| Citation: | ZHAI Jun-zhi, SUN Zhao-yun, PEI Li-li, HUYAN Ju, LI Wei. Pavement crack detection method based on multi-scale feature enhancement[J]. Journal of Traffic and Transportation Engineering, 2023, 23(1): 291-308. doi: 10.19818/j.cnki.1671-1637.2023.01.022 |
| [1] |
CAO Wen-ming, LIU Qi-fan, HE Zhi-quan. Review of pavement defect detection methods[J]. IEEE Access, 2020, 8: 14531-14544. doi: 10.1109/ACCESS.2020.2966881
|
| [2] |
XU Zhi-gang, CHE Yan-li, LI Jin-long, et al. Research progress on automatic image processing technology for pavement distress[J]. Journal of Traffic and Transportation Engineering, 2019, 19(1): 172-190. (in Chinese) doi: 10.3969/j.issn.1671-1637.2019.01.017
|
| [3] |
SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//IEEE. 2015 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2015: 1-9.
|
| [4] |
HE Kai-ming, ZHANG Xiang-yu, REN Shao-qing, et al. Deep residual learning for image recognition[C]//IEEE. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2016: 770-778.
|
| [5] |
YUSOF N A M, OSMAN M K, HUSSAIN Z, et al. Automated asphalt pavement crack detection and classification using deep convolution neural network[C]//IEEE. 9th IEEE International Conference on Control System, Computing and Engineering. New York: IEEE, 2019: 215-220.
|
| [6] |
PARK S, BANG S, KIM H, et al. Patch-based crack detection in black box images using convolutional neural networks[J]. Journal of Computing in Civil Engineering, 2019, 33(3): 04019017. doi: 10.1061/(ASCE)CP.1943-5487.0000831
|
| [7] |
ZHANG Tian-jie, HAN Hai-hang. Research on identification and classification of asphalt pavement cracks using residual neural network[J]. Highway, 2021, 66(10): 24-29. (in Chinese) doi: 10.3969/j.issn.1002-0268.2021.10.004
|
| [8] |
IBRAGIMOV E, LEE H J, LEE J J, et al. Automated pavement distress detection using region based convolutional neural networks[J]. International Journal of Pavement Engineering, 2022, 23(6): 1981-1992. doi: 10.1080/10298436.2020.1833204
|
| [9] |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. doi: 10.1109/TPAMI.2016.2577031
|
| [10] |
SUN Zhao-yun, PEI Li-li, LI Wei, et al. Pavement sealed crack detection method based on improved faster R-CNN[J]. Journal of South China University of Technology (Natural Science Edition), 2020, 48(2): 84-93. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG202002011.htm
|
| [11] |
TRAN V P, TRAN T S, LEE H J, et al. One stage detector (RetinaNet)-based crack detection for asphalt pavements considering pavement distresses and surface objects[J]. Journal of Civil Structural Health Monitoring, 2021, 11(1): 205-222. doi: 10.1007/s13349-020-00447-8
|
| [12] |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 318-327. doi: 10.1109/TPAMI.2018.2858826
|
| [13] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//NIPS. 31st Conference on Neural Information Processing Systems. San Diego: NIPS, 2017: 1-15.
|
| [14] |
LIU Jun, WANG Hui-min, ZHANG Xing-zhong, et al. End-to-end pavement crack detection method based on transformer[J]. Journal of Taiyuan University of Technology, 2022, 53(6): 1143-1151. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TYGY202206021.htm
|
| [15] |
CHEN Han-shen, YAO Ming-hai, QU Xin-yu. Pavement crack detection based on the U-shaped fully convolutional neural network[J]. Opto-Electronic Engineering, 2020, 47(12): 200036. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC202012007.htm
|
| [16] |
RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[J]. Lecture Notes in Computer Science, 2015, 9351: 234-241.
|
| [17] |
QU Zhong, CHEN Wen. Concrete pavement crack detection based on dilated convolution and multi-features fusion[J]. Computer Science, 2022, 49(3): 192-196. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA202203026.htm
|
| [18] |
CHEN Liang-quan, WANG Cai-ling, LIU Hua-jun, et al. Pavement crack detection with continuous attention mechanism and convolution pyramid structure[J]. Computer Systems and Applications, 2021, 30(8): 249-255. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTYY202108035.htm
|
| [19] |
BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495. doi: 10.1109/TPAMI.2016.2644615
|
| [20] |
ZHANG Bo-shu, ZHANG Zhi-hua, ZHANG Yang. Improved HRNet applied to segmentation and detection of pavement cracks[J]. Bulletin of Surveying and Mapping, 2022(3): 83-89. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB202203016.htm
|
| [21] |
WU Yang-xu, YANG Wan-ting, PAN Jin-xiao, et al. Asphalt pavement crack detection based on multi-scale full convolutional network[C]//IEEE. 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2017: 1495-1508.
|
| [22] |
HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//IEEE. 2017 IEEE Conference on Computer Vision and Pattern Recognition, New York: IEEE, 2017: 4700-4708.
|
| [23] |
LIU J W, YANG X, LAU S, et al. Automated pavement crack detection and segmentation based on two-step convolutional neural network[J]. Computer-Aided Civil and Infrastructure Engineering, 2020, 35(11): 1291-1305.
|
| [24] |
WANG S W, GONG Y C, XING J L, et al. RDSNet: a new deep architecture for reciprocal object detection and instance segmentation[C]//AIAA. 34th AAAI Conference on Artificial Intelligence. Reston: AIAA, 2020: 12208-12215.
|
| [25] |
LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//IEEE. 30th IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2017: 936-944.
|
| [26] |
SHI Y, CUI L M, QI Z Q, et al. Automatic road crack detection using random structured forests[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(12): 3434-3445.
|
| [27] |
YANG F, ZHANG L, YU S J, et al. Feature pyramid and hierarchical boosting network for pavement crack detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(4): 1525-1535.
|
| [28] |
SONG Liang, WANG Xuan-cang. Faster region convolutional neural network for automated pavement distress detection[J]. Road Materials and Pavement Design, 2021, 22(1): 23-41.
|
| [29] |
SHEN Ting-sheng, NIE Ming-xin. Pavement damage detection based on cascade R-CNN[C]//ACM. Proceedings of the 4th International Conference on Computer Science and Application Engineering. New York: ACM, 2020: 1-5.
|
| [30] |
HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]//IEEE. 2017 IEEE International Conference on Computer Vision. New York: IEEE, 2017: 2980-2988.
|
| [31] |
ZHANG Y F, CHEN B, WANG J F, et al. APLCNet: automatic pixel-level crack detection network based on instance segmentation[J]. IEEE Access, 2020, 8: 199159-199170.
|
| [32] |
SHRIVASTAVA A, GUPTA A, GIRSHICK R. Training region-based object detectors with online hard example mining[C]//IEEE. 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2016: 761-769.
|