| Citation: | LYU Yan-jun, LUO Hong-bo, ZHANG Yong-fang, KANG Jian-xiong, LI Peng-zhou. Research progress of surface technology in piston assembly-cylinder liner system of internal combustion engines[J]. Journal of Traffic and Transportation Engineering, 2022, 22(1): 24-41. doi: 10.19818/j.cnki.1671-1637.2022.01.002 |
| [1] |
LEACH F, KALGHATGI G, STONE R, et al. The scope for improving the efficiency and environmental impact of internal combustion engines[J]. Transportation Engineering, 2020, 1: 100005. doi: 10.1016/j.treng.2020.100005
|
| [2] |
DOLATABADI N, FORDER M, MORRIS N, et al. Influence of advanced cylinder coatings on vehicular fuel economy and emissions in piston compression ring conjunction[J]. Applied Energy, 2020, 259: 114129. doi: 10.1016/j.apenergy.2019.114129
|
| [3] |
TARTAKOVSKY L, SHEINTUCH M. Fuel reforming in internal combustion engines[J]. Progress in Energy and Combustion Science, 2018, 67: 88-114. doi: 10.1016/j.pecs.2018.02.003
|
| [4] |
RAHMANI R, RAHNEJAT H, FITZSIMONS B, et al. The effect of cylinder liner operating temperature on frictional loss and engine emissions in piston ring conjunction[J]. Applied Energy, 2017, 191: 568-581. doi: 10.1016/j.apenergy.2017.01.098
|
| [5] |
MISHRA P C. A review of piston compression ring tribology[J]. Tribology in Industry, 2014, 36(3): 269-280.
|
| [6] |
GACHOT C, ROSENKRANZ A, HSU S M, et al. A critical assessment of surface texturing for friction and wear improvement[J]. Wear, 2017, 372/373: 21-41. doi: 10.1016/j.wear.2016.11.020
|
| [7] |
HE Yu, ZOU Ping, ZHU Zhi-wei, et al. Design and application of a flexure-based oscillation mechanism for surface texturing[J]. Journal of Manufacturing Processes, 2018, 32: 298-306. doi: 10.1016/j.jmapro.2018.02.017
|
| [8] |
SUNDARARAJAN G, JOSHI S V, KRISHNA L R. Engineered surfaces for automotive engine and power train components[J]. Current Opinion in Chemical Engineering, 2016, 11: 1-6. doi: 10.1016/j.coche.2015.10.001
|
| [9] |
USMAN A, PARK C W. Optimizing the tribological performance of textured piston ring-liner contact for reduced frictional losses in SI engine: warm operating conditions[J]. Tribology International, 2016, 99: 224-236. doi: 10.1016/j.triboint.2016.03.030
|
| [10] |
WAN Shan-hong, LI Dong-shan, ZHANG Guang-an, et al. Comparison of the scuffing behaviour and wear resistance of candidate engineered coatings for automotive piston rings[J]. Tribology International, 2017, 106: 10-22. doi: 10.1016/j.triboint.2016.10.026
|
| [11] |
GU Chun-xing, MENG Xiang-hui, ZHANG Di. Analysis of the coated and textured ring/liner conjunction based on a thermal mixed lubrication model[J]. Friction, 2018, 6(4): 420-431. doi: 10.1007/s40544-017-0176-4
|
| [12] |
WONG V W, TUNG S C. Overview of automotive engine friction and reduction trends—effects of surface, material, and lubricant-additive technologies[J]. Friction, 2016, 4(1): 1-28. doi: 10.1007/s40544-016-0107-9
|
| [13] |
DURONIO F, DE VITA A, MONTANARO A, et al. Gasoline direct injection engines—a review of latest technologies and trends. Part 2[J]. Fuel, 2020, 265: 116947. doi: 10.1016/j.fuel.2019.116947
|
| [14] |
LYU Yan-jun, KANG Jian-xiong, ZHANG Yong-fang, et al. Research progress of anti-friction and anti-wear of piston-cylinder liner system in internal combustion engine[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 21-34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202004006.htm
|
| [15] |
HATAMI M, HASANPOUR M, JING Deng-wei. Recent developments of nanoparticles additives to the consumables liquids in internal combustion engines: Part Ⅱ: nano-lubricants[J]. Journal of Molecular Liquids, 2020, 319: 114156. doi: 10.1016/j.molliq.2020.114156
|
| [16] |
GROPPER D, WANG Ling, HARVEY T J. Hydrodynamic lubrication of textured surfaces: a review of modeling techniques and key findings[J]. Tribology International, 2016, 94: 509-529. doi: 10.1016/j.triboint.2015.10.009
|
| [17] |
RYK G, ETSION I. Testing piston rings with partial laser surface texturing for friction reduction[J]. Wear, 2006, 261(7/8): 792-796.
|
| [18] |
MARCHETTO D, ROTA A, CALABRI L, et al. AFM investigation of tribological properties of nano-patterned silicon surface[J]. Wear, 2008, 265(5/6): 577-582.
|
| [19] |
PETTERSSON U, JACOBSON S. Friction and wear properties of micro textured DLC coated surfaces in boundary lubricated sliding[J]. Tribology Letters, 2004, 17(3): 553-559. doi: 10.1023/B:TRIL.0000044504.76164.4e
|
| [20] |
LI Ning, XU Er-jiang, LIU Ze, et al. Tuning apparent friction coefficient by controlled patterning bulk metallic glasses surfaces[J]. Scientific Reports, 2016, 6(1): 39388. doi: 10.1038/srep39388
|
| [21] |
CHEN Luan-xia, LIU Zhan-qiang, SHEN Qi. Enhancing tribological performance by anodizing micro-textured surfaces with nano-MoS2 coatings prepared on aluminum-silicon alloys[J]. Tribology International, 2018, 122: 84-95. doi: 10.1016/j.triboint.2018.02.039
|
| [22] |
WALKER J C, KAMPS T J, LAM J W, et al. Tribological behaviour of an electrochemical jet machined textured Al-Si automotive cylinder liner material[J]. Wear, 2017, 376/377: 1611-1621. doi: 10.1016/j.wear.2017.01.085
|
| [23] |
GRECO A, RAPHAELSON S, EHMANN K, et al. Surface texturing of tribological interfaces using the vibromechanical texturing method[J]. Journal of Manufacturing Science and Engineering, 2009, 131(6): 061005 doi: 10.1115/1.4000418
|
| [24] |
SINGH A, HARIMKAR S P. Laser surface engineering of magnesium alloys: a review[J]. Journal of the Minerals, Metals and Materials Society, 2012, 64(6): 716-733. doi: 10.1007/s11837-012-0340-2
|
| [25] |
BAHARIN A F S, GHAZALI M J, WAHAB J A, et al. Laser surface texturing and its contribution to friction and wear reduction: a brief review[J]. Industrial Lubrication and Tribology, 2016, 68(1): 57-66. doi: 10.1108/ILT-05-2015-0067
|
| [26] |
MAO Bo, SIDDAIAH A, LIAO Yi-liang, et al. Laser surface texturing and related techniques for enhancing tribological performance of engineering materials: a review[J]. Journal of Manufacturing Processes, 2020, 53: 153-173. doi: 10.1016/j.jmapro.2020.02.009
|
| [27] |
KLINK U, CAI Jie. Laser honing of cylinder working surface[J]. Foreign Internal Combustion Engine, 1998, 30(2): 50-52. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWLR199802008.htm
|
| [28] |
SYED B, SHARIFF S M, PADMANABHAM G, et al. Influence of laser surface hardened layer on mechanical properties of re-engineered low carbon steel sheet[J]. Materials Science and Engineering: A, 2017, 685: 168-177. doi: 10.1016/j.msea.2016.12.124
|
| [29] |
MAO Bo, LIAO Yi-liang, LI Bin. Gradient twinning microstructure generated by laser shock peening in an AZ31B magnesium alloy[J]. Applied Surface Science, 2018, 457: 342-351. doi: 10.1016/j.apsusc.2018.06.176
|
| [30] |
MONTROSS C S, WEI Tao, YE Lin, et al. Laser shock processing and its effects on microstructure and properties of metal alloys: a review[J]. International Journal of Fatigue, 2002, 24(10): 1021-1036. doi: 10.1016/S0142-1123(02)00022-1
|
| [31] |
KATTOURA M, MANNAVA S R, QIAN Dong, et al. Effect of laser shock peening on residual stress, microstructure and fatigue behavior of ATI 718Plus alloy[J]. International Journal of Fatigue, 2017, 102: 121-134. doi: 10.1016/j.ijfatigue.2017.04.016
|
| [32] |
LI Kang-mei, YAO Zhen-qiang, HU Yong-xiang, et al. Friction and wear performance of laser peen textured surface under starved lubrication[J]. Tribology International, 2014, 77: 97-105. doi: 10.1016/j.triboint.2014.04.017
|
| [33] |
YAKIMETS I, RICHARD C, BÉRANGER G, et al. Laser peening processing effect on mechanical and tribological properties of rolling steel 100Cr6[J]. Wear, 2004, 256(3/4): 311-320.
|
| [34] |
LIM H, KIM P, JEONG H, et al. Enhancement of abrasion and corrosion resistance of duplex stainless steel by laser shock peening[J]. Journal of Materials Processing Technology, 2012, 212(6): 1347-1354. doi: 10.1016/j.jmatprotec.2012.01.023
|
| [35] |
WANG Hao, NING Cheng-yi, HUANG Yi-hui, et al. Improvement of abrasion resistance in artificial seawater and corrosion resistance in NaCl solution of 7075 aluminum alloy processed by laser shock peening[J]. Opticsand Lasers in Engineering, 2017, 90(5): 179-185.
|
| [36] |
MAO Bo, SIDDAIAH A, MENEZES P L, et al. Surface texturing by indirect laser shock surface patterning for manipulated friction coefficient[J]. Journal of Materials Processing Technology, 2018, 257: 227-233. doi: 10.1016/j.jmatprotec.2018.02.041
|
| [37] |
SEDLAČEK M, GREGORČIČ P, PODGORNIK B. Use of the roughness parameters Ssk and Sku to control friction—a method for designing surface texturing[J]. Tribology Transactions, 2017, 60(2): 260-266. doi: 10.1080/10402004.2016.1159358
|
| [38] |
HU Yong, QU Sheng-guan, LI Bin, et al. Effects of different surface textures on friction and wear performance of diesel cylinder liner-piston ring[J]. Lubrication Engineering, 2013, 38(4): 57-62. (in Chinese) doi: 10.3969/j.issn.0254-0150.2013.04.013
|
| [39] |
RAO Xiang, SHENG Chen-xing, GUO Zhi-wei. Research on the friction and wear properties of diesel engine cylinder liner with different surface textures[J]. Acta Armamentarii, 2018, 39(2): 356-363. (in Chinese) doi: 10.3969/j.issn.1000-1093.2018.02.019
|
| [40] |
CHARITOPOULOS A G, EFSTATHIOU E E, PAPADOPOULOS C I, et al. Effects of manufacturing errors on tribological characteristics of 3-D textured micro-thrust bearings[J]. CIRP Journal of Manufacturing Science and Technology, 2013, 6(2): 128-142. doi: 10.1016/j.cirpj.2012.12.001
|
| [41] |
COSTA H L, HUTCHINGS I M. Hydrodynamic lubrication of textured steel surfaces under reciprocating sliding conditions[J]. Tribology International, 2007, 40(8): 1227-1238. doi: 10.1016/j.triboint.2007.01.014
|
| [42] |
RUAN Hong-yan, LYU Jian-jun, SI Hui, et al. Research on hydrodynamic lubrication of different surface texture[J]. China Mechanical Engineering, 2009, 20(9): 1033-1036. (in Chinese) doi: 10.3321/j.issn:1004-132X.2009.09.007
|
| [43] |
HUA Xi-jun, SUN Jian-guo, ZHANG Pei-yun, et al. Research on discriminating partition laser surface micro-texturing technology of engine cylinder[J]. Tribology International, 2016, 98: 190-196. doi: 10.1016/j.triboint.2016.02.010
|
| [44] |
JIANG Ren-pu, GUO Zhi-wei, RAO Xiang, et al. Influences of thread grooves surface texturing on the tribological properties of cylinder liner-piston ring[J]. Transactions of CSICE, 2018, 36(5): 471-479. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NRJX201805012.htm
|
| [45] |
XU Yu-fu, PENG Yu-bin, DEARN K D, et al. Fabrication and tribological characterization of laser textured boron cast iron surfaces[J]. Surface and Coatings Technology, 2017, 313: 391-401. doi: 10.1016/j.surfcoat.2017.02.005
|
| [46] |
LIU Jun, ZHANG Zhi-nan, XIE You-bai. Effect of low viscosity oil and surface texture on friction characteristics of piston ring-liner[J]. Journal of Shanghai Jiao Tong University, 2018, 52(5): 505-510. (in Chinese) doi: 10.3969/j.issn.1674-8115.2018.05.004
|
| [47] |
ZHANG Hui, HUA Meng, DONG Guo-zhong, et al. Optimization of texture shape based on genetic algorithm under unidirectional sliding[J]. Tribology International, 2017, 115: 222-232. doi: 10.1016/j.triboint.2017.05.017
|
| [48] |
MA Kai, GUO Zhi-wei, MIAO Chen-wei, et al. Influence of surface textured piston ring on tribological performance of cylinder liner-piston ring[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(7): 1109-1117. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201907016.htm
|
| [49] |
SHEN Cong, KHONSARI M M. The effect of laser machined pockets on the lubrication of piston ring prototypes[J]. Tribology International, 2016, 101: 273-283. doi: 10.1016/j.triboint.2016.04.009
|
| [50] |
YU Hai-wu, WANG Xiao-lei, ZHOU Fei. Geometric shape effects of surface texture on the generation of hydrodynamic pressure between conformal contacting surfaces[J]. Tribology Letters, 2010, 37(2): 123-130. doi: 10.1007/s11249-009-9497-4
|
| [51] |
EZHILMARAN V, VASA N J, VIJAYARAGHAVAN L. Investigation on generation of laser assisted dimples on piston ring surface and influence of dimple parameters on friction[J]. Surface and Coatings Technology, 2018, 335: 314-326. doi: 10.1016/j.surfcoat.2017.12.052
|
| [52] |
USMAN A, PARK C W. Optimizing the tribological performance of textured piston ring-liner contact for reduced frictional losses in SI engine: warm operating conditions[J]. Tribology International, 2016, 99: 224-236. doi: 10.1016/j.triboint.2016.03.030
|
| [53] |
RAO Xiang, SHENG Chen-xing, GUO Zhi-wei, et al. Effects of thread groove width in cylinder liner surface on performances of diesel engine[J]. Wear, 2019, 426/427: 1296-1303. doi: 10.1016/j.wear.2018.12.070
|
| [54] |
ZHOU Yuan-kai, ZHU Hua, TANG Wei, et al. Development of the theoretical model for the optimal design of surface texturing on cylinder liner[J]. Tribology International, 2012, 52: 1-6. doi: 10.1016/j.triboint.2011.12.017
|
| [55] |
RYK G, ETSION I. Testing piston rings with partial laser surface texturing for friction reduction[J]. Wear, 2006, 261(7/8): 792-796.
|
| [56] |
ETSION I, SHER E. Improving fuel efficiency with laser surface textured piston rings[J]. Tribology International, 2009, 42(4): 542-547. doi: 10.1016/j.triboint.2008.02.015
|
| [57] |
YAN Dong-sheng. Fundamental research on tribological performance of textured piston ring[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009. (in Chinese)
|
| [58] |
XU Chang-kun, GUO Zhi-wei, MIAO Chen-wei, et al. Effect of texture density in surface of piston ring on tribological performance of cylinder liner-piston ring[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(10): 1489-1496. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX202010004.htm
|
| [59] |
ZHAN Jian, YANG Ming-jiang. Investigation on dimples distribution angle in laser texturing of cylinder-piston ring system[J]. Tribology Transactions, 2012, 55(5): 693-697. doi: 10.1080/10402004.2012.694581
|
| [60] |
DAVIS D, SRIVASTAVA M, MALATHI M, et al. Effect of Cr2AlC MAX phase addition on strengthening of Ni-Mo-Al alloy coating on piston ring: tribological and twist-fatigue life assessment[J]. Applied Surface Science, 2018, 449: 295-303. doi: 10.1016/j.apsusc.2018.01.146
|
| [61] |
UOZATO S, NAKATA K, USHIO M. Evaluation of ferrous powder thermal spray coatings on diesel engine cylinder bores[J]. Surface and Coatings Technology, 2005, 200(7): 2580-2586. doi: 10.1016/j.surfcoat.2005.05.042
|
| [62] |
GERALD O J, LI Wen-ge, ZHAO Yuan-tao, et al. Influence of plasma spraying current on the microstructural characteristics and tribological behaviour of plasma sprayed Cr2O3 coating[J]. Boletín de la Sociedad Espaola de Cerámicay Vidrio, 2021, 60(6): 338-346. doi: 10.1016/j.bsecv.2020.03.007
|
| [63] |
CAO Yu-xia, DU Ling-zhong, ZHANG Wei-gang, et al. Study on preparation and tribological properties of atmospheric plasma-sprayed NiCoCrAlY/Al2O3 wear-resistant coatings[J]. Surface technology, 2015, 44(5): 62-66. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS201505012.htm
|
| [64] |
LIU Li-ming. Preparation of cylinder inner wall wear-resistant coating and study on its tribological performance[D]. Yangzhou: Yangzhou University, 2018. (in Chinese)
|
| [65] |
MANZAT A, KILLINGER A, GADOW R, et al. Supersonic flame sprayed cylinder liner coatings and the benefits of their intrinsic porosity[J]. Thermal Spray Technology, 2012, 4(2): 57-64. (in Chinese) doi: 10.3969/j.issn.1674-7127.2012.02.013
|
| [66] |
KARAOGLANLI A C, ALTUNCU E, OZDEMIR I, et al. Structure and durability evaluation of YSZ+Al2O3 composite TBCs with APS and HVOF bond coats under thermal cycling conditions[J]. Surface and Coatings Technology, 2011, 205: 369-373. doi: 10.1016/j.surfcoat.2011.04.081
|
| [67] |
XU Guo, ZHENG Wei-gang. Research on application of HVOF in surface modification of piston ring[J]. Hot Working Technology, 2014, 43(14): 167-168. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201414047.htm
|
| [68] |
HUANG Bo, WU Qing-dan, WEI Xin-long, et al. Tribocorrosion behaviors of high velocity oxygen-fuel sprayed WC-10Co-4Cr coatings[J]. Surface Technology, 2020, 49(1): 285-293. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS202001035.htm
|
| [69] |
YANG Wen-jin, ZOU Lang, CAO Xiao-ying, et al. Fretting wear properties of HVOF-sprayed CoMoCrSi coatings with different spraying parameters[J]. Surface and Coatings Technology, 2019, 358: 994-1005. doi: 10.1016/j.surfcoat.2018.12.039
|
| [70] |
QIAO Lei, WU Yu-ping, HONG Sheng, et al. Ultrasonic cavitation erosion mechanism and mathematical model of HVOF sprayed Fe-based amorphous/nanocrystalline coatings[J]. Ultrasonics Sonochemistry, 2019, 52: 142-149. doi: 10.1016/j.ultsonch.2018.11.010
|
| [71] |
NIRANATLUMPONG P, KOIPRASERT H. The effect of Mo content in plasma-sprayed Mo-NiCrBSi coating on the tribological behavior[J]. Surface and Coatings Technology, 2010, 205(2): 483-489. doi: 10.1016/j.surfcoat.2010.07.017
|
| [72] |
SKOPP A, KELLING N, WOYDT M, et al. Thermally sprayed titanium suboxide coatings for piston ring/cylinder liners under mixed lubrication and dry-running conditions[J]. Wear, 2007, 262(9/10): 1061-1070.
|
| [73] |
HE Zhe-yu. Friction and wear properties of Mo and Mo based composition coating for piston rings[D]. Xiangtan: Hunan University of Science and Technology, 2016. (in Chinese)
|
| [74] |
GUO Yong-ming, LI Xu-qiang, WANG Hai-jun, et al. Tribological behavior of supersonic plasma spraying NiCr-Cr3C2/Mo composited coatings at high temperature[J]. China Surface Engineering, 2012, 25(5): 31-36. (in Chinese) doi: 10.3969/j.issn.1007-9289.2012.05.006
|
| [75] |
RASTEGAR F, RICHARDSON D E. Alternative to chrome: HVOF cermet coatings for high horse power diesel engines[J]. Surface and Coatings Technology, 1997, 90(1/2): 156-163.
|
| [76] |
LARIBI M, VANNES A B, TREHEUX D. Study of mechanical behavior of molybdenum coating using sliding wear and impact tests[J]. Wear, 2007, 262(11/12): 1330-1336.
|
| [77] |
CHO D H, LEE Y Z. Evaluation of ring surfaces with several coatings for friction, wear and scuffing life[J]. Transactions of Nonferrous Metals Society of China, 2009, 19(4): 992-996. doi: 10.1016/S1003-6326(08)60393-3
|
| [78] |
ARAUJO J A, BANFIELD R R. DLC as alow friction coating for engine components[J]. SAE Technical Papers, 2012-36-0255.
|
| [79] |
WANG Xing, CHENG Wei-sheng. Application of diamond-like carbon coating on piston ring[J]. Automobile and New Powertrain, 2019, 2(3): 60-63. (in Chinese) doi: 10.3969/j.issn.2096-4870.2019.03.013
|
| [80] |
KOSZELA W, PAWLUS P, REIZER R, et al. The combined effect of surface texturing and DLC coating on the functional properties of internal combustion engines[J]. Tribology International, 2018, 127: 470-477. doi: 10.1016/j.triboint.2018.06.034
|
| [81] |
TAS M O, BANERJI A, LOU M, et al. Roles of mirror-like surface finish and DLC coated piston rings on increasing scuffing resistance of cast iron cylinder liners[J]. Wear, 2017, 376/377: 1558-1569. doi: 10.1016/j.wear.2017.01.110
|
| [82] |
DAHOTRE N B, NAYAK S. Nanocoatings for engine application[J]. Surface and Coatings Technology, 2005, 194(1): 58-67. doi: 10.1016/j.surfcoat.2004.05.006
|
| [83] |
RAGHAVENDRA C R, BASAVARAJAPPA S, SOGALAD I. Multi-objective optimization of electrodeposition of Ni-Al2O3 nano composite coating on Al6061 substrate[J]. Transactions of the Indian Institute of Metals, 2018, 71(9): 2110-2132.
|
| [84] |
UMAPATHI D, DEVARAJU A, RATHINASURIYAN C, et al. Mechanical and tribological properties of electroless nickel phosphorous and nickel phosphorous-titanium nitride coating[J]. Materials Today Proceedings, 2020, 22: 1038-1042. doi: 10.1016/j.matpr.2019.11.283
|
| [85] |
DOLATABADI N, FORDER M, MORRIS N, et al. Influence of advanced cylinder coatings on vehicular fuel economy and emissions in piston compression ring conjunction[J]. Applied Energy, 2020, 259(1): 114129.
|
| [86] |
ZHANG Yu-juan, ZHANG Sheng-mo, SUN D, et al. Wide adaptability of Cu nano-additives to the hardness and composition of DLC coatings in DLC/PAO solid-liquid composite lubricating system[J]. Tribology International, 2019, 138: 184-195. doi: 10.1016/j.triboint.2019.05.043
|
| [87] |
GÓRAL A, LITYŃSKA-DOBRZYŃSKA L, KOT M, et al. Effect of surface roughness and structure features on tribological properties of electrodeposited nanocrystalline Ni and Ni/Al2O3 coatings[J]. Journal of Materials Engineering and Performance, 2017, 26(5): 2118-2128. doi: 10.1007/s11665-017-2662-2
|
| [88] |
RAGHAVENDRA C R, BASAVARAJAPPA S, SOGALAD I, et al. Study on Ni composite coating on Al6061 substrate material with different nano particle reinforcement by electrodeposition process[J]. Materials Today: Proceedings, 2020, 24(2): 1680-1685.
|
| [89] |
BAJWA R S, KHAN Z, BAKOLAS V, et al. Water- lubricated Ni-based composite (Ni-Al2O3, Ni-SiC and Ni-ZrO2) thin film coatings for industrial applications[J]. Acta Metallurgica Sinica (English Letters), 2016, 29(1): 8-16. doi: 10.1007/s40195-015-0354-1
|
| [90] |
VAßEN R, JARLIGO M O, STEINKE T, et al. Overview on advanced thermal barrier coatings[J]. Surface and Coatings Technology, 2010, 205(4): 938-942. doi: 10.1016/j.surfcoat.2010.08.151
|
| [91] |
CERIT M. Thermo mechanical analysis of a partially ceramic coated piston used in an SI engine[J]. Surface and Coatings Technology, 2011, 205(11): 3499-3505. doi: 10.1016/j.surfcoat.2010.12.019
|
| [92] |
YAO Zhi-min, QIAN Zuo-qin. Thermal analysis of nano ceramic coated piston used in natural gas engine[J]. Journal of Alloys and Compounds, 2018, 768: 441-450. doi: 10.1016/j.jallcom.2018.07.278
|
| [93] |
DE GOES U W, MARKOCSAN N, GUPTA M, et al. Thermal barrier coatings with novel architectures for diesel engine applications[J]. Surface and Coatings Technology, 2020, 396: 125950. doi: 10.1016/j.surfcoat.2020.125950
|
| [94] |
WANG Rui-zhe, ZHU Li-na, YUE Wen, et al, Research status of compound treatment of laser surface texturing and solid lubrication technology to improve surface tribological properties[J]. Materials Protection, 2019, 52(10): 110-115. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLBH201910023.htm
|
| [95] |
CHO M R, CHOI J K, HAN D C. Calculation of mixed lubrication at piston ring and cylinder liner interface[J]. KSME International Journal, 2001, 15(7): 859-865. doi: 10.1007/BF03185264
|
| [96] |
PATIR N, CHENG H S. An average flow model for determining effects of three-dimensional roughness on partial hydrodynamic lubrication[J]. Journal of Lubrication Technology, 1978, 100(1): 12-17. doi: 10.1115/1.3453103
|
| [97] |
PATIR N, CHENG H S. Application of average flow model to lubrication between rough sliding surfaces[J]. Journal of Lubrication Technology, 1979, 121(2): 220-230.
|
| [98] |
GREENWOOD J A, TRIPP J H. The contact of two nominally flat rough surfaces[J]. Proceedings of the Institution of Mechanical Engineers, 1970, 185(1): 625-633. doi: 10.1243/PIME_PROC_1970_185_069_02
|
| [99] |
WILLIS E. Surface finish in relation to cylinder liners[J]. Wear, 1986, 109(1/2/3/4): 351-366.
|
| [100] |
RONEN A, ETSION I, KLIGERMAN Y. Friction-reducing surface-texturing in reciprocating automotive components[J]. Tribology Transactions, 2001, 44(3): 359-366. doi: 10.1080/10402000108982468
|
| [101] |
RYK G, KLIGERMAN Y, ETSION I. Experimental investigation of laser surface texturing for reciprocating automotive components[J]. Tribology Transactions, 2002, 45(4): 444-449. doi: 10.1080/10402000208982572
|
| [102] |
KLIGERMAN Y, ETSION I, SHINKARENKO A. Improving tribological performance of piston rings by partial surface texturing[J]. Journal of Tribology, 2005, 127(3): 632-638. doi: 10.1115/1.1866171
|
| [103] |
FU Yong-hong, ZHANG Hua-wei, JI Jing-hu, et al. Numerical analysis on the lubrication performance of piston ring by surface micro-texturing[J]. Transactions of CSICE Engine, 2009, 27(2): 180-185. (in Chinese) doi: 10.3321/j.issn:1000-0909.2009.02.014
|
| [104] |
LIU Cheng, LYU Yan-jun, ZHANG Yong-fang, et al. Investigation on the frictional performance of surface textured ring-deformed liner conjunction in internal combustion engines[J]. Energies, 2019, 12(14): 2761. doi: 10.3390/en12142761
|
| [105] |
HU Tian-chang. Study on fabrication and tribological properties of laser texturing on the metal surfaces[D]. Beijing: University of Chinese Academy of Sciences, 2012. (in Chinese)
|
| [106] |
ZHANG Ke-dong, DENG Jian-xin, GUO Xu-hong, et al. Study on the adhesion and tribological behavior of PVD TiAlN coatings with a multi-scale textured substrate surface[J]. International Journal of Refractory Metals and Hard Materials, 2018, 72: 292-305. doi: 10.1016/j.ijrmhm.2018.01.003
|
| [107] |
WAN Yi, LI Jian-liang, XIONG Dang-sheng. Tribological property of textured-coating on piston ring surface[J]. Surface Technology, 2018, 47(6): 195-201. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS201806029.htm
|
| [108] |
LI Jian-liang, XIONG Dang-sheng, WU Hong-yan, et al. Tribological properties of laser surface texturing and molybdenizing duplex-treated Ni-base alloy[J]. Tribology Transactions, 2010, 53(2): 195-202. doi: 10.1080/10402000903097478
|
| [109] |
TAN Xu-guang, ZHANG Jian, XIONG Pei-you. Wear resistance mechanism of engine piston skirt coating under cold start condition[J]. Engineering Failure Analysis, 2020, 118: 104912. doi: 10.1016/j.engfailanal.2020.104912
|
| [110] |
MA Chun-sheng, LIU Jian, ZHU Xin-he, et al. Optimization of surface texture fabricated by three-step microarc oxidation for self-lubricating composite coating of diesel engine piston skirts[J]. Wear, 2021, 466/467: 203557. doi: 10.1016/j.wear.2020.203557
|
| [111] |
KOSZELA W, PAWLUS P, REIZER R, et al. The combined effect of surface texturing and DLC coating on the functional properties of internal combustion engines[J]. Tribology International, 2018, 127: 470-477. doi: 10.1016/j.triboint.2018.06.034
|