留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑各向异性形貌特征的岩体结构面刚度计算模型

包含 胥勋辉 兰恒星 晏长根 许江波 刘长青

包含, 胥勋辉, 兰恒星, 晏长根, 许江波, 刘长青. 考虑各向异性形貌特征的岩体结构面刚度计算模型[J]. 交通运输工程学报, 2022, 22(2): 160-175. doi: 10.19818/j.cnki.1671-1637.2022.02.012
引用本文: 包含, 胥勋辉, 兰恒星, 晏长根, 许江波, 刘长青. 考虑各向异性形貌特征的岩体结构面刚度计算模型[J]. 交通运输工程学报, 2022, 22(2): 160-175. doi: 10.19818/j.cnki.1671-1637.2022.02.012
BAO Han, XU Xun-hui, LAN Heng-xing, YAN Chang-gen, XU Jiang-bo, LIU Chang-qing. Calculation model of rock joint stiffness considering anisotropic morphology characteristics[J]. Journal of Traffic and Transportation Engineering, 2022, 22(2): 160-175. doi: 10.19818/j.cnki.1671-1637.2022.02.012
Citation: BAO Han, XU Xun-hui, LAN Heng-xing, YAN Chang-gen, XU Jiang-bo, LIU Chang-qing. Calculation model of rock joint stiffness considering anisotropic morphology characteristics[J]. Journal of Traffic and Transportation Engineering, 2022, 22(2): 160-175. doi: 10.19818/j.cnki.1671-1637.2022.02.012

考虑各向异性形貌特征的岩体结构面刚度计算模型

doi: 10.19818/j.cnki.1671-1637.2022.02.012
基金项目: 

国家自然科学基金项目 41807246

国家自然科学基金项目 41790443

国家自然科学基金项目 41927806

国家重点研发计划 2019YFC1520601

陕西省自然科学基础研究计划 2020JQ-349

中央高校基本科研业务费专项资金项目 300102212213

详细信息
    作者简介:

    包含(1988-),男,河南商丘人,长安大学教授,工学博士,从事岩土力学研究

  • 中图分类号: U451.2

Calculation model of rock joint stiffness considering anisotropic morphology characteristics

Funds: 

National Natural Science Foundation of China 41807246

National Natural Science Foundation of China 41790443

National Natural Science Foundation of China 41927806

National Key Research and Development Program of China 2019YFC1520601

Basic Research Project of Natural Science of Shaanxi Province 2020JQ-349

Fundamental Research Funds for the Central Universities 300102212213

More Information
  • 摘要: 为了实现岩体结构面切向刚度和法向刚度的便捷化精准取值,准确分析结构面变形行为特征,以关山隧道闪长岩结构面为例,对结构面形貌信息进行数字化提取,应用3D打印技术制作结构面试样,开展单轴压缩与各向异性直剪试验,提出了各向异性新形貌参数,建立了结构面切向刚度与法向刚度计算新模型。研究结果表明:新形貌参数综合考虑了结构面起伏体上坡段的爬坡角与爬坡高度,有利于反映结构面形貌的各向异性特征,并且同一方向上结构面剖面线的形貌参数服从对数正态概率分布;在物理模型力学试验的基础上,结合结构面形貌参数、结构面壁面强度和法向应力构建的结构面切向刚度计算新模型,不仅降低了计算参数的获取难度,还可以更好地体现结构面切向变形能力的各向异性;改进的双曲函数法向刚度计算模型考虑了结构面初始法向刚度和最大法向闭合量与结构面壁面强度之间的量化关系,避免了复杂的力学测试,简化了法向刚度的获取过程;通过与经典计算模型和力学试验结果进行对比,发现采用新模型计算的刚度更为接近试验值,其中切向刚度与试验值的平均相对误差为2.09%~27.88%,法向刚度与试验值的平均相对误差为3.25%~17.25%,表明结构面切向刚度和法向刚度计算新模型可以更准确和便捷地获取结构面变形参数。

     

  • 图  1  起伏体i几何形态与参数

    Figure  1.  Geometrical shape and parameters of undulating body i

    图  2  关山隧道基本信息与结构面样品的获取

    Figure  2.  Basic information of Guanshan Tunnel and acquisition of joint sample

    图  3  结构面研究窗口的形貌信息处理

    Figure  3.  Disposal of morphology information of studied window on joint

    图  4  形貌参数在8个方向上的分布

    Figure  4.  Distributions of morphology parameter in eight directions

    图  5  结构面制作流程与直剪试验

    Figure  5.  Joint replicas preparation process and shear test

    图  6  结构面剪应力与剪切位移曲线

    Figure  6.  Shear stress-displacement curves of joints

    图  7  不同结构面壁面强度与法向应力下的各向异性切向刚度

    Figure  7.  Anisotropic shear stiffnesses of joints with different compressive strengths under different normal stresses

    图  8  结构面切向刚度与形貌参数的关系

    Figure  8.  Relations between shear stiffnesses and morphology parameters of joints

    图  9  切向刚度与结构面壁面强度的关系

    Figure  9.  Relations between shear stiffnesses and compressive strengths of joints

    图  10  结构面ksλ的关系

    Figure  10.  Relations between ks and λ of joints

    图  11  pσJCS的拟合关系

    Figure  11.  Fitting relation between p and σJCS

    图  12  两种切向刚度计算方法的比较

    Figure  12.  Comparison of two calculation methods of shear stiffness

    图  13  试样各组成部分法向应力-法向位移关系

    Figure  13.  Relations between normal stress and normal displacement of each component of samples

    图  14  结构面试样初始刚度和最大闭合量与结构面壁面强度的关系

    Figure  14.  Relations between kni, Vm and σJCS of joint sample

    图  15  法向刚度计算值与实测值的对比

    Figure  15.  Comparison between calculated and experimental normal stiffnesses

    图  16  含单条结构面岩体受力状态

    Figure  16.  Mechanical status of rock mass with a single joint

    图  17  圆柱试样的制作与单轴压缩试验

    Figure  17.  Preparation of cylindrical samples and unixial compression test

    图  18  三组圆柱试样的单轴压缩试验结果

    Figure  18.  Uniaxial compression test results of three groups of cylindrical samples

    图  19  三组结构面试样的模量试验值与计算值对比

    Figure  19.  Comparison between experimental and calculated moduli of three-group joint samples

    表  1  结构面重构样品材料的质量配合比

    Table  1.   Mass proportions of materials of reconstructed joint samples

    材料 水泥 减水剂 硅粉
    a 10 20 20
    b 10 30 20 1 1
    c 10 30 20 2 2
    下载: 导出CSV

    表  2  结构面剪切力学参数

    Table  2.   Shear mechanical parameters of joints

    组别 a b c
    α/(°) c/MPa φ/(°) φr/(°) c/MPa φ/(°) φr/(°) c/MPa φ/(°) φr/(°)
    0 0.06 27.46 21.07 0.08 35.27 30.50 0.09 35.49 30.21
    45 0.10 29.61 22.54 0.11 36.46 31.78 0.11 37.31 31.52
    90 0.14 37.09 28.53 0.17 40.59 31.07 0.17 40.87 35.06
    135 0.08 28.31 24.54 0.10 35.39 32.66 0.11 35.94 31.37
    180 0.16 31.06 29.09 0.14 38.36 34.50 0.14 39.56 32.54
    225 0.08 28.12 20.14 0.08 36.56 29.88 0.09 37.03 32.47
    270 0.09 27.29 24.73 0.13 35.56 28.86 0.14 36.73 30.33
    315 0.16 38.14 33.11 0.15 39.44 32.29 0.17 40.49 31.58
    下载: 导出CSV

    表  3  三种试样在三种法向应力下的法向刚度实测值

    Table  3.   Experimental normal stiffnesses of three groups of joint samples under three normal stresses MPa·mm-1

    σn/MPa 0.2 0.5 1.0
    a 11.33 20.98 32.86
    b 40.50 47.06 59.06
    c 205.03 211.61 229.74
    下载: 导出CSV

    表  4  法向刚度计算值

    Table  4.   Calculated normal stiffnesses

    σJCS/MPa kni/(MPa·mm-1) Vm/mm kn, Bandis/(MPa·mm-1)
    σn=0.2 MPa σn=0.5 MPa σn=1.0 MPa
    10.50 8.29 0.100 12.77 21.30 40.35
    33.88 35.90 0.077 41.28 50.06 66.57
    54.40 201.03 0.049 209.55 222.23 244.19
    下载: 导出CSV

    表  5  用于刚度计算模型检验的相关参数

    Table  5.   Related parameters used to examine calculated stiffness model

    组别 E/GPa σJCS/MPa β/(°) G σn/MPa ks/(MPa·mm-1) kn/(MPa·mm-1)
    a 4.02 10.48 15 2.77 9.88 3.98 1 323.46
    30 2.96 2.75 1.47 148.99
    45 3.10 2.00 1.20 93.38
    60 3.36 0.97 0.74 38.08
    b 6.82 33.76 15 2.77 31.31 21.85 4 847.74
    30 2.96 18.09 14.31 1 853.42
    45 3.10 9.34 8.79 648.34
    60 3.36 4.09 5.04 222.28
    c 15.03 54.37 15 2.77 51.56 47.44 7 707.74
    30 2.96 34.02 34.57 3 933.79
    45 3.10 18.16 21.61 1 603.82
    60 3.36 8.07 12.43 656.58
    下载: 导出CSV
  • [1] 包含, 伍法权, 郗鹏程. 基于统计本构关系的岩体弹性模量特征及影响因素分析[J]. 岩土力学, 2016, 37(9): 2505-2512, 2520. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201609010.htm

    BAO Han, WU Fa-quan, XI Peng-cheng. Analysis of characteristics and influencing factors of elastic modulus of jointed rock mass based on statistical constitutive relation[J]. Rock and Soil Mechanics, 2016, 37(9): 2505-2512, 2520. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201609010.htm
    [2] 周志军, 牛涌, 张铁柱. 基于改进Sarma法的岩质边坡稳定性分析[J]. 交通运输工程学报, 2013, 13(1): 15-19. doi: 10.3969/j.issn.1671-1637.2013.01.003

    ZHOU Zhi-jun, NIU Yong, ZHANG Tie-zhu. Stability analysis of rock slope based on improved Sarma method[J]. Journal of Traffic and Transportation Engineering, 2013, 13(1): 15-19. (in Chinese) doi: 10.3969/j.issn.1671-1637.2013.01.003
    [3] 包含, 王瑞, 晏长根, 等. 岩石抗剪强度参数不同求解方法的差异性分析[J]. 公路, 2018, 63(12): 248-252. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201812052.htm

    BAO Han, WANG Rui, YAN Chang-gen, et al. Analysis on the difference of rock shear parameters obtained by various methods[J]. Highway, 2018, 63(12): 248-252. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201812052.htm
    [4] 王斐笠, 王述红, 高红岩, 等. 关键块体失稳表征系数与岩坡稳定性评价[J]. 交通运输工程学报, 2018, 18(4): 44-52. doi: 10.3969/j.issn.1671-1637.2018.04.005

    WANG Fei-li, WANG Shu-hong, GAO Hong-yan, et al. Instability characterization coefficient of key block and evaluation of rock slope stability[J]. Journal of Traffic and Transportation Engineering, 2018, 18(4): 44-52. (in Chinese) doi: 10.3969/j.issn.1671-1637.2018.04.005
    [5] BAO Han, ZHANG Guo-biao, LAN Heng-xing, et al. Geometrical heterogeneity of the joint roughness coefficient revealed by 3D laser scanning[J]. Engineering Geology, 2020, 265: 105415. doi: 10.1016/j.enggeo.2019.105415
    [6] GRASSELLI G, EGGER P. Constitutive law for the shear strength of rock joints based on three-dimensional surface parameters[J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(1): 25-40. doi: 10.1016/S1365-1609(02)00101-6
    [7] 周志军, 张兴明, 冯佳佳. 岩质岸坡岩样力学参数取值方法比较[J]. 交通运输工程学报, 2015, 15(6): 26-34. doi: 10.3969/j.issn.1671-1637.2015.06.004

    ZHOU Zhi-jun, ZHANG Xing-ming, FENG Jia-jia. Comparison of selecting methods on rock sample mechanical parameters of rock bank slope[J]. Journal of Traffic and Transportation Engineering, 2015, 15(6): 26-34. (in Chinese) doi: 10.3969/j.issn.1671-1637.2015.06.004
    [8] 郭寅川, 申爱琴, 高韬, 等. 风化岩路基填料路用性能试验与风化程度评价[J]. 交通运输工程学报, 2014, 14(3): 15-23. doi: 10.3969/j.issn.1671-1637.2014.03.007

    GUO Yin-chuan, SHEN Ai-qin, GAO Tao, et al. Assessment of weathering degree and road performance test of weathered rock as subgrade filling[J]. Journal of Traffic and Transportation Engineering, 2014, 14(3): 15-23. (in Chinese) doi: 10.3969/j.issn.1671-1637.2014.03.007
    [9] 刘国锋, 李志强, 王晓明, 等. 深埋隧道岩爆规模现场快速估算方法[J]. 中国地质灾害与防治学报, 2020, 31(1): 57-64. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH202001012.htm

    LIU Guo-feng, LI Zhi-qiang, WANG Xiao-ming, et al. Field rapid estimation method for the scale of rockburst in deep tunnels[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(1): 57-64. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH202001012.htm
    [10] 陈鹏, 徐博侯. 顺层岩质路堑边坡稳定性数值极限分析[J]. 交通运输工程学报, 2012, 12(2): 38-45. doi: 10.3969/j.issn.1671-1637.2012.02.007

    CHEN Peng, XU Bo-hou. Numerical limit analysis of stability for bedding rock cutting slope[J]. Journal of Traffic and Transportation Engineering, 2012, 12(2): 38-45. (in Chinese) doi: 10.3969/j.issn.1671-1637.2012.02.007
    [11] 冯忠居, 朱彦名, 高雪池, 等. 基于熵权-灰关联法的岩质开挖边坡安全评价模型[J]. 交通运输工程学报, 2020, 20(2): 55-65. doi: 10.19818/j.cnki.1671-1637.2020.02.005

    FENG Zhong-ju, ZHU Yan-ming, GAO Xue-chi, et al. Safety evaluation model of excavating rock slope based on entropy-grey correlation method[J]. Journal of Traffic and Transportation Engineering, 2020, 20(2): 55-65. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.02.005
    [12] GOODMAN R E, TAYLOR R L, BREKKE T L. A model for the mechanics of jointed rock[J]. Journal of the Soil Mechanics and Foundations Division, 1968, 94(3): 637-659. doi: 10.1061/JSFEAQ.0001133
    [13] THIRUKUMARAN S, INDRARATNA B. A review of shear strength models for rock joints subjected to constant normal stiffness[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2016, 8(3): 405-414. doi: 10.1016/j.jrmge.2015.10.006
    [14] JING Lan-ru, NORDLUND E, STEPHANSSON O. A 3-D constitutive model for rock joints with anisotropic friction and stress dependency in shear stiffness[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1994, 31(2): 173-178. doi: 10.1016/0148-9062(94)92808-8
    [15] BAHAADDINI M, SHARROCK G, HEBBLEWHITE B K. Numerical direct shear tests to model the shear behaviour of rock joints[J]. Computers and Geotechnics, 2013, 51: 101-115. doi: 10.1016/j.compgeo.2013.02.003
    [16] KUMAR R, VERMA A K. Anisotropic shear behavior of rock joint replicas[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 90: 62-73. doi: 10.1016/j.ijrmms.2016.10.005
    [17] BANDIS S C, LUMSDEN A C, BARTON N R. Fundamentals of rock joint deformation[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1983, 20(6): 249-268. doi: 10.1016/0148-9062(83)90595-8
    [18] LADANYI B, ARCHAMBAULT G. Simulation of shear behavior of a jointed rock mass[C]//American Rock Mechanics Association. 11th US Symposium on Rock Mechanics. San Francisco: American Rock Mechanics Association, 1969: 105-125.
    [19] JING Lan-ru, NORDLUND E, STEPHANSSON O. An experimental study on the anisotropy and stress-dependency of the strength and deformability of rock joints[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1992, 29(6): 535-542. doi: 10.1016/0148-9062(92)91611-8
    [20] BABANOURI N, KARIMI NASAB S, BAGHBANAN A, et al. Over-consolidation effect on shear behavior of rock joints[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(8): 1283-1291. doi: 10.1016/j.ijrmms.2011.09.010
    [21] KULATILAKE P H S W, SHREEDHARAN S, SHERIZADEH T, et al. Laboratory estimation of rock joint stiffness and frictional parameters[J]. Geotechnical and Geological Engineering, 2016, 34(6): 1723-1735. doi: 10.1007/s10706-016-9984-y
    [22] HENCHER S R, RICHARDS L R. Assessing the shear strength of rock discontinuities at laboratory and field scales[J]. Rock Mechanics and Rock Engineering, 2015, 48(3): 883-905. doi: 10.1007/s00603-014-0633-6
    [23] ATAPOUR H, MOOSAVI M. The influence of shearing velocity on shear behavior of artificial joints[J]. Rock Mechanics and Rock Engineering, 2014, 47(5): 1745-1761. doi: 10.1007/s00603-013-0481-9
    [24] RAM B K, BASU A. Shear behavior of unfilled-planar quartzitic rock joints with reference to weathering grade of joint surfaces[J]. Rock Mechanics and Rock Engineering, 2019, 52(10): 4113-4121. doi: 10.1007/s00603-019-01815-7
    [25] DAY J J, DIEDERICHS M S, HUTCHINSON D J. New direct shear testing protocols and analyses for fractures and healed intrablock rockmass discontinuities[J]. Engineering Geology, 2017, 229: 53-72. doi: 10.1016/j.enggeo.2017.08.027
    [26] GOODMAN R E. The mechanical properties of joints[C]//ISRM. Proceedings of the 3rd Congress of the International Society for Rock Mechanics. Denver: ISRM, 1974: 1-7.
    [27] BARTON N, BANDIS S, BAKHTAR K. Strength, deformation and conductivity coupling of rock joints[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1985, 22(3): 121-140. doi: 10.1016/0148-9062(85)93227-9
    [28] SWAN G. Determination of stiffness and other joint properties from roughness measurements[J]. Rock Mechanics and Rock Engineering, 1983, 16(1): 19-38. doi: 10.1007/BF01030216
    [29] MALAMA B, KULATILAKE P H S W. Models for normal fracture deformation under compressive loading[J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(6): 893-901. doi: 10.1016/S1365-1609(03)00071-6
    [30] ZANGERL C, EVANS K F, EBERHARDT E, et al. Normal stiffness of fractures in granitic rock: a compilation of laboratory and in-situ experiments[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(8): 1500-1507. doi: 10.1016/j.ijrmms.2008.02.001
    [31] LEE Y K, PARK J W, SONG J J. Model for the shear behavior of rock joints under CNL and CNS conditions[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 70: 252-263. doi: 10.1016/j.ijrmms.2014.05.005
    [32] BAHAADDINI M, HAGAN P C, MITRA R, et al. Parametric study of smooth joint parameters on the shear behaviour of rock joints[J]. Rock Mechanics and Rock Engineering, 2015, 48(3): 923-940. doi: 10.1007/s00603-014-0641-6
    [33] WANG Jian-guo, ICHIKAWA Y, LEUNG C F. A constitutive model for rock interfaces and joints[J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(1): 41-53. doi: 10.1016/S1365-1609(02)00113-2
    [34] BAN Li-ren, ZHU Chun, QI Cheng-zhi, et al. The shear stiffness criterion for rock joints considering rock wear behaviour[J]. Quarterly Journal of Engineering Geology and Hydrogeology, 2020, 53(2): 266-275. doi: 10.1144/qjegh2018-096
    [35] BARTON N, CHOUBEY V. The shear strength of rock joints in theory and practice[J]. Rock Mechanics, 1977, 10(1/2): 1-54.
    [36] SINGH H K, BASU A. A comparison between the shear behavior of 'real' natural rock discontinuities and their replicas[J]. Rock Mechanics and Rock Engineering, 2018, 51(1): 329-340. doi: 10.1007/s00603-017-1334-8
    [37] JIANG Xiao-wei, WAN Li, WANG Xu-sheng, et al. Estimation of fracture normal stiffness using a transmissivity-depth correlation[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(1): 51-58. doi: 10.1016/j.ijrmms.2008.03.007
    [38] JIANG Quan, FENG Xia-ting, GONG Yan-hua, et al. Reverse modelling of natural rock joints using 3D scanning and 3D printing[J]. Computers and Geotechnics, 2016, 73: 210-220. doi: 10.1016/j.compgeo.2015.11.020
    [39] 张国彪, 包含, 兰恒星, 等. 结构面粗糙度系数与采样精度的关系研究[J]. 工程地质学报, 2018, 26(5): 1336-1341. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201805028.htm

    ZHANG Guo-biao, BAO Han, LAN Heng-xing, et al. Research on the relationship between joint roughness coefficient and sampling precision of structural plane[J]. Journal of Engineering Geology, 2018, 26(5): 1336-1341. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201805028.htm
    [40] 胥勋辉, 张国彪, 包含, 等. 基于3D打印技术的岩体结构面各向异性剪切力学行为[J]. 煤田地质与勘探, 2020, 48(1): 154-159, 167. doi: 10.3969/j.issn.1001-1986.2020.01.020

    XU Xun-hui, ZHANG Guo-biao, BAO Han, et al. Anisotropic shear behavior of rock joint based on 3D printing technology[J]. Coal Geology and Exploration, 2020, 48(1): 154-159, 167. (in Chinese) doi: 10.3969/j.issn.1001-1986.2020.01.020
    [41] DONG Hang-yu, GUO Bao-hua, LI Yi-zhe, et al. Empirical formula of shear strength of rock fractures based on 3D morphology parameters[J]. Geotechnical and Geological Engineering, 2017, 35(3): 1169-1183. doi: 10.1007/s10706-017-0172-5
    [42] LIU Quan-sheng, TIAN Yong-chao, JI Pei-qi, et al. Experimental investigation of the peak shear strength criterion based on three-dimensional surface description[J]. Rock Mechanics and Rock Engineering, 2018, 51(4): 1005-1025. doi: 10.1007/s00603-017-1390-0
    [43] TSE R, CRUDEN D M. Estimating joint roughness coefficients[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1979, 16(5): 303-307. doi: 10.1016/0148-9062(79)90241-9
    [44] BAO Han, XU Xun-hui, LAN Heng-xing, et al. A new joint morphology parameter considering the effects of micro-slope distribution of joint surface[J]. Engineering Geology, 2020, 275: 105734. doi: 10.1016/j.enggeo.2020.105734
    [45] ZHAO Wu-sheng, CHEN Wei-zhong, ZHAO Kun. Laboratory test on foamed concrete-rock joints in direct shear[J]. Construction and Building Materials, 2018, 173: 69-80. doi: 10.1016/j.conbuildmat.2018.04.006
    [46] LI C. A method for graphically presenting the deformation modulus of jointed rock masses[J]. Rock Mechanics and Rock Engineering, 2001, 34(1): 67-75. doi: 10.1007/s006030170027
  • 加载中
图(19) / 表(5)
计量
  • 文章访问数:  581
  • HTML全文浏览量:  187
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-21
  • 刊出日期:  2022-04-25

目录

    /

    返回文章
    返回