After optimizing the front-blade distribution angle of alternator, the maximum decreasing amount of overall noise is 3.10 dB, the average decreasing amount is 2.58 dB, the average decreasing amounts of noise on orders 12 and 18 are 5.80 dB, so the noise reduction effect is remarkable.

     

  • loading
  • [1]
    ZHANG Ya-dong, DONG Da-wei, YAN Bing, et al. Experiment study on aerodynamic noise of an automotive alternator[J]. Noise and Vibration Control, 2014, 34(3): 107-110, 123. (in Chinese). doi: 10.3969/j.issn.1006-1335.2014.03.022
    [2]
    MATHER J S B, SAVIDGE J, FISHER M J. New observations on tone generation in fans[J]. Journal of Sound and Vibration, 1971, 16(3): 407-418. doi: 10.1016/0022-460X(71)90596-7
    [3]
    FITZGERALD J M, LAUCHLE G C. Reduction of discrete frequency noise in small, subsonic axial-flow fans[J]. Journal of the Acoustical Society of America, 1984, 76(1): 158-166. doi: 10.1121/1.391112
    [4]
    SUH S J, CHUNG J, LIM B D, et al. Case history: noise source identification of an automobile alternator by RPM dependent noise and vibration spectrum analysis[J]. Noise Control Engineering Journal, 1991, 37(1): 31-36. doi: 10.3397/1.2827792
    [5]
    LIU Min, DONG Da-wei, YAN Bing, et al. Test and analysis of noise characteristics and noise source of vehicle alternator[J]. Journal of Chongqing University of Technology: Natural Science, 2010, 24(6): 13-17. (in Chinese). doi: 10.3969/j.issn.1674-8425-B.2010.06.004
    [6]
    ZHANG Ya-dong. Study on characteristics analysis and control of aeroacoustics of automotive alternator[D]. Chengdu: Southwest Jiaotong University, 2014. (in Chinese).
    [7]
    LIGHTHILL M J. On sound generated aerodynamically. Ⅰ. general theory[J]. Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, 1952, 211: 564-587.
    [8]
    CURLE N. The influence of solid boundaries upon aerodynamic sound[J]. Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, 1955, 231: 505-514.
    [9]
    FFOWCS-WILLIAMS J E, HAWKINGS D L. Sound generation by turbulence and surfaces in arbitrary motion[J]. Philosophical Transactions of the Royal Society of London, Series A, Mathematical and Physical Sciences, 1969, 264: 321-342.
    [10]
    FREDERICK D M, LAUCHLE G C. Aerodynamically-induced noise in an automotive alternator[J]. Noise Control Engineering Journal, 1995, 43(2): 29-37. doi: 10.3397/1.2828362
    [11]
    BRUNGART T A, MEYER G A, LAUCHLE G C. Flow in automotive alternators[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 1996, 210(4): 283-292. doi: 10.1243/PIME_PROC_1996_210_275_02
    [12]
    KIM W, JEON W H, HUR N, et al. Development of a low noise cooling fan for an alternator using numerical and DOE methods[J]. International Journal of Automotive Technology, 2011, 12(2): 307-314. doi: 10.1007/s12239-011-0036-6
    [13]
    NEISE W. Review of noise reduction methods for centrifugal fans[J]. Journal of Engineering for Industry, 1982, 104(2): 151-161. doi: 10.1115/1.3185810
    [14]
    NEISE W. Noise rating of fans on the basis of the specific sound power level[C]∥AFMS. 10th Australasian Fluid Mechanics Conference. Melbourne: AFMS, 1989: 1-44.
    [15]
    BASSI F, CRIVELLINI A, REBAY S, et al. Discontinuous Galerkin solution of the Reynolds-averaged Navier-Stokes and k-ωturbulence model equations[J]. Computers and Fluids, 2005, 34(4/5): 507-540.
    [16]
    CUI Gui-xiang, XU Chun-xiao, ZHANG Zhao-shun. Progress in large eddy simulation of turbulent flows[J]. Acta Aerodynamica Sinica, 2004, 22(2): 121-129. (in Chinese). doi: 10.3969/j.issn.0258-1825.2004.02.001
    [17]
    SPALART P R, JOU W H, STRELETS M, et al. Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach[C]∥AFOSR. 1st AFOSR International Conference on DNS/LES. Washington DC: AFOSR, 1997: 4-8.
    [18]
    HAO Yu-chuan, ZHOU Yuan-bo, XIE Rong-ji. Test reports of vehicle motor sound power measurement laboratory for Southwest Jiaotong University[R]. Chengdu: National Institute of Measurement and Testing Technology, 2010. (in Chinese).
    [19]
    XIN Yang, DONG Da-wei, YAN Bing, et al. Design and appraisal of acoustics laboratory for NVH performance test of vehicle's alternators[J]. Noise and Vibration Control, 2012, 32(3): 147-151. (in Chinese). doi: 10.3969/j.issn.1006-1355.2012.03.034
    [20]
    WANG Yuan-wen, DONG Da-wei, XIE Xiao, et al. Spectral optimization of fan rotation noise based on vector composition method[J]. Key Engineering Materials, 2014, 584: 131-136.

Catalog

    Article Metrics

    Article views (960) PDF downloads(642) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return