| Citation: | ZHOU Shi-bo, TANG Ji-hong, XIONG Zhen-nan. Aggregation characteristics of anchored vessels based on optimized FCM algorithm[J]. Journal of Traffic and Transportation Engineering, 2019, 19(6): 137-148. doi: 10.19818/j.cnki.1671-1637.2019.06.013 |
| [1] |
KROODSMA D A, MAYORGA J, HOCHBERG T, et al. Tracking the global footprint of fisheries[J]. Science, 2018, 359: 904-908. doi: 10.1126/science.aao5646
|
| [2] |
XIAO Fang-liang, LIGTERINGEN H, VAN GULIJK C, et al. Comparison study on AIS data of ship traffic behavior[J]. Ocean Engineering, 2015, 95: 84-93. doi: 10.1016/j.oceaneng.2014.11.020
|
| [3] |
ZHANG Wei-bin, GOERLANDT F, KUJALA P, et al. An advanced method for detecting possible near miss ship collisions from AIS data[J]. Ocean Engineering, 2016, 124: 141-156. doi: 10.1016/j.oceaneng.2016.07.059
|
| [4] |
CHEN Zhi-jun, XUE Jie, WU Chao-zhong, et al. Classification of vessel motion pattern in inland waterways based on automatic identification system[J]. Ocean Engineering, 2018, 161: 69-76. doi: 10.1016/j.oceaneng.2018.04.072
|
| [5] |
TU En-mei, ZHANG Guang-hao, RACHMAWATI L, et al. Exploiting AIS data for intelligent maritime navigation: a comprehensive survey from data to methodology[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(5): 1559-1582. doi: 10.1109/TITS.2017.2724551
|
| [6] |
KIM J H, CHOI J H, YOO K H, et al. AA-DBSCAN: an approximate adaptive DBSCAN for finding clusters with varying densities[J]. The Journal of Supercomputing, 2019, 75(1): 142-169. doi: 10.1007/s11227-018-2380-z
|
| [7] |
DING Zhao-ying, YAO Di, WU Lin, et al. A dock mining algorithm for massive vessel location data based on improved DBSCAN[J]. Computer Engineering and Science, 2015, 37(11): 2061-2067. (in Chinese). doi: 10.3969/j.issn.1007-130X.2015.11.011
|
| [8] |
LIU Tao, HU Qin-you, YANG Chun. Clustering analysis and identification of traffic congested waters[J]. Navigation of China, 2010, 33(4): 75-78. (in Chinese). doi: 10.3969/j.issn.1000-4653.2010.04.018
|
| [9] |
PALLOTTA G, VESPE M, BRYAN K. Vessel pattern knowledge discovery from AIS data: a frame work for anomaly detection and route prediction[J]. Entropy, 2013, 15: 2218-2245. doi: 10.3390/e15062218
|
| [10] |
ZHAO Liang-bin, SHI Guo-you, YANG Jia-xuan. Adaptive hierarchical clustering of ship trajectory with DBSCAN algorithm[J]. Navigation of China, 2018, 41(3): 53-58. (in Chinese). doi: 10.3969/j.issn.1000-4653.2018.03.011
|
| [11] |
WU Lin, XU Yong-jun, WANG Qi, et al. Mapping global shipping density from AIS data[J]. The Journal of Navigation, 2017, 70: 67-81. doi: 10.1017/S0373463316000345
|
| [12] |
Marine Management Organisation. Mapping UK shipping density and routes technical annex[R]. Welsh: Marine Management Organisation, 2014.
|
| [13] |
XIAO Xiao, ZHAO Qiang, SHAO Zhe-ping, et al. Specific ship's encounter live distribution based on AIS[J]. Navigation of China, 2014, 37(3): 50-53. (in Chinese). doi: 10.3969/j.issn.1000-4653.2014.03.012
|
| [14] |
NING Jian-qiang, HUANG Tao, DIAO Bo-yu, et al. A fine grained grid-based maritime traffic density algorithm for mass ship trajectory data[J]. Computer Engineering and Science, 2015, 37(12): 2242-2249. (in Chinese). doi: 10.3969/j.issn.1007-130X.2015.12.008
|
| [15] |
LIU Chun-fang, HUANG Wen-bin, SUN Fu-chun, et al. LDS-FCM: a linear dynamical system based fuzzy C-means method for tactile recognition[J]. IEEE Transactions on Fuzzy Systems, 2019, 27(1): 72-83. doi: 10.1109/TFUZZ.2018.2859184
|
| [16] |
XU Chao, ZHAN Tian-ming, KONG Ling-cheng, et al. A robust hierarchical fuzzy algorithm with student's t-distribution for image segmentation application[J]. Acta Electronica Sinica, 2017, 45(7): 1695-1700. (in Chinese). doi: 10.3969/j.issn.0372-2112.2017.07.020
|
| [17] |
DING Yi, FU Xian. Kernel-based fuzzy C-means clustering algorithm based on genetic algorithm[J]. Neurocomputing, 2016, 188: 233-238. doi: 10.1016/j.neucom.2015.01.106
|
| [18] |
LU Wei-jia, YAN Zhuang-zhi. Improved FCM algorithm based on K-means and granular computing[J]. Journal of Intelligent Systems, 2015, 24(2): 215-222. doi: 10.1515/jisys-2014-0119
|
| [19] |
LI Qiang, ZHANG Qi-jun, GUAN Xin, et al. Segmentation of carotid intima media in ultrasound images using improved fuzzy C-means algorithm[J]. Journal of Tianjin University (Science and Technology), 2018, 51(1): 95-102. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX201801014.htm
|
| [20] |
WU Zi-heng, WU Zhong-cheng, ZHANG Jun. An improved FCM algorithm with adaptive weights based on SA-PSO[J]. Neural Computing and Applications, 2017, 28(10): 3113-3118. doi: 10.1007/s00521-016-2786-6
|
| [21] |
YU De-xin, TIAN Xiu-juan, YANG Zhao-sheng. Division of traffic control periods based on improved FCM clustering[J]. Journal of South China University of Technology (Natural Science Edition), 2016, 44(12): 53-60. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG201612008.htm
|
| [22] |
XI Liang, WANG Yong, ZHANG Feng-bin. Anomaly detection algorithm based on FCM with adaptive artificial fish-swarm[J]. Journal of Computer Research and Development, 2019, 56(5): 1048-1059. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JFYZ201905015.htm
|
| [23] |
ZHOU Kai-le, YANG Shan-lin, WANG Xiao-jia, et al. Load classification based on improved FCM algorithm with adaptive fuzziness parameter selection[J]. System Engineering—Theory and Practice, 2014, 34(5): 1283-1289. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201405024.htm
|
| [24] |
GONG Gai-yun, GAO Xin-bo, WU Zhong-dong. An optimal choice method of parameter m in FCM clustering algorithm[J]. Fuzzy Systems and Mathematics, 2005, 19(1): 143-148. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-MUTE200501024.htm
|
| [25] |
WANG Jun, WANG Shi-tong. Double indices FCM algorithm based on hybrid distance metric learning[J]. Journal of Software, 2010, 21(8): 1878-1888. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-RJXB201008012.htm
|
| [26] |
WANG Zong-hu, LIU Zhi-jing, CHEN Dong-hui. Research of PSO-based fuzzy C-means clustering algorithm[J]. Computer Science, 2012, 39(9): 166-169. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA201209039.htm
|
| [27] |
ZHOU Shi-bo, XU Wei-xiang, CHAI Tian. Data-weighted fuzzy C-means clustering algorithm[J]. Systems Engineering and Electronic, 2014, 36(11): 2314-2319. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201411033.htm
|
| [28] |
RODRIGUEZ A, LAIO A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344: 1492-1496.
|
| [29] |
PAL N R, BEZDEK J C. On cluster validity for the fuzzy C-mean model[J]. IEEE Transactions on Fuzzy Systems, 1995, 3(3): 370-379.
|
| [30] |
XIE Juan-ying, GAO Hong-chao, XIE Wei-xin, et al. Robust clustering by detecting density peaks and assigning points based on fuzzy weighted K-nearest neighbors[J]. Information Sciences, 2016, 354: 19-40.
|
| [31] |
JIANG Ke-qin, SHI Pei-bei. Optimized initial centers for fuzzy C-means algorithm[J]. Journal of Hefei University of Technology, 2009, 32(5): 762-764, 768. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HEFE200905037.htm
|