Volume 22 Issue 5
Oct.  2022
Turn off MathJax
Article Contents
REN Qing-yang, JIN Hong-hua, XIAO Song-qiang, WANG Fei-fei, CHEN Bin. Review on long-term performance of reinforced concrete structures under simulated acid rain erosion environments[J]. Journal of Traffic and Transportation Engineering, 2022, 22(5): 41-72. doi: 10.19818/j.cnki.1671-1637.2022.05.002
Citation: REN Qing-yang, JIN Hong-hua, XIAO Song-qiang, WANG Fei-fei, CHEN Bin. Review on long-term performance of reinforced concrete structures under simulated acid rain erosion environments[J]. Journal of Traffic and Transportation Engineering, 2022, 22(5): 41-72. doi: 10.19818/j.cnki.1671-1637.2022.05.002

Review on long-term performance of reinforced concrete structures under simulated acid rain erosion environments

doi: 10.19818/j.cnki.1671-1637.2022.05.002
Funds:

National Natural Science Foundation of China U20A20314

National Natural Science Foundation of China 41472262

Natural Science Foundation of Chongqing cstc2020jcyj-zdxmX0012

Innovation Research Group Project of Universities in Chongqing CXQT19021

Chongqing Talents Plan CQYC201903026

Graduate Scientific Research Innovation Project of Chongqing Jiaotong University CYB21210

More Information
  • Author Bio:

    REN Qing-yang (1975–), male, born in Nanyang, Henan, professor in Chongqing Jiaotong University, doctor of engineering. He is engaged in research on disaster prevention and mitigation in civil engineering. E-mail: qyren@cqjtu.edu.cn

  • Received Date: 2022-04-19
  • Publish Date: 2022-10-25
  • To deepen the understanding of the long-term performance evolution mechanism of reinforced concrete structures under acid rain erosion environments, the corrosion mechanism, erosion model, and time-varying process of physical and mechanical properties of concrete materials under the acid rain erosion action were discussed. The solution corrosion mechanism and atmospheric dynamic scouring mechanism of steel bars corroded by acid rains were analyzed. The research results of morphology characterization and corrosion rate index quantification of the corroded steel bars were summarized, and the existing mechanical property degradation model and constitutive model of corroded steel bars were concluded. The evolution law of bonding performance of steel-concrete interface and the bonding-slip constitutive relation model were reviewed. The latest research progress and shortcomings of the evolution law of static and dynamic mechanical properties of beams, column components, and structures were reviewed in terms of indoor test results, theoretical calculation methods, and numerical simulation results, and future research directions and priorities were predicted. Research results show that the corrosion of concrete by acid rains can be attributed to the interaction of acid rain ion components, and a theoretical model with strong applicability is urgently needed to reveal the corrosion and diffusion mechanisms. The indoor accelerated test reveals the time-varying law of physical and mechanical properties of concrete under the action of acid rain corrosion, and the indoor accelerated test system should be improved. The damage evaluation system and prediction model of concrete should be built by coupling the key indicators at the macro and micro levels. The accelerated corrosion test of steel bars by acid rains is mostly based on the uniform corrosion, and the corrosion method and morphology characterization of steel bars are gradually developing towards uneven corrosion. High-precision scanning technology should be further developed, and the statistical analysis theory should be used to establish the characteristic parameters of uneven corrosion of steel bars, to optimize the mechanical properties degradation model of steel bars. The electric corrosion and pull-out tests deduce the evolution law of bonding performance of the steel-concrete interface, and build the bonding-slip constitutive relationship. However, the mechanical characteristics of the actual reinforced concrete structures are ignored, and the corrosion process is significantly different from the natural corrosion. The complex and changeable characteristics of acid rain environments and material properties should be considered to study the damage behavior of the steel-concrete interface at the micro level and reveal the internal relationship among acid rain environments, material properties, and bonding performance. The research on the aging performance of reinforced concrete structures eroded by acid rains is mostly concentrated on the specimen level, and the corrosion test and bearing capacity test are carried out in stages. The coupling effect of the load-environment is neglected. The test environment is relatively simple, and the test system and method are not unified. The bearing and environmental conditions of the actual structures should be considered according to actual projects, and a long-term load-acid rain erosion coupling test system should be built. The multi-field correlation mechanism of load-environment-material should be explored, and the theoretical calculation and numerical simulation method should be improved, so as to reveal the long-term performance evolution process of the structure, promote the development of field exposure test, quantify the indoor and on-site mapping relationship, and guide the actual projects.

     

  • loading
  • [1]
    MARCOS-MESON V, FISCHER G, EDVARDSEN C, et al. Durability of steel fibre reinforced concrete (SFRC) exposed to acid attack-a literature review[J]. Construction and Building Materials, 2019, 200: 490-501. doi: 10.1016/j.conbuildmat.2018.12.051
    [2]
    ZHOU Yan, ZHENG Shan-suo, CHEN Liu-zhuo, et al. Experimental investigation into the seismic behavior of squat reinforced concrete walls subjected to acid rain erosion[J]. Journal of Building Engineering, 2021, 44: 102899. doi: 10.1016/j.jobe.2021.102899
    [3]
    GUAN Yong-ying, ZHENG Shan-suo. Seismic behaviors of RC frame beam-column joints under acid rain circle: a pilot experimental study[J]. Journal of Earthquake Engineering, 2018, 22(6): 1008-1026. doi: 10.1080/13632469.2016.1269695
    [4]
    任超. 化学-力学耦合作用下FRP增强混凝土梁力学性能研究[D]. 大连: 大连海事大学, 2013.

    REN Chao. Mechanical properties of FRP-reinforced concrete beams under the chemical-mechanical coupled action[D]. Dalian: Dalian Maritime University, 2013. (in Chinese)
    [5]
    EKOLU S O. Model for natural carbonation prediction (NCP): practical application worldwide to real life functioning concrete structures[J]. Engineering Structures, 2020, 224: 111126. doi: 10.1016/j.engstruct.2020.111126
    [6]
    LI Song, LIU Jin-liang, CUI Chen-xing, et al. Carbonation process of reinforced concrete beams under the combined effects of fatigue damage and environmental factors[J]. Applied Sciences, 2020, 10(11): 3981. doi: 10.3390/app10113981
    [7]
    HU Wei-kun, LI Yao-zhuang, PENG Hua. Experimental study on acid-rain corrosion mechanism of concrete based on periodic immersion method[J]. Science of Advanced Materials, 2020, 12(8): 1149-1156. doi: 10.1166/sam.2020.3785
    [8]
    曹琛, 郑山锁, 胡卫兵. 酸雨环境下混凝土结构性能研究综述[J]. 材料导报, 2019, 33(6): 1869-1874. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201911018.htm

    CAO Chen, ZHENG Shan-suo, HU Wei-bing. A survey on concrete structure properties under acid rain erosion[J]. Materials Reports, 2019, 33(6): 1869-1874. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201911018.htm
    [9]
    YAO Jin-wei, CHEN Jian-kang, LU Chun-sheng. Entropy evolution during crack propagation in concrete under sulfate attack[J]. Construction and Building Materials, 2019, 209: 492-498. doi: 10.1016/j.conbuildmat.2019.03.083
    [10]
    YI Chao-fan, CHEN Zheng, BINDIGANAVILE V. Crack growth prediction of cement-based systems subjected to two-dimensional sulphate attack[J]. Construction and Building Materials, 2019, 222: 814-828. doi: 10.1016/j.conbuildmat.2019.06.187
    [11]
    YANG Yu, JI Tao, LIN Xu-jian, et al. Biogenic sulfuric acid corrosion resistance of new artificial reef concrete[J]. Construction and Building Materials, 2018, 158: 33-41. doi: 10.1016/j.conbuildmat.2017.10.007
    [12]
    GIRARDI F, MAGGIO R D. Resistance of concrete mixtures to cyclic sulfuric acid exposure and mixed sulfates: effect of the type of aggregate[J]. Cement and Concrete Composites, 2011, 33(2): 276-285. doi: 10.1016/j.cemconcomp.2010.10.015
    [13]
    CHEN Meng-cheng, WANG Kai, XIE Li. Deterioration mechanism of cementitious materials under acid rain attack[J]. Engineering Failure Analysis, 2013, 27: 272-285. doi: 10.1016/j.engfailanal.2012.08.007
    [14]
    YUAN Hai-feng, DANGLA P, CHATELLIER P, et al. Degradation modelling of concrete submitted to sulfuric acid attack[J]. Cement and Concrete Research, 2013, 53: 267-277. doi: 10.1016/j.cemconres.2013.08.002
    [15]
    MIN Hong-guang, SONG Zhi-gang. Investigation on the sulfuric acid corrosion mechanism for concrete in soaking environment[J]. Advances in Materials Science and Engineering, 2018, 2018: 3258123.
    [16]
    JAHANI F, DEVINNY J, MANSFELD F, et al. Investigations of sulfuric acid corrosion of concrete. Ⅰ: modeling and chemical observations[J]. Journal of Environmental Engineering, 2001, 127(7): 572-579. doi: 10.1061/(ASCE)0733-9372(2001)127:7(572)
    [17]
    BOHM M, DEVINNY J S, JAHANI F, et al. A moving boundary diffusion model for the corrosion of concrete wastewater systems: simulation and experimental validation[C]//IEEE. Proceedings of the 1999 American Control Conference. New York: IEEE, 2002: 1739-1743.
    [18]
    SONG Zhi-gang, ZAHNG Xue-song, MIN Hong-guang. Concentration boundary layer model of mortar corrosion by sulfuric acid[J]. Journal of Wuhan University of Technology-Materials Science Edition, 2011, 26(3): 527-532. doi: 10.1007/s11595-011-0262-9
    [19]
    YANG Sheng-yuan, SONG Zhi-gang, LUO Xiang, et al. Comparative study on theory model and test result for dilute sulfuric acid to erode concrete[J]. Procedia Earth and Planetary Science, 2012, 5: 188-197. doi: 10.1016/j.proeps.2012.01.033
    [20]
    MAHDIKHANI M, BAMSHAD O, FALLAH SHIRVANI M. Mechanical properties and durability of concrete specimens containing nano silica in sulfuric acid rain condition[J]. Construction and Building Materials, 2018, 167: 929-935. doi: 10.1016/j.conbuildmat.2018.01.137
    [21]
    GU Lei, VISINTIN P, BENNETT T. Evaluation of accelerated degradation test methods for cementitious composites subject to sulfuric acid attack; application to conventional and alkali-activated concretes[J]. Cement and Concrete Composites, 2018, 87: 187-204. doi: 10.1016/j.cemconcomp.2017.12.015
    [22]
    FAN Ying-fan, LUAN Hai-yang. Pore structure in concrete exposed to acid deposit[J]. Construction and Building Materials, 2013, 49: 407-416. doi: 10.1016/j.conbuildmat.2013.08.075
    [23]
    FAN Ying-fan, HU Zu-quan, ZHANG Yang-zhi, et al. Deterioration of compressive property of concrete under simulated acid rain environment[J]. Construction and Building Materials, 2010, 24: 1975-1983. doi: 10.1016/j.conbuildmat.2010.04.002
    [24]
    PAVLÍK V. Effect of carbonates on the corrosion rate of cement mortars in nitric acid[J]. Cement and Concrete Research, 2000, 30: 481-489. doi: 10.1016/S0008-8846(00)00201-5
    [25]
    ONYEJEKWE O O, REDDY N. A numerical approach to the study of chloride ion penetration into concrete[J]. Magazine of Concrete Research, 2000, 52(4): 243-250. doi: 10.1680/macr.2000.52.4.243
    [26]
    ZIVICA V, BAJZA A. Acidic attack of cement based materials-a review: Part 1. Principle of acidic attack[J]. Construction and Building Materials, 2001, 15: 331-340. doi: 10.1016/S0950-0618(01)00012-5
    [27]
    马北京. 酸雨环境下混凝土力学性能试验研究[D]. 西安: 长安大学, 2017.

    MA Bei-jing. Experimental study on mechanical properties of concretein acid environment[D]. Xi'an: Chang'an University, 2017. (in Chinese)
    [28]
    唐咸燕, 肖佳, 陈烽. 酸沉降对混凝土耐久性的影响及研究进展[J]. 材料导报, 2006, 20(10): 97-101. doi: 10.3321/j.issn:1005-023X.2006.10.025

    TANG Xian-yan, XIAO Jia, CHEN Feng. Effect and research progress of acid deposition on concrete durability[J]. Materials Reports, 2006, 20(10): 97-101. (in Chinese) doi: 10.3321/j.issn:1005-023X.2006.10.025
    [29]
    张亚明. 混凝土受酸雨侵蚀性能劣化规律及寿命预测模型研究[D]. 武汉: 武汉理工大学, 2016.

    ZHANG Ya-ming. Research on performance deterioration laws of concrete suffering from acid rain and life prediction model[D]. Wuhan: Wuhan University of Technology, 2016. (in Chinese)
    [30]
    LI Xin, LIN Xu-jian, LIN Kui, et al. Study on the degradation mechanism of sulphoaluminate cement sea sand concrete eroded by biological sulfuric acid[J]. Construction and Building Materials, 2017, 157: 331-336. doi: 10.1016/j.conbuildmat.2017.08.172
    [31]
    HADIGHEH S A, KE Fei-hu, KASHI S M. 3D acid diffusion model for FRP-strengthened reinforced concrete structures: long-term durability prediction[J]. Construction and Building Materials, 2020, 261: 120548. doi: 10.1016/j.conbuildmat.2020.120548
    [32]
    MAHMOODIAN M, ALANI A M. Effect of temperature and acidity of sulfuric acid on concrete properties[J]. Journal of Materials in Civil Engineering, 2017, 29 (10): 04017154. doi: 10.1061/(ASCE)MT.1943-5533.0002002
    [33]
    NNADI E O, LIZARAZO-MARRIAGA J. Acid corrosion of plain and reinforced concrete sewage systems[J]. Journal of Materials in Civil Engineering, 2013, 25(9): 1353-1356. doi: 10.1061/(ASCE)MT.1943-5533.0000641
    [34]
    MAHDIKHANI M, BAMSHAD O, FALLAH SHIRVANI M. Mechanical properties and durability of concrete specimens containing nano silica in sulfuric acid rain condition[J]. Construction and Building Materials, 2018, 167: 929-935. doi: 10.1016/j.conbuildmat.2018.01.137
    [35]
    BARBHUIYA S, KUMALA D. Behaviour of a sustainable concrete in acidic environment[J]. Sustainability, 2017, 9: 1556. doi: 10.3390/su9091556
    [36]
    姜健, 徐惠, 唐轶繁. 酸雨模拟液侵蚀混凝土的损伤劣化研究[J]. 硅酸盐通报, 2015, 34(5): 1407-1411, 1416. doi: 10.16552/j.cnki.issn1001-1625.2015.05.042

    JIANG Jian, XU Hui, TANG Yi-fan. Degradation of concrete under the corrosion of modeling acid rain solution[J]. Bulletin of the Chinese Silicate Society, 2015, 34(5): 1407-1411, 1416. (in Chinese) doi: 10.16552/j.cnki.issn1001-1625.2015.05.042
    [37]
    GU Lei, VISINTIN P, BENNETT T. Evaluation of accelerated degradation test methods for cementitious composites subject to sulfuric acid attack; application to conventional and alkali-activated concretes[J]. Cement and Concrete Composites, 2018, 87: 187-204. doi: 10.1016/j.cemconcomp.2017.12.015
    [38]
    ARIFFIN M A M, BHUTTA M A R, HUSSIN M W, et al. Sulfuric acid resistance of blended ash geopolymer concrete[J]. Construction and Building Materials, 2013, 43: 80-86. doi: 10.1016/j.conbuildmat.2013.01.018
    [39]
    张英姿, 赵颖华, 范颖芳. 受酸雨侵蚀混凝土弹性模量研究[J]. 工程力学, 2011, 28(2): 175-180. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201102028.htm

    ZHANG Ying-zi, ZHAO Ying-hua, FAN Ying-fang. A theoretical model for assessing elastic modulus of concrete corroded by acid rain[J]. Engineering Mechanics, 2011, 28(2): 175-180. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201102028.htm
    [40]
    李北星, 钱兴, 王凯. 酸雨-冻融耦合侵蚀作用下混凝土性能劣化规律[J]. 硅酸盐通报, 2019, 38(11): 3559-3564. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201911029.htm

    LI Bei-xing, QIAN Xing, WANG Kai. Performance degradation law of concrete under coupling effects of acid rain and freeze-thaw cycles[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(11): 3559-3564. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201911029.htm
    [41]
    许崇法, 曹双寅, 范沈龙, 等. 多因素作用下混凝土中性化深度统一预测模型[J]. 东南大学学报(自然科学版), 2014, 44(2): 363-368. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201402024.htm

    XU Chong-fa, CAO Shuang-yin, FAN Shen-long, et al. Unified prediction model of concrete neutral depth under multiple factors[J]. Journal of Southeast University (Natural Science Edition), 2014, 44(2): 363-368. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201402024.htm
    [42]
    牛荻涛周浩爽, 牛建刚. 承载混凝土酸雨侵蚀中性化试验研究[J]. 硅酸盐通报, 2009, 28(3): 411-415. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT200903001.htm

    NIU Di-tao, ZHOU Hao-shuang, NIU Jian-gang. Investigation of neutralization of concrete under loads by accelerated acid rain test[J]. Bulletin of the Chinese Ceramic Society, 2009, 28(3): 411-415. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT200903001.htm
    [43]
    沈阳, 王功勋, 卢胜男, 等. 酸雨-荷载共同作用对废陶瓷再生混凝土中性化的影响研究[J]. 硅酸盐通报, 2018, 37(12): 3977-3982. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201812045.htm

    SHEN Yang, WANG Gong-xun, LU Sheng-nan, et al. Research on neutralization of waste ceramic recycled concrete under the acid rain-load[J]. Bulletin of the Chinese Silicate Society, 2018, 37(12): 3977-3982. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201812045.htm
    [44]
    徐佳翔. 模拟酸雨环境应力及应变率对混凝土抗压性能影响研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.

    XU Jia-xiang. Effects of simulated acid rain environment stress and strain rate on compressive performance of concrete[D]. Harbin: Harbin Institute of Technology, 2018. (in Chinese)
    [45]
    王凯, 林静, 葛翠翠, 等. 持续弯曲荷载下混凝土的酸雨侵蚀特性[J]. 硅酸盐通报, 2018, 37(1): 173-177. doi: 10.16552/j.cnki.issn1001-1625.2018.01.027

    WANG Kai, LIN Jing, GE Cui-cui, et al. Acid rain attack characteristics of concrete under continuous bending load[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(1): 173-177. (in Chinese) doi: 10.16552/j.cnki.issn1001-1625.2018.01.027
    [46]
    李超. 模拟酸雨环境下钢筋混凝土梁力学性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.

    LI Chao. Study on mechanical properties of reinforced concrete beams under simulated acid rain environment[D]. Harbin: Harbin Institute of Technology, 2018. (in Chinese)
    [47]
    陈子超. 模拟酸雨腐蚀下预应力混凝土梁受力性能的数值模拟[D]. 南昌: 华东交通大学, 2018.

    CHEN Zi-chao. Numerical simulation of performance of prestressed concrete beams under acid rain corrosion[D]. Nanchang: East China Jiaotong University, 2018. (in Chinese)
    [48]
    周昌林, 朱哲明, 朱爱军, 等. 酸雨腐蚀对混凝土材料断裂特性的影响[J]. 工程科学与技术, 2019, 51(1) 144-1551. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201901019.htm

    ZHOU Chang-lin, ZHU Zhe-ming, ZHU Ai-jun, et al. Deterioration of fracture characteristics for concrete material under acid rain environment[J]. Advanced Engineering Sciences, 2019, 51(1): 144-151. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201901019.htm
    [49]
    LU Cai-feng, WANG Wei, ZHOU Qing-song, et al. Mechanical behavior degradation of recycled aggregate concrete after simulated acid rain spraying[J]. Journal of Cleaner Production, 2020, 262: 121237. doi: 10.1016/j.jclepro.2020.121237
    [50]
    王艳, 牛荻涛, 苗元耀. 碳化与酸雨侵蚀共同作用下钢纤维混凝土的耐久性能[J]. 建筑材料学报, 2014, 17(4): 579-585. doi: 10.3969/j.issn.1007-9629.2014.04.004

    WANG Yan, NIU Di-tao, MIAO Yuan-yao. Durability of steel fiber reinforced concrete under the combined effects of carbonization and acid rain erosion[J]. Journal of Building Materials, 2014, 17(4): 579-585. (in Chinese) doi: 10.3969/j.issn.1007-9629.2014.04.004
    [51]
    SUN Yu-Li, TANG Long-song. Compressive properties analysis for concrete materials under acid-freezing rain action[J]. Fresenius Environmental Bulletin, 2017, 26(12A): 7967-7973.
    [52]
    ZHOU Chang-lin, ZHU Zhe-ming, ZHU Ai-jun, et al. Deterioration of mode Ⅱ fracture toughness, compressive strength and elastic modulus of concrete under the environment of acid rain and cyclic wetting-drying[J]. Construction and Building Materials, 2019, 228: 116809. doi: 10.1016/j.conbuildmat.2019.116809
    [53]
    姜军, 王军阳, 金武俊, 等. 带肋钢腐蚀及其防腐蚀技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(4): 439-449. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGFF202104003.htm

    JIANG Jun, WANG Jun-yang, JIN Wu-jun, et al. Research progress on corrosion of ribbed steel and its anti-corrosion technology of ribbed steel[J]. Journal of Chinese Society for Corrosion and Protection, 2021, 41(4): 439-449. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGFF202104003.htm
    [54]
    JARRAH N R, AL-AMOUDI O S B, MASLEHUDDIN M, et al. Electrochemical behaviour of steel in plain and blended cement concretes in sulphate and/or chloride environments[J]. Construction and Building Materials, 1995, 9(2): 97-103. doi: 10.1016/0950-0618(95)00002-W
    [55]
    邱林峰. 硫酸盐-氯盐环境下钢筋混凝土腐蚀过程的实验研究[D]. 南京: 南京理工大学, 2017.

    QIU Lin-feng. Experimental study on corrosion process of reinforced concrete in sulfate-chloride environment[D]. Nanjing: Nanjing University of Science and Technology, 2017. (in Chinese)
    [56]
    AL-TAYYIB A J, SOMUAH S K, BOAH J K, et al. Laboratory study on the effect of sulfate ions on rebar corrosion[J]. Cement and Concrete Research, 1988, 18(5): 774-782. doi: 10.1016/0008-8846(88)90102-0
    [57]
    SHAHEEN F, PRADHAN B. Effect of chloride and conjoint chloride-sulfate ions on corrosion of reinforcing steel in electrolytic concrete powder solution (ECPS)[J]. Construction and Building Materials, 2015, 101: 99-112. doi: 10.1016/j.conbuildmat.2015.10.028
    [58]
    乔宏霞, 张占武, 高升, 等. 硫酸盐和氯盐耦合环境中钢筋的电化学腐蚀行为[J]. 兰州理工大学学报, 2017, 43(4): 132-136. doi: 10.3969/j.issn.1673-5196.2017.04.027

    QIAO Hong-xia, ZHANG Zhan-wu, GAO Sheng, et al. Electrochemical corrosion behavior of reinforcing steel in coupling environment of sulphate with chloride[J]. Journal of Lanzhou University of Technology, 2017, 43(4): 132-136. (in Chinese) doi: 10.3969/j.issn.1673-5196.2017.04.027
    [59]
    左晓宝, 邱林峰, 汤玉娟, 等. 氯盐和硫酸盐侵蚀下水泥净浆中钢筋锈蚀过程[J]. 建筑材料学报, 2017, 20(3): 352-358, 372. doi: 10.3969/j.issn.1007-9629.2017.03.006

    ZUO Xiao-bao, QIU Lin-feng, TANG Yu-juan, et al. Corrosion process of steel bar in cement pastes under combined action of chloride and sulfate attacks[J]. Journal of Building Materials, 2017, 20(3): 352-358, 372. (in Chinese) doi: 10.3969/j.issn.1007-9629.2017.03.006
    [60]
    ABUBAKAR A F, ZUO Xiao-bao, ZUO Shuai, et al. Electrochemical investigation on the influence of sulfates on chloride-induced corrosion of steel bar in cement-based materials[J]. Journal of Sustainable Cement-Based Materials, 2020, 9(2): 112-126. doi: 10.1080/21650373.2019.1709998
    [61]
    陈文. 混凝土钢筋酸雨腐蚀行为研究[D]. 重庆: 重庆大学, 2009.

    CHEN Wen. Study on corrosion behavior of steel rebar of reinforce concrete under acid-rain environment[D]. Chongqing: Chongqing University, 2009. (in Chinese)
    [62]
    张学元, 安百刚, 韩恩厚, 等. 酸雨对材料的腐蚀/冲刷研究现状[J]. 腐蚀科学与防护技术, 2002, 14(3): 157-160. doi: 10.3969/j.issn.1002-6495.2002.03.009

    ZHANG Xue-yuan, AN Bai-gang, HAN En-hou, et al. Runoff and corrosion of material due to acid rain[J]. Corrosion Science and Protection Technology, 2002, 14(3): 157-160. (in Chinese) doi: 10.3969/j.issn.1002-6495.2002.03.009
    [63]
    安百刚. 酸雨/雨水环境中典型金属材料的腐蚀行为研究[D]. 天津: 天津大学, 2003.

    AN Bai-gang. Study on corrosion behavior of the typical metals in rain/acid rain[D]. Tianjin: Tianjin University, 2003. (in Chinese)
    [64]
    SUN Xiao-yan, KONG Hang-ting, WANG Hai-long, et al. Evaluation of corrosion characteristics and corrosion effects on the mechanical properties of reinforcing steel bars based on three-dimensional scanning[J]. Corrosion Science, 2018, 142: 284-294. doi: 10.1016/j.corsci.2018.07.030
    [65]
    喻宣瑞, 姚国文, 蒋一星, 等. 基于三维Copula函数的蚀坑预测模型[J]. 建筑材料学报, 2021, 24(5): 1082-1088. doi: 10.3969/j.issn.1007-9629.2021.05.025

    YU Xuan-rui, YAO Guo-wen, JIANG Yi-xing, et al. Pit prediction model based on three-dimensional copula function[J]. Journal of Building Materials, 2021, 24(5): 1082-1088. (in Chinese) doi: 10.3969/j.issn.1007-9629.2021.05.025
    [66]
    FU Chuang-qing, JIN Nan-guo, YE Hai-long, et al. Non-uniform corrosion of steel in mortar induced by impressed current method: an experimental and numerical investigation[J]. Construction and Building Materials, 2018, 183: 429-438. doi: 10.1016/j.conbuildmat.2018.06.183
    [67]
    刘浩, 巴光忠, 苗吉军, 等. 锈蚀钢筋横截面积分布规律统计分析[J]. 土木与环境工程学报(中英文), 2022, 44(5): 205-216. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN202205022.htm

    LIU Hao, BA Guang-zhong, MIAO Ji-jun, et al. Statistical analysis of cross-sectional area distribution of corroded steel bars[J]. Journal of Civil and Environmental Engineering, 2022, 44(5): 205-216. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN202205022.htm
    [68]
    KIOUMARSI M M, HENDRIKS M A N, KOHLER J, et al. The effect of interference of corrosion pits on the failure probability of a reinforced concrete beam[J]. Engineering Structures, 2016, 114: 113-121. doi: 10.1016/j.engstruct.2016.01.058
    [69]
    郭超. 两种锈蚀方法对锈后钢筋力学性能的影响研究[D]. 武汉: 湖北工业大学, 2015.

    GUO Chao. Study on influence of the mechanical properties of the steel bars after rust with two kinds of corrosion methods[D]. Wuhan: Hubei University of Technology, 2015. (in Chinese)
    [70]
    何家豪. 钢筋通电加速非均匀锈蚀与自然锈蚀相似性研究[D]. 杭州: 浙江大学, 2020.

    HE Jia-hao. Similarity of non-uniform corrosion between electrified corrosion and natural corrosion[D]. Hangzhou: Zhejiang University, 2020. (in Chinese)
    [71]
    ZUO Xiu-li, XIANG Bin, LI Xing, et al. Corrosion behavior of 35CrMn and Q235 steel in simulated acid rain conditions[J]. Journal of Materials Engineering and Performance, 2012, 21(4): 524-529. doi: 10.1007/s11665-011-9931-2
    [72]
    LEBAN M B, MIKYŠKA Č, KOSEC T, et al. The effect of surface roughness on the corrosion properties of type AISI 304 stainless steel in diluted NaCl and urban rain solution[J]. Journal of Materials Engineering and Performance, 2014, 23(5): 1695-1702. doi: 10.1007/s11665-014-0940-9
    [73]
    LI Xie, CHEN Meng-cheng, SUN Wei, et al. Behaviour of concrete-filled steel tubular members under pure bending and acid rain attack: test simulation[J]. Advances in Structural Engineering, 2018, 22(7): 1-14.
    [74]
    许开成, 曹艳明陈子超, 等. 模拟酸雨腐蚀下预应力混凝土梁的抗弯性能研究[J]. 计算力学学报, 2019, 36 (1): 124-131. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201901018.htm

    XU Kai-cheng, CAO Yan-ming, CHEN Zi-chao, et al. Study on flexural behavior of prestressed concrete beams under simulated acid rain corrosion[J]. Chinese Journal of Computational Mechanics, 2019, 36(1): 124-131. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201901018.htm
    [75]
    付斌. 模拟酸雨环境下预应力混凝土梁抗弯性能研究[D]. 南昌: 华东交通大学, 2017.

    FU Bin. Study on bending performance of prestressed beams in simulated acid rain environment[D]. Nanchang: East China Jiaotong University, 2017. (in Chinese)
    [76]
    ZHANG Tong, LYU Xue-tao, LIU Hai-qing, et al. Axial performance degradation of squared CFST stubs in severe cold and acid rain area[J]. Construction and Building Materials, 2020, 262: 120612. doi: 10.1016/j.conbuildmat.2020.120612
    [77]
    朱尔玉, 王冰伟, 周勇政, 等. 酸雨对预应力体系腐蚀的试验研究[J]. 水利学报, 2012, 43(11): 1365-1372. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201211016.htm

    ZHU Er-yu, WANG Bing-wei, ZHOU Yong-zheng, et al. Experimental study of acid rain corrosion to the prestressed system[J]. Journal of Hydraulic Engineering, 2012, 43(11): 1365-1372. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201211016.htm
    [78]
    YUAN Fang, CHEN Meng-cheng, HUANG Hong, et al. Circular concrete filled steel tubular (CFST) columns under cyclic load and acid rain attack: test simulation[J]. Thin-Walled Structures, 2018, 122: 90-101. doi: 10.1016/j.tws.2017.10.005
    [79]
    陈梦成, 林博洋, 黄宏. 锈蚀方钢管混凝土短柱轴压承载力研究[J]. 钢结构, 2017, 32(5): 110-116. https://www.cnki.com.cn/Article/CJFDTOTAL-GJIG201705024.htm

    CHEN Meng-cheng, LIN Bo-yang, HUANG Hong. Research on the bearing capacity of corroded square concrete filled steel tubular short column[J]. Steel Construction, 2017, 32(5): 110-116. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GJIG201705024.htm
    [80]
    陈梦成, 林博洋, 黄宏. 锈蚀圆钢管混凝土短柱轴压承载力研究[J]. 建筑钢结构进展, 2018, 20(1): 73-81. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJZ201801010.htm

    CHEN Meng-cheng, LIN Bo-yang, HUANG Hong. Research on the bearing capacity of corroded circular concrete filled steel tubular short columns[J]. Progress in Steel Building Structures, 2018, 20(1): 73-81. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJZ201801010.htm
    [81]
    ZHANG Tong, LYU Xue-tao, YU Yang. Prediction and analysis of the residual capacity of concrete-filled steel tube stub columns under axial compression subjected to combined freeze-thaw cycles and acid rain corrosion[J]. Materials, 2019, 12: 3070.
    [82]
    孙杨, 乔国富. 锈蚀钢筋与混凝土粘结性能研究综述[J]. 材料导报, 2020, 34(2): 116-125. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB202003013.htm

    SUN Yang, QIAO Guo-fu. Research on the bond properties between corroded reinforcing steel bar and concrete: a review[J]. Materials Reports, 2020, 34(2): 116-125. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB202003013.htm
    [83]
    ZHOU Ji-kai, CHEN Xu-dong, Chen Shi-xue. Durability and service life prediction of GFRP bars embedded in concrete under acid environment[J]. Nuclear Engineering and Design, 2011, 241(10): 4095-4102.
    [84]
    陈梦成, 张凡孟, 黄宏, 等. 模拟酸雨锈蚀下钢筋混凝土黏结性能研究[J]. 混凝土, 2016(5): 5-8.

    CHEN Meng-cheng, ZHANG Fan-meng, HUANG Hong, et al. Study of bond in reinforced concrete under simulating acid rain attack[J]. Concrete, 2016(5): 5-8. (in Chinese)
    [85]
    郑山锁, 杨建军, 郑跃, 等. 锈蚀钢筋混凝土粘结滑移性能综述[J]. 材料导报, 2020, 34(增2): 221-226. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2020S2046.htm

    ZHENG Shan-suo, YANG Jian-jun, ZHENG Yue, et al. Review of research on bond-slip of corroded reinforced concrete[J]. Materials Reports, 2020, 34(S2): 221-226. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2020S2046.htm
    [86]
    LIN Hong-we, ZHAO Yu-xi. Effects of confinements on the bond strength between concrete and corroded steel bars[J]. Construction and Building Materials, 2016, 118: 127-138.
    [87]
    KIVELL A, PALERMO A, SCOTT A. Effects of bond deterioration due to corrosion in reinforced concrete[C]//Building an Earthquake-Resilient Society. Proceedings of the Ninth Pacific Conference on Earthquake Engineering. Auckland: Building an Earthquake-Resilient Society, 2011: 081.
    [88]
    王大为. 模拟酸雨环境下钢筋混凝土梁抗弯性能试验研究[D]. 大连: 大连海事大学, 2011.

    WANG Da-wei. Experimental study on bending property of reinforced concrete beam exposed to simulated acid rain environment[D]. Dalian: Dalian Maritime University, 2011. (in Chinese)
    [89]
    FAN Ying-fang, Hu Zhi-qiang, LUAN Hai-yang, et al. A study of deterioration of reinforced concrete beams under various forms of simulated acid rain attack in the laboratory[J]. Structural Engineering and Mechanics, 2014, 52(1): 35-49.
    [90]
    刘金升. 侵蚀条件下T形混凝土梁受弯性能研究[D]. 沈阳: 沈阳建筑大学, 2015.

    LIU Jin-sheng. Study on the bending resistance of T-shaped concrete beams under corrosion condition[D]. Shenyang: Shenyang Jianzhu University, 2015. (in Chinese)
    [91]
    聂行. 模拟酸雨环境下掺锂渣钢筋混凝土梁纯弯性能研究[D]. 南昌: 华东交通大学, 2016.

    NIE Xing. Study on pure bending performance of reinforced concrete beams mixed with lithium slag in simulated acid rain environment[D]. Nanchang: East China Jiaotong University, 2016. (in Chinese)
    [92]
    孙微. 酸雨腐蚀后方钢管再生混凝土纯弯力学性能研究[D]. 南昌: 华东交通大学, 2016.

    SUN Wei. Study on mechanical behavior of recycled concrete filled square steel tubes subjected to pure bending under the environment of acid rain[D]. Nanchang: East China Jiaotong University, 2016. (in Chinese)
    [93]
    HOU Chuan-chuan, HAN Lin-hai, WANG Qing-li, et al. Flexural behavior of circular concrete filled steel tubes (CFST) under sustained load and chloride corrosion[J]. Thin-Walled Structures, 2016, 107: 182-196.
    [94]
    黄宏, 孙薇, 陈梦成, 等. 酸雨环境下方钢管再生混凝土纯弯力学性能试验研究[J]. 建筑结构, 2018, 48(2): 66-71. https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG201802013.htm

    HUANG Hong, SUN Wei, CHEN Meng-cheng, et al. Experimental study on pure bending mechanical behavior of recycled concrete-filled square steel tube under acid rain environment[J]. Building Structure, 2018, 48(2): 66-71. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG201802013.htm
    [95]
    黄宏, 胡志慧, 杨超, 等. 模拟酸雨腐蚀后圆钢管再生混凝土抗弯承载力计算方法研究[J]. 混凝土, 2018, 342(4): 8-12. https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF201804003.htm

    HUANG Hong, HU Zhi-hui, YANG Chao, et al. Calculation method of flexural capacity of recycled concrete-filled circular steel tubes after simulating acid rain corrosion[J]. Concrete, 2018, 342(4): 8-12. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF201804003.htm
    [96]
    黄宏, 胡志慧, 杨超, 等. 模拟酸雨环境下圆钢管再生混凝土纯弯试验研究[J]. 应用力学学报, 2019, 36(1): 97-103, 256. https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201901014.htm

    HUANG Hong, HU Zhi-hui, YANG Chao, et al. Experimental study of recycled concrete-filled circle steel tubes subjected to pure bending under the environment of acid rain[J]. Chinese Journal of Applied Mechanics, 2019, 36(1): 97-103, 256. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201901014.htm
    [97]
    陈梦成, 方苇, 黄宏. 模拟酸雨腐蚀钢管混凝土构件静力性能研究[J]. 工程力学, 2020, 37(2): 34-43. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202002006.htm

    CHEN Meng-cheng, FANG Wei, HUANG Hong. Static behavior of corroded concrete-filled steel tubular members by simulating acid rain solution[J]. Engineering Mechanics, 2020, 37(2): 34-43. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202002006.htm
    [98]
    许开成, 张智星, 阳翌舒, 等. 模拟酸雨腐蚀环境下锂渣钢筋混凝土轴压短柱试验研究[J]. 建筑结构, 2019, 49(4): 64-69. https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG201904013.htm

    XU Kai-cheng, ZHANG Zhi-xing, YANG Yi-xu, et al. Experimental research on lithium slag reinforced concrete short columns under axial compression and simulated acid rain corrosion[J]. Building Structure, 2019, 49(4): 64-69. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG201904013.htm
    [99]
    许开成, 易彬, 张立卿, 等. 酸雨环境下掺锂渣钢筋混凝土柱有限元分析[J]. 华东交通大学学报, 2021, 38(3): 7-14. https://www.cnki.com.cn/Article/CJFDTOTAL-HDJT202103002.htm

    XU Kai-cheng, YI Bin, ZHANG Li-qing, et al. Finite element analysis of reinforced concrete columns column mixed with lithium slag under acid rain environment[J]. Journal of East China Jiaotong University, 2021, 38(3): 7-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HDJT202103002.htm
    [100]
    许开成, 陈博群, 陈梦成, 等. 模拟酸雨腐蚀环境下掺锂渣钢筋混凝土偏心受压柱试验研究[J]. 实验力学, 2018, 33(4): 641-648. https://www.cnki.com.cn/Article/CJFDTOTAL-SYLX201804018.htm

    XU Kai-cheng, CHEN Bo-qun, CHEN Meng-cheng, et al. Experimental investigation on lithium slag doped eccentrically loaded reinforced concrete column in a simulated acid rain corrosion environment[J]. Journal of Experimental Mechanics, 2018, 33(4): 641-648. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYLX201804018.htm
    [101]
    王凯, 李启发, 余洛凝, 等. 钢筋混凝土偏心受压柱承载力酸雨侵蚀的损伤退化[J]. 沈阳建筑大学学报(自然科学版), 2016, 32(4): 591-597. https://www.cnki.com.cn/Article/CJFDTOTAL-SYJZ201604004.htm

    WANG Kai, LI Qi-fa, YU Luo-ning, et al. Damage degradation of bearing capacity of reinforced concrete eccentric compression columns under acid rain attack[J]. Journal of Shenyang Jianzhu University (Natural Science Edition), 2016, 32(4): 591-597. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYJZ201604004.htm
    [102]
    余洛凝. 酸雨环境下钢筋混凝土偏心受压柱承载力试验研究[D]. 南昌: 华东交通大学, 2014.

    YU Luo-ning. Experimental research about bearing capacity of reinfofced concrete eccentric compression column in acid rain environment[D]. Nanchang: East China Jiaotong University, 2014. (in Chinese)
    [103]
    林博洋. 酸雨腐蚀后钢管混凝土柱抗震性能及轴压承载力研究[D]. 南昌: 华东交通大学, 2016.

    LIN Bo-yang. Study of seismic performance and axial load bearing capacity for acid rain environmental corroded concrete filled steel tubular columns[D]. Nanchang: East China Jiaotong University, 2016. (in Chinese)
    [104]
    陈梦成, 王超, 黄宏, 等. 酸雨环境下方钢管再生混凝土短柱轴压力学性能试验研究[J]. 建筑结构, 2017, 47(6): 35-40. https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG201706007.htm

    CHEN Meng-cheng, WANG Chao, HUANG Hong, et al. Experimental study on mechanical properties of the recycled concrete filled steel square tube short column under acid rain environment[J]. Building Structure, 2017, 47(6): 35-40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG201706007.htm
    [105]
    陈梦成, 王超, 黄宏, 等. 酸雨环境下方钢管再生混凝土轴压力学性能有限元研究[J]. 混凝土, 2016(12): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF201612001.htm

    CHEN Meng-cheng, WANG Chao, HUANG Hong, et al. Study on mechanical properties of recycled concrete filled steel square tube under acid rain environment[J]. Concrete, 2016(12): 1-4. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF201612001.htm
    [106]
    周璐. 模拟酸雨腐蚀后圆钢管再生混凝土柱偏压力学性能研究[D]. 南昌: 华东交通大学, 2018.

    ZHOU Lu. Behavior of recycled concrete-filled circular steel tube column subjected to eccentric compression under the environment of acid rain[D]. Nanchang: East China Jiaotong University, 2018. (in Chinese)
    [107]
    黄宏, 周璐, 陈梦成, 等. 酸雨腐蚀后圆钢管再生混凝土柱偏压试验研究[J]. 实验力学, 2018, 33(2): 290-298. https://www.cnki.com.cn/Article/CJFDTOTAL-SYLX201802015.htm

    HUANG Hong, ZHOU Lu, CHEN Meng-cheng, et al. Experimental study of recycled concrete filled circular steel tube column subjected to eccentric compression after acid rain corrosion[J]. Journal of Experimental Mechanics, 2018, 33(2): 290-298. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYLX201802015.htm
    [108]
    黄宏, 周璐, 陈梦成, 等. 酸雨腐蚀圆钢管再生混凝土柱偏压承载力计算[J]. 混凝土, 2018(9): 14-17. https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF201809004.htm

    HUANG Hong, ZHOU Lu, CHEN Meng-cheng, et al. Load carrying capacity of recycled concrete-filled circular steel tubes subjected to compression-bending under acid rain[J]. Concrete, 2018(9): 14-17. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF201809004.htm
    [109]
    黄宏, 胡志慧, 朱琪, 等. 酸雨环境下方钢管再生混凝土偏心受压试验研究[J]. 铁道学报, 2018, 40(4): 90-97. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201804013.htm

    HUANG Hong, HU Zhi-hui, ZHU Qi, et al. Mechanical study of recycled concrete-filled square steel tubes subjected to compression-bending under acid rain[J]. Journal of the China Railway Society, 2018, 40(4): 90-97. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201804013.htm
    [110]
    张智星. 模拟酸雨环境下预应力混凝土梁抗震性能试验研究[D]. 南昌: 华东交通大学, 2018.

    ZHANG Zhi-xing. Experiment study on seismic performance of prestressed concrete beams in simulated acid rain environment[D]. Nanchang: East China Jiaotong University, 2018. (in Chinese)
    [111]
    郑山锁, 张艺欣, 黄鹰歌, 等. 酸雨环境下钢筋混凝土框架梁抗震性能试验研究[J]. 建筑结构学报, 2017, 38(9): 20-27. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201709003.htm

    ZHENG Shan-suo, ZHANG Yi-xin, HUANG Ying-ge, et al. Experimental study on seismic behaviors of reinforced concrete frame beams in simulated acid environment[J]. Journal of Building Structures, 2017, 38(9): 20-27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201709003.htm
    [112]
    郑山锁, 左河山, 刘巍, 等. 一般大气环境下低剪跨比RC框架梁抗震性能试验研究[J]. 工程力学, 2017, 34(7): 186-194. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201707020.htm

    ZHENG Shan-suo, ZUO He-shan, LIU Wei, et al. Experimental research on aseismic behaviors of RC frame beams of low shear span ration in general atmospheric environment[J]. Engineering Mechanics, 2017, 34(7): 186-194. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201707020.htm
    [113]
    郑山锁, 郑跃, 董立国, 等. 酸雨环境下锈蚀RC剪力墙恢复力模型研究[J]. 工程力学, 2019, 36(10): 75-85. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201910010.htm

    ZHENG Shan-suo, ZHENG Yue, DONG Li-guo, et al. A restoring force model of RC shear walls in a simulated acid environment[J]. Engineering Mechanics, 2019, 36(10): 75-85. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201910010.htm
    [114]
    郑跃, 郑山锁, 董立国, 等. 酸雨环境下腐蚀RC剪力墙抗震性能试验研究[J]. 工程力学, 2020, 37(5): 190-198, 227. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202005021.htm

    ZHENG Yue, ZHENG Shan-suo, DONG Li-guo, et al. Experimental study on the seismic behavior of RC shear walls in a simulated acid environment[J]. Engineering Mechanics, 2020, 37(5): 190-198. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202005021.htm
    [115]
    郑山锁, 王晓飞, 孙龙飞, 等. 酸性大气环境下多龄期钢框架节点抗震性能试验研究[J]. 建筑结构学报, 2015, 36(10): 20-28. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201510004.htm

    ZHENG Shan-suo, WANG Xiao-fei, SUN Long-fei, et al. Experimental research on seismic behavior of multi-aged steel frame joint under acidic atmospheric environment[J]. Journal of Building Structures, 2015, 36(10): 20-28. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201510004.htm
    [116]
    ZHENG Hao, ZHENG Shan-suo, ZHANG Yi-xin, et al. Experimental investigation on seismic behaviours of reinforced concrete columns under simulated acid rain environment[J]. Advances in Civil Engineering, 2020, 2020: 3826062.
    [117]
    郑淏, 郑山锁, 贺金川, 等. 酸雨环境下RC短柱抗震性能试验研究[J]. 天津大学学报(自然科学与工程技术版), 2021, 54(2): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX202102007.htm

    ZHENG Hao, ZHENG Shan-suo, HE Jin-chuan, et al. Experimental study of seismic behavior of RC short columns under acid rain environment[J]. Journal of Tianjin University (Science and Technology), 2021, 54(2): 171-178. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX202102007.htm
    [118]
    王超. 模拟酸雨腐蚀后圆钢管混凝土柱低周往复荷载试验研究[D]. 南昌: 华东交通大学, 2016.

    WANG-Chao. Low cyclic loading test of concrete filled steel tube colimn under acid rain corrosion environment[D]. Nanchang: East China Jiaotong University, 2016. (in Chinese)
    [119]
    张凡孟. 模拟酸雨腐蚀后方钢管混凝土构件抗震性能试验研究[D]. 南昌: 华东交通大学, 2016.

    ZHANG Fan-meng. An seismic performance research on components of square concrete filled steel tubes after the simulated acid rain corrosion[D]. Nanchang: East China Jiaotong University, 2016. (in Chinese)
    [120]
    陈梦成, 张凡孟, 黄宏, 等. 模拟酸雨腐蚀下方钢管混凝土抗震性能研究[J]. 铁道学报, 2018, 40(6): 106-114. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201806015.htm

    CHEN Meng-cheng, ZHANG Fan-meng, HUANG Hong, et al. Study on seismic performance of concrete filled square steel tubes subjected to simulated acid rain attack[J]. Railway Journal, 2018, 40(6): 106-114. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201806015.htm
    [121]
    陈梦成, 林博洋, 黄宏. 酸雨腐蚀后圆钢管混凝土柱抗震性能研究[J]. 铁道科学与工程学报, 2017, 14(1): 142-148. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201701021.htm

    CHEN Meng-cheng, LIN Bo-yang, HUANG Hong. A study of seismic performance for circular concrete filled steel tubular column under acid rain attack[J]. Railway Science and Engineering Journal, 2017, 14(1): 142-148. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201701021.htm
    [122]
    郑山锁, 王晓飞, 韩言召, 等. 酸性大气环境下多龄期钢框架柱抗震性能试验研究[J]. 土木工程学报, 2015, 48(8): 47-59. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201508009.htm

    ZHENG Shan-suo, WANG Xiao-fei, HAN Yan-zhao, et al. Experimental study on seismic behavior of multi-aged steel frame columns in acidic atmospheric environment[J]. China Civil Engineering Journal, 2015, 48 (8): 47-59. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201508009.htm
    [123]
    郑山锁, 左英, 张晓辉, 等. 酸性大气环境下多龄期平面钢框架结构抗震性能试验研究[J]. 工程力学, 2017, 34(9)73-82. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201709010.htm

    ZHENG Shan-suo, ZUO Ying, ZHANG Xiao-hui, et al. Experimental research on the seismic behavior of multi-aged planar steel frames under acidic atmospheric environment[J]. Engineering Mechanics, 2017, 34(9): 73 -82. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201709010.htm
    [124]
    郑山锁, 石磊, 张晓辉, 等. 酸性大气环境下锈蚀钢框架结构振动台试验研究[J]. 工程力学, 2017, 34(11): 77 -88, 108. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201711011.htm

    ZHENG Shan-suo, SHI Lei, ZHANG Xiao-hui, et al. Shaking table test of corroded steel frame structure under acidic atmosphere environment[J]. Engineering Mechanics, 2017, 34(11): 77-88, 108. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201711011.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (960) PDF downloads(98) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return