留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氢燃料电池动力船舶关键技术综述

徐晓健 杨瑞 纪永波 张新宇 姜磊 李坤

徐晓健, 杨瑞, 纪永波, 张新宇, 姜磊, 李坤. 氢燃料电池动力船舶关键技术综述[J]. 交通运输工程学报, 2022, 22(4): 47-67. doi: 10.19818/j.cnki.1671-1637.2022.04.004
引用本文: 徐晓健, 杨瑞, 纪永波, 张新宇, 姜磊, 李坤. 氢燃料电池动力船舶关键技术综述[J]. 交通运输工程学报, 2022, 22(4): 47-67. doi: 10.19818/j.cnki.1671-1637.2022.04.004
XU Xiao-jian, YANG Rui, JI Yong-bo, ZHANG Xin-yu, JIANG Lei, LI Kun. Review on key technologies of hydrogen fuel cell powered vessels[J]. Journal of Traffic and Transportation Engineering, 2022, 22(4): 47-67. doi: 10.19818/j.cnki.1671-1637.2022.04.004
Citation: XU Xiao-jian, YANG Rui, JI Yong-bo, ZHANG Xin-yu, JIANG Lei, LI Kun. Review on key technologies of hydrogen fuel cell powered vessels[J]. Journal of Traffic and Transportation Engineering, 2022, 22(4): 47-67. doi: 10.19818/j.cnki.1671-1637.2022.04.004

氢燃料电池动力船舶关键技术综述

doi: 10.19818/j.cnki.1671-1637.2022.04.004
基金项目: 

国家自然科学基金项目 61903108

交通运输部水运科学研究院基本科研业务费项目 72113

浙江省基础公益研究计划项目 LY21F030011

详细信息
    作者简介:

    徐晓健(1988-), 女, 山东淄博人, 交通运输部水运科学研究院博士后, 从事船舶新能源研究

    纪永波(1975-), 男, 山东德州人, 交通运输部水运科学研究院研究员

    通讯作者:

    杨瑞(1979-), 男, 宁夏石嘴山人, 交通运输部水运科学研究院研究员

  • 中图分类号: U674

Review on key technologies of hydrogen fuel cell powered vessels

More Information
  • 摘要: 梳理了当今世界上现有氢燃料动力船舶类型,总结了氢燃料动力船舶的特点,分析了氢燃料电池动力船舶关键技术的研究现状,包括:标准规范、动力源、氢制取、氢储存与氢安全;结合船舶的航行环境、结构与运行工况等,提出了氢燃料电池动力船舶各关键技术所面临的挑战,以及应对挑战的措施建议。研究结果表明:目前,全球氢燃料动力船舶数量有限,多为内河湖泊小型客船,以氢燃料电池为主要动力来源,主要采用35 MPa高压气瓶存储氢燃料;氢燃料电池动力船舶的相关标准规范仍处于制定阶段,可参照氢燃料电池汽车建造、测试和使用方面的标准规范要求;氢燃料电池主要以质子交换膜燃料电池(PEMFC)应用最为广泛,催化剂、双极板、膜电极以及密封材料等均对PEMFC性能具有重要影响;为提高燃料电池对船舶的适用性,建议发展大功率燃料电池模块,并开展燃料电池在湿热、盐雾、倾斜、摇摆状态下的环境适应性研究;中国的制氢产业目前仍以煤炭制氢为主,应大力发展可再生能源制氢。短期内,高压气态储氢是最可行的船上储氢方式,应研究轻质、耐压、高储氢密度的新型储罐,提高储氢密度和安全性;为保证氢燃料电池动力船舶安全性,应综合运用定性和定量风险分析方法,明确风险场景,对氢泄漏、扩散、燃烧与爆炸的发展规律与后果进行仿真分析与风险评估,并提出风险缓解措施。

     

  • 图  1  典型氢燃料动力船舶

    Figure  1.  Typical hydrogen fuel powered vessels

    图  2  氢燃料动力内河自卸货船

    Figure  2.  Hydrogen fuel powered inland self-unloader vessel

    图  3  PEMFC工作原理

    Figure  3.  Operating principle of PEMFC

    图  4  PEMFC系统

    Figure  4.  PEMFC system

    图  5  船舶氢燃料电池动力系统

    Figure  5.  Hydrogen fuel cell power systems of vessels

    图  6  制氢方式对比

    Figure  6.  Comparison of hydrogen production methods

    图  7  氢燃料电池动力船舶风险分析流程

    Figure  7.  Risk analysis process of hydrogen fuel cell powered vessels

    表  1  世界上已建成的代表氢燃料动力船舶[8-10]

    Table  1.   Typical hydrogen fueled vessels in the world[8-10]

    编号 船名 参与机构 时间 动力系统 船舶基本信息
    1 蠡湖号 中国科学院大连化学物理研究所、大连海事大学 2021 70 kW氢燃料电池电堆和86 kW·h的锂电池组成混合动力 中国第一艘燃料电池游艇,长13.9 m,设计航速18 km·h-1,续航189 km,载客10人
    2 Energy Observer 丰田、Corvus Energy 2020 由太阳能光伏、风能和燃料电池构成混合动力系统,船上载有126 kW的氢燃料电池,168 m2的太阳能电池板 船长30.5 m,宽12.8 m, 总质量28 t,航速11 kn
    3 Hydroville Compagnie Maritime Belge(CMB) 2017 2台441 kW柴油/氢双燃料内燃机提供动力,船上包括12个205 L的储氢罐(20 MPa)和2个265 L的燃油箱 船长14.0 m,船宽4.2 m,吃水0.65 m,最大航速27 kn,平均航速22 kn,总载重吨14 t
    4 Nemo H2 Rederij Lovers 2012 动力系统包括2组30 kW的PEMFC和1组蓄电池,输出功率70 kW,采用35 MPa的高压储氢方式,储氢量24 kg 客船长21.9 m,宽4.2 m
    5 Hornblower Hybrid Hornblower 2012 动力系统包括32 kW的PEMFC,2台5 kW的风力发电机,20 kW的太阳能光伏列阵,与柴油发电机一起为船舶提供混合动力 船长约44.0 m,载客600人
    6 Hydrogenesis Bristol Bost Trips 2012 4组燃料电池提供12 kW的动力,氢气储存在350 bar的储罐中,燃料电池充电时间为10 min 船长11.0 m,宽3.6 m,载客14人(含船员2人),航速6~10 kn
    7 MS Forester Thyssen Krupp Marine Systems、DNV等 第1阶段:2009~2017;第2阶段:2017~2022 安装了100 kW的SOFC燃料电池系统作为辅助动力,SOFC燃料电池可采用氢气、甲醇等作为燃料 船长92.5 m,宽17.0 m
    8 MS Mariella Meyer Werft、DNV等 第1阶段:2009~2017;第2阶段:2017~2022 安装了2×30 kW的模块化HTPEM燃料电池作为辅助动力,HTPEM燃料电池可采用氢气、甲醇等作为燃料 船长177.0 m,宽28.0 m,载客2 500人
    9 Alsterwasser Proton Motors、GL、Alster Touristik等 2006~2013 配备2×50 kW PEMFC燃料电池和120 Ah胶体铅酸电池,采用35 MPa的压缩氢气,储氢量24 kg 船长25.5 m,宽5.4 m, 吃水1.33 m, 最大航速8 kn,载客超过100人
    10 Viking Lady Wallenius Maritime、Wärtsilä、DNV 2003~2010 安装了320 kW的熔融碳酸盐燃料电池(Molten Carbonate Fuel Cell,MCFC) 系统作为辅助动力系统,MCFC燃料电池可采用氢气、甲醇等作为燃料 船长92.0 m,宽21.0 m, 总载重吨6 100 t,载客25人,可容纳993 m3的淡水和167 m3的甲醇
    11 Ms Weltfrieden Lioyd 2000 为旅游车改装,安装了10 kW动力的PEMFC推进装置,采用两个金属氢化物储氢装置,共容纳54立方氢气
    下载: 导出CSV

    表  2  部分与氢燃料电池动力相关的标准

    Table  2.   Part of standards related to hydrogen fuel cell power

    编号 标准名称 起草组织 标准简介
    1 Guide for Fuel Cell Power Systems for Marine and Offshore Applications 美国船级社(American Bureau of Shipping, ABS) 为船用燃料电池的设计、评估和辅助支撑系统的建立提供指导参考,并明确了可采用燃料电池的船舶类型
    2 Handbook for Hydrogen-Fuelled Vessels 挪威船级社(Det Norske Veritas, DNV) 确定了航运业的氢安全路线图,对如何进行氢燃料电池动力船舶的安全和监管提供指导
    3 Fuel Cell Technologies—Part2: Fuel Cell Modules (IEC 62282-2: 2012) 国际电工委员会(International Electro Technical Commission, IEC) 规定了燃料电池模块应用过程中,保证其安全性和电池性能的最基本要求,明确了燃料电池对人或外界产生危害时的处理方法
    4 《质子交换膜燃料电池发电系统低温特性测试方法》(GB/T 33979—2017) 全国燃料电池及液流电池标准化技术委员会 规定了低温(零度以下)条件,质子交换膜燃料电池发电系统的通用安全要求、试验要求、试验平台、低温试验前的例行试验及低温试验方法和试验报告等
    5 《质子交换膜燃料电池供氢系统技术要求》(GB/T 34872—2017) 全国燃料电池及液流电池标准化技术委员会 规定了质子交换膜燃料电池供氢系统的系统分类、技术要求、试验方法、标识、包装及运输
    6 《氢气储存输送系统第1部分:通用要求》(GB/T 34542.1—2017) 全国氢能标准化技术委员会 提出了对氢气储存系统、氢气输送系统、氢气压缩系统、氢气充装系统的技术要求以及防火防爆技术要求
    7 《氢系统安全的基本要求》 (GB/T 29729—2013) 全国氢能标准化技术委员会 规定了氢系统的危险因素及其风险控制的基本要求,适用于氢的制取,储存和输送系统的设计和使用
    8 Basic Considerations for the Safety of Hydrogen Systems(ISO/TR 15916: 2015) 国际标准化组织(International Organization for Standardization, ISO) 规定了氢气和液氢的使用和储存,明确了氢气、液氢使用中的安全事项、存在的风险等
    9 《氢气使用安全技术规程》 (GB 4962—2008) 全国安全生产标准化技术委员会、化学品安全标准化分技术委员会 规定了气态氢在使用、置换、储存、压缩与充(灌)装、排放过程及消防与紧急情况处理、安全防护方面的技术要求
    10 《移动式加氢设施安全技术规范》 (GB/T 31139—2014) 全国氢能标准化技术委员会 规定了移动式加氢设施的安全技术要求、运行安全管理、运输和长期停放的要求,适用于加注压力在15~70 MPa的移动式加氢设施
    下载: 导出CSV

    表  3  典型燃料电池的主要组成和关键技术参数[22-24]

    Table  3.   Major components and key technical parameters of typical fuel cells [22-24]

    类型 AFC PEMFC HT-PEMFC PAFC DMFC MCFC SOFC
    电极 阳极 Pt/Ag Pt/C Pt/C Pt/C Pt/C Li/NiO Sr/LaMnO3
    阴极 Pt/Ni Pt/C Pt/C Pt/C Pt-Ru/C Ni/Al、Ni/Cr Ni/YSZ
    电解质 氢氧化钾 水性聚合物膜 无机酸基聚合物膜 磷酸 水性聚合物膜 熔融碳酸盐 多孔陶瓷材料
    燃料 氢气 氢气 氢气 氢气、液化天然气、甲醇 甲醇 氢气、甲醇、碳氢化合物 氢气、甲醇、碳氢化合物
    工作温度/℃ 60~200 65~85 160~220 140~200 75~120 650~700 500~1 000
    功率容量/kW ≤500 ≤120 100~400 ≤5 120~10 000 ≤107
    电效率/% 50~60 50~60 50~60 40~55 20~30 50~55 50~60
    价格 中等 中等 中等
    寿命 中等 中等 中等 优良 中等 优良 中等
    尺寸 中等
    下载: 导出CSV

    表  4  电解水制氢的特性[47, 49]

    Table  4.   Characteristics of water-electrolytic hydrogen production[47, 49]

    制氢技术 AWE PEM SOE
    电解质隔膜 30%KOH石棉膜 质子交换膜 固体氧化物(Y2O3/ZrO2)
    催化剂 Pt、Ni、Co、Mn 阳极:RuO2、IrO2;阴极:Pt、Pt/C Ni-YSZ
    电流密度/(A·cm-2) < 0.8 1~4 0.2~0.4
    能源效率/% 60~75 70~90 85~100
    能耗/(kW·h·m-3) 4.5~5.5 4.0~5.0 2.6~3.6
    工作温度/℃ ≤90 ≤80 ≥800
    启停速度 较快
    电能质量需求 稳定电源 稳定或波动电源 稳定电源
    系统运维 有强碱腐蚀性液体,后期运维复杂成本高 无腐蚀性液体,运维简单成本低 以技术研究为主,尚无运维需求
    技术成熟度 充分产业化 初步商业化 初期示范
    下载: 导出CSV

    表  5  典型储氢方式对比[57-58]

    Table  5.   Comparison of typical hydrogen storage methods [57-58]

    储氢方式 高压气态储氢 低温液化储氢 有机液体储氢 金属合金储氢
    储氢材料 耐高压容器 耐超低温且保持超低温的特殊容器 甲基环己烷、二苄基甲苯等 金属氢化物、络合氢化物等
    体积比容量
    操作性 简单 简单
    安全性 较差,存在泄露、爆炸安全隐患 较差 安全 安全
    运输便利性 方便 较方便 十分方便 十分方便
    技术成熟度 成熟 不够成熟 不够成熟 比较成熟
    应用范围 最广泛 仅航天航空 技术攻关阶段 技术攻关阶段
    下载: 导出CSV
  • [1] International Marine Organization. Fourth IMOGHG study 2020 executive summary[R]. London: International Marine Organization, 2021.
    [2] 胡琼, 周伟新, 刁峰. IMO船舶温室气体减排初步战略解读[J]. 中国造船, 2019, 60(1): 195-201. doi: 10.3969/j.issn.1000-4882.2019.01.019

    HU Qiong, ZHOU Wei-xin, DIAO Feng. Interpretation of initial IMO strategy on reduction of GHG emissions from ships[J]. Shipbuilding of China, 2019, 60(1): 195-201. (in Chinese) doi: 10.3969/j.issn.1000-4882.2019.01.019
    [3] BRYNOLF S, MAGNUSSON M, FRIDELL E, et al. Compliance possibilities for the future ECA regulations through the use of abatement technologies or change of fuels[J]. Transportation Research Part D: Transport and Environment, 2014, 28: 6-18. doi: 10.1016/j.trd.2013.12.001
    [4] 王思佳. 2020年, 航运减排竞赛年[J]. 中国船检, 2019(12): 16-19. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGCJ201912008.htm

    WANG Si-jia. 2020, the year of racing for shipping emission reduction[J]. China Ship Survey, 2019(12): 16-19. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGCJ201912008.htm
    [5] 张永伟, 张真, 苗乃乾, 等. 中国氢能产业发展报2020[R]. 北京: 中国电动汽车百人会, 2020.

    ZHANG Yong-wei, ZHANG Zhen, MIAO Nai-qian, et al. Report on hydrogen energy industry development of China 2020[R]. Beijing: China EV 100, 2020. (in Chinese)
    [6] 符冠云, 赵吉诗, 龚娟, 等. 2019年国内外氢能发展形势回顾及展望[J]. 中国能源, 2020, 42(3): 30-33. doi: 10.3969/j.issn.1003-2355.2020.03.006

    FU Guan-yun, ZHAO Ji-shi, GONG Juan, et al. Review and prospect on hydrogen energy development at home and abroad in 2019[J]. Energy of China, 2020, 42(3): 30-33. (in Chinese) doi: 10.3969/j.issn.1003-2355.2020.03.006
    [7] 马宇坤, 张勤杰, 赵俊杰. 船舶行业"氢"装上阵之路有多远[J]. 船舶物资与市场, 2019(3): 14-16. https://www.cnki.com.cn/Article/CJFDTOTAL-CBWZ201903011.htm

    MA Yu-kun, ZHANG Qin-jie, ZHAO Jun-jie. How far is the way to use hydrogen in shipping industry[J]. Marine Equipment/Materials and Marketing, 2019(3): 14-16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CBWZ201903011.htm
    [8] 朱子文. MOFs储氢应用于船舶燃料电池电力推进系统的研究[D]. 厦门: 集美大学, 2019.

    ZHU Zi-wen. Research on the application of MOFs as hydrogen storage materials in fuel cell electric propulsion system for ships[D]. Xiamen: Jimei University, 2019. (in Chinese)
    [9] 于全虎. 氢能和燃料电池及其船舶应用进展[J]. 船舶, 2020, 31(5): 69-76. https://www.cnki.com.cn/Article/CJFDTOTAL-CBZZ202005013.htm

    YU Quan-hu. Hydrogen, fuel cells and their application on ship[J]. Ship and Boat, 2020, 31(5): 69-76. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CBZZ202005013.htm
    [10] 徐自亮, 余英, 李力. 氢燃料电池应用进展[J]. 中国基础科学, 2018, 20(2): 7-17. doi: 10.3969/j.issn.1009-2412.2018.02.002

    XU Zi-liang, YU Ying, LI Li. Latest progress of hydrogen fuel cell's applications[J]. China Basic Science, 2018, 20(2): 7-17. (in Chinese) doi: 10.3969/j.issn.1009-2412.2018.02.002
    [11] PRATT J W, KLEBANOFF L E. Optimization of zero emission hydrogen fuel cell ferry design, with comparisons to the SF-BREEZE[R]. Albuquerque: Sandia National Laboratories, 2018.
    [12] American Bureau of Shipping. Guide for fuel cell power systems for marine and offshore applications[R]. New York: American Bureau of Shipping, 2019.
    [13] ALVESTAD L, BERGE K. Handbook for hydrogen-fuelled vessels[R]. Oslo: DNV, 2021.
    [14] 罗肖锋, 吴顺平, 雷伟, 等. 船舶能源低碳发展趋势及路径[J]. 中国远洋海运, 2021(3): 46-51. doi: 10.3969/j.issn.1673-6664.2021.03.013

    LUO Xiao-feng, WU Shun-ping, LEI Wei, et al. Low-carbon development trend and path of ship energy[J]. Maritime China, 2021(3): 46-51. (in Chinese) doi: 10.3969/j.issn.1673-6664.2021.03.013
    [15] 王思佳. CCS助力氢能上船提速[J]. 中国船检, 2020, 245(9): 15-18. doi: 10.3969/j.issn.1009-2005.2020.09.007

    WANG Si-jia. CCS promotes the application of hydrogen on ships[J]. China Ship Survey, 2020, 245(9): 15-18. (in Chinese) doi: 10.3969/j.issn.1009-2005.2020.09.007
    [16] 黄兴, 丁天威, 赵洪辉, 等. 车用燃料电池系统氢安全控制综述[J]. 汽车文摘, 2019, 519(4): 6-10. https://www.cnki.com.cn/Article/CJFDTOTAL-QCWZ201904003.htm

    HUANG Xing, DING Tian-wei, ZHAO Hong-hui, et al. A review of hydrogen safety control for automotive fuel cell systems[J]. Automotive Digest, 2019, 519(4): 6-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCWZ201904003.htm
    [17] 马秋玉, 赵子亮, 赵洪辉, 等. 燃料电池行业标准现状综述[J]. 汽车文摘, 2020(1): 14-17. https://www.cnki.com.cn/Article/CJFDTOTAL-QCWZ202001005.htm

    MA Qiu-yu, ZHAO Zi-liang, ZHAO Hong-hui, et al. Overview on the present situation of fuel cell industry standards[J]. Automotive Digest, 2020(1): 14-17. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCWZ202001005.htm
    [18] WHITE C M, STEEPER R R, LUTZ A E. The hydrogen-fueled internal combustion engine: a technical review[J]. International Journal of Hydrogen Energy, 2006, 31(10): 1292-1305. doi: 10.1016/j.ijhydene.2005.12.001
    [19] 温术来. 燃料电池的研究现状及进展[J]. 现代化工, 2019, 39(7): 66-70. https://www.cnki.com.cn/Article/CJFDTOTAL-XDHG201907014.htm

    WEN Shu-lai. Research status and progress of fuel cell[J]. Modern Chemical Industry, 2019, 39(7): 66-70. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDHG201907014.htm
    [20] 程一步. 氢燃料电池技术应用现状及发展趋势分析[J]. 石油石化绿色低碳, 2018, 3(2): 5-13. doi: 10.3969/j.issn.2095-0942.2018.02.002

    CHENG Yi-bu. Application status and development trend analysis of hydrogen fuel cell technology[J]. Green Petroleumand Petrochemicals, 2018, 3(2): 5-13. (in Chinese) doi: 10.3969/j.issn.2095-0942.2018.02.002
    [21] 侯明, 衣宝廉. 燃料电池技术发展现状与展望[J]. 电化学, 2012, 18(1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-DHXX201201002.htm

    HOU Ming, YI Bao-lian. Progress and perspective of fuel cell technology[J]. Journal of Electrochemistry, 2012, 18(1): 1-13. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DHXX201201002.htm
    [22] 冯娟. 船用动力氢燃料电池性能优化研究[D]. 镇江: 江苏科技大学, 2018.

    FENG Juan. Performance optimization of marine hydrogen fuel cell[D]. Zhenjiang: Jiangsu University of Science and Technology, 2018. (in Chinese)
    [23] TRONSTAD T, ÅSTRAND H H, HAUGOM G P, et al. Study on the use of fuel cells in shipping[R]. Oslo: DNV, 2017.
    [24] XING H, STUART C, SPENCE S, et al. Fuel cell power systems for maritime applications: progress and perspectives[J]. Sustainability, 2021, 13(3): 1213. doi: 10.3390/su13031213
    [25] SHAO Min-hua, PELES A, SHOEMAKER K. Electrocatalysis on platinum nanoparticles: particle size effect on oxygen reduction reactionactivity[J]. Nano Letters, 2011, 11(9): 3714-3719. doi: 10.1021/nl2017459
    [26] LIU Sheng-chu, LI Shang, WANG Ru-yi, et al. Preparation of high performance and ultra-low platinum loading membrane electrode assembly for PEMFC commercial application[J]. Journal of the Electrochemical Society, 2019, 166(16): 1308-1313. doi: 10.1149/2.0151916jes
    [27] ERCOLANO G, CAVALIERE S, ROZIōRE J, et al. Recent developments in electrocatalyst design thrifting noble metals in fuel cells[J]. Current Opinion in Electrochemistry, 2018, 9: 271-277. doi: 10.1016/j.coelec.2018.05.019
    [28] 何大平, 木士春. 质子交换膜燃料电池铂电催化剂的稳定策略[J]. 电化学, 2018, 24(6): 655-663. https://www.cnki.com.cn/Article/CJFDTOTAL-DHXX201806008.htm

    HE Da-ping, MU Shi-chun. Stabilization strategies of Pt catalysts for proton exchange membrane fuel cells[J]. Journal of Electrochemistry, 2018, 24(6): 655-663. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DHXX201806008.htm
    [29] 侯明, 邵志刚, 俞红梅, 等. 2019年氢燃料电池研发热点回眸[J]. 科技导报, 2020, 38(1): 137-150. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB202001015.htm

    HOU Ming, SHAO Zhi-gang, YU Hong-mei, et al. Review of hot topics on hydrogen fuel cell in 2019[J]. Science and Technology Review, 2020, 38(1): 137-150. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB202001015.htm
    [30] 毛韬博, 栾伟玲, 付青青. 聚苯胺基涂层在质子交换膜燃料电池金属双极板上的应用进展[J]. 化工进展, 2021, 40(7): 3826-3836. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ202107027.htm

    MAO Tao-bo, LUAN Wei-ling, FU Qing-qing. Recent progress on polyaniline-based coatings on bipolar plates of proton exchange membrane fuel cells[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3826-3836. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ202107027.htm
    [31] 王科. 质子交换膜燃料电池双极板流场的研究[D]. 南京: 南京航空航天大学, 2007.

    WANG Ke. Research on flow field on bipolar plates for proton exchange membrane fuel cell[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007. (in Chinese)
    [32] 刘海超. 质子交换膜燃料电池流道设计与流体管理[D]. 北京: 北京化工大学, 2018.

    LIU Hai-chao. Design of flow channel and research on fluid management in proton exchange membrane fuel cells[D]. Beijing: Beijing University of Chemical Technology, 2018. (in Chinese)
    [33] 王伟, 吴旨玉, 董宗玉, 等. 硅橡胶密封垫的应力弛豫特性[J]. 润滑与密封, 2004, 29(2): 27-28, 30. doi: 10.3969/j.issn.0254-0150.2004.02.011

    WANG Wei, WU Zhi-yu, DONG Zong-yu, et al. Stress relaxation properties of the silicone rubber gasket[J]. Lubrication Engineering, 2004, 29(2): 27-28, 30. (in Chinese) doi: 10.3969/j.issn.0254-0150.2004.02.011
    [34] CUI T, CHAO Y J, CHEN X M, et al. Effect of water on life prediction of liquid silicone rubber seals in polymer electrolyte membrane fuel cell[J]. Journal of Power Sources, 2011, 196(22): 9536-9543. doi: 10.1016/j.jpowsour.2011.07.066
    [35] DAI Wei, WANG Hai-jiang, YUAN Xiao-zi, et al. A review on water balance in the membrane electrode assembly of proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2009, 34(23): 9461-9478. doi: 10.1016/j.ijhydene.2009.09.017
    [36] VAN BIERT L, GODJEVAC M, VISSER K, et al. A review of fuel cell systems for maritime applications[J]. Journal of Power Sources, 2016, 327(30): 345-364.
    [37] 刘易明, 王甫, 王珺, 等. 燃料电池船舶应用形式及其关键技术[J]. 船舶工程, 2021, 43(3): 18-26, 33. https://www.cnki.com.cn/Article/CJFDTOTAL-CANB202103004.htm

    LIU Yi-ming, WANG Fu, WANG Jun, et al. Application form and its key technology of fuel cell ship[J]. Ship Engineering, 2021, 43(3): 18-26, 33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CANB202103004.htm
    [38] CHOI C H, YU S J, HAN I S, et al. Development and demonstration of PEM fuel-cell-battery hybrid system for propulsion of tourist boat[J]. International Journal of Hydrogen Energy, 2016, 41(5): 3591-3599. doi: 10.1016/j.ijhydene.2015.12.186
    [39] 李鸿瑞, 熊良胜, 邵诗逸. 直流电力推进系统在小水线面双体科考船上的应用[J]. 舰船科学技术, 2017, 39(8): 85-90. doi: 10.3404/j.issn.1672-7649.2017.08.018

    LI Hong-rui, XIONG Liang-sheng, SHAO Shi-yi. Application and research of DC electric propulsion to the SWATH scientific research vessel[J]. Ship Science and Technology, 2017, 39(8): 85-90. (in Chinese) doi: 10.3404/j.issn.1672-7649.2017.08.018
    [40] 侯慧, 甘铭, 吴细秀, 等. 混合动力船舶能量管理研究综述[J]. 中国舰船研究, 2021, 16(5): 216-229. https://www.cnki.com.cn/Article/CJFDTOTAL-JCZG202105025.htm

    HOU Hui, GAN Ming, WU Xi-xiu, et al. Review of hybrid ship energy management[J]. Chinese Journal of Ship Research, 2021, 16(5): 216-229. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCZG202105025.htm
    [41] ZHU Li-si, HAN Jin-gang, PENG Dong-kai, et al. Fuzzy logic based energy management strategy for a fuel cell/battery/ultra-capacitor hybrid ship[C]//IEEE. 2014 First International Conference on Green Energy. New York: IEEE, 2014: 107-112.
    [42] 潘钊, 商蕾, 高海波, 等. 燃料电池混合动力船舶复合储能系统与能量管理策略优化[J]. 大连海事大学学报, 2021, 47(3): 79-85. doi: 10.3969/j.issn.1671-7031.2021.03.012

    PAN Zhao, SHANG Lei, GAO Hai-bo, et al. Optimization of composite energy storage system and energy management strategy for fuel cell ships[J]. Journal of Dalian Maritime University, 2021, 47(3): 79-85. (in Chinese) doi: 10.3969/j.issn.1671-7031.2021.03.012
    [43] 杨庆勇. 氢燃料在船舶上的应用分析[J]. 青岛远洋船员职业学院学报, 2020, 41(4): 41-44, 59. doi: 10.3969/j.issn.2095-3747.2020.04.010

    YANG Qing-yong. On the application of hydrogen energy in ships[J]. Journal of Qingdao Ocean Shipping Mariners College, 2020, 41(4): 41-44, 59. (in Chinese) doi: 10.3969/j.issn.2095-3747.2020.04.010
    [44] 刘福水, 郝利君, HEITZ P B. 氢燃料内燃机技术现状与发展展望[J]. 汽车工程, 2006, 28(7): 621-625. doi: 10.3321/j.issn:1000-680X.2006.07.004

    LIU Fu-shui, HAO Li-jun, HEITZ P B. Technology status and development prospect of hydrogen fuel internal combustion engine[J]. Automotive Engineering, 2006, 28(7): 621-625. (in Chinese) doi: 10.3321/j.issn:1000-680X.2006.07.004
    [45] SARTBAEVA A, KUZNETSOV V L, WELLS S A, et al. Hydrogen nexus in a sustainable energy future[J]. Energyand Environmental Science, 2008, 1(1): 79-85. doi: 10.1039/b810104n
    [46] 葛玉振, 林丽利, 姚思宇, 等. 适用于氢气低温制备与高效存储的催化新体系[J]. 科学通报, 2018, 63(21): 2140-2147. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201821007.htm

    GE Yu-zhen, LIN Li-li, YAO Si-yu, et al. Catalysis for efficient low-temperature hydrogen production and storage[J]. Chinese Science Bulletin, 2018, 63(21): 2140-2147. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201821007.htm
    [47] 俞红梅, 邵志刚, 侯明, 等. 电解水制氢技术研究进展与发展建议[J]. 中国工程科学, 2021, 23(2): 146-152. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX202102020.htm

    YU Hong-mei, SHAO Zhi-gang, HOU Ming, et al. Hydrogen production by water electrolysis: progress and suggestions[J]. Strategic Study of CAE, 2021, 23(2): 146-152. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX202102020.htm
    [48] 符冠云. 氢能在我国能源转型中的地位和作用[J]. 中国煤炭, 2019, 45(10): 15-21. doi: 10.3969/j.issn.1006-530X.2019.10.004

    FU Guan-yun. The status and role of hydrogen energy in China's energy transformation[J]. China Coal, 2019, 45(10): 15-21. (in Chinese) doi: 10.3969/j.issn.1006-530X.2019.10.004
    [49] 郭博文, 罗聃, 周红军. 可再生能源电解制氢技术及催化剂的研究进展[J]. 化工进展, 2021, 40(6): 2933-2951. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ202106001.htm

    GUO Bo-wen, LUO Dan, ZHOU Hong-jun. Recent advances in renewable energy electrolysis hydrogen production technology and related electrocatalysts[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 2933-2951. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ202106001.htm
    [50] 杜泽学, 慕旭宏. 水电解技术发展及在绿氢生产中的应用[J]. 石油炼制与化工, 2021, 52(2): 102-110. https://www.cnki.com.cn/Article/CJFDTOTAL-SYLH202102032.htm

    DU Ze-xue, MU Xu-hong. Development of water electrolysis technology and its application in green hydrogen production[J]. Petroleum Processing and Petrochemicals, 2021, 52(2): 102-110. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYLH202102032.htm
    [51] 宋时莉, 李黎明, 朱艳兵, 等. Nafion质子交换膜退化研究进展[J]. 山东化工, 2017, 46(17): 59-62. https://www.cnki.com.cn/Article/CJFDTOTAL-SDHG201717024.htm

    SONG Shi-li, LI li-ming, ZHU Yan-bing, et al. Study progress about degradation of nafion proton exchange membrane[J]. Shandong Chemical Industry, 2017, 46(17): 59-62. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDHG201717024.htm
    [52] 范芷萱, 俞红梅, 姜广, 等. PEM水电解池低成本阳极钛纤维毡扩散层研究[J]. 电源技术, 2020, 44(7): 933-936. https://www.cnki.com.cn/Article/CJFDTOTAL-DYJS202007001.htm

    FAN Zhi-xuan, YU Hong-mei, JIANG Guang, et al. A low-cost Ti felt anode gas diffusion layer for PEM water electrolysis[J]. Chinese Journal of Power Sources, 2020, 44(7): 933-936. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DYJS202007001.htm
    [53] LETTENMEIER P, WANG R, ABOUATALLAH R, et al. Low-cost and durable bipolar plates for proton exchange membrane electrolyzers[J]. Scientific Reports, 2017, 7: 44035.
    [54] VAN HOECKE L, LAFFINEUR L, CAMPE R, et al. Challenges in the use of hydrogen for maritime applications[J]. Energy and Environmental Science, 2021, 14: 815-843.
    [55] ESPOSITO D V. Membraneless electrolyzers for low-cost hydrogen production in a renewable energy future[J]. Joule, 2017, 1: 651-658.
    [56] 李争, 张蕊, 孙鹤旭, 等. 可再生能源多能互补制-储-运氢关键技术综述[J]. 电工技术学报, 2021, 36(3): 446-462. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS202103002.htm

    LI Zheng, ZHANG Rui, SUN He-xu, et al. Review on key technologies of hydrogen generation, storage and transportation based on multi-energy complementary renewable energy[J]. Transactions of China Electrotechnical Society, 2021, 36(3): 446-462. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS202103002.htm
    [57] 高金良, 袁泽明, 尚宏伟, 等. 氢储存技术及其储能应用研究进展[J]. 金属功能材料, 2016, 23(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGC201601001.htm

    GAO Jin-liang, YUAN Ze-ming, SHANG Hong-wei, et al. Research progress on storage technology and stored energy application of hydrogen[J]. Metallic Functional Materials, 2016, 23(1): 1-11. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSGC201601001.htm
    [58] 李璐伶, 樊栓狮, 陈秋雄, 等. 储氢技术研究现状及展望[J]. 储能科学与技术, 2018, 7(4): 586-594. https://www.cnki.com.cn/Article/CJFDTOTAL-CNKX201804011.htm

    LI Lu-ling, FAN Shuan-shi, CHEN Qiu-xiong, et al. Hydrogen storage technology: current status and prospects[J]. Energy Storage Science and Technology, 2018, 7(4): 586-594. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CNKX201804011.htm
    [59] 郑津洋, 开方明, 刘仲强, 等. 轻质高压储氢容器[J]. 化工学报, 2004(S1): 130-133. https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ2004S1026.htm

    ZHENG Jin-yang, KAI Fang-ming, LIU Zhong-qiang, et al. Lightweight high-pressure hydrogen tank[J]. Journal of Chemical Industry and Engineering, 2004, 55(S1): 130-133. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ2004S1026.htm
    [60] 欧训民. 氢能制取和储存技术研究发展综述[J]. 能源研究与信息, 2009, 25(1): 1-4, 16. https://www.cnki.com.cn/Article/CJFDTOTAL-NYYX200901002.htm

    OU Xun-min. A review on the research and development of hydrogen production and storage technologies[J]. Energy Research and Information Technology, 2009, 25(1): 1-4, 16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NYYX200901002.htm
    [61] 杨妙梁. 世界燃料电池车发展动向(三)——丰田燃料电池车开发与制氢、储氢技术概况[J]. 汽车与配件, 2005(5): 34-37. https://www.cnki.com.cn/Article/CJFDTOTAL-QCPJ200505014.htm

    YANG Miao-liang. Development trend of fuel cell vehicles in the world (3) —Toyota fuel cell vehicles development, and hydrogen production and storage technology[J]. Automobile and Parts, 2005(5): 34-37. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCPJ200505014.htm
    [62] 郭志钒, 巨永林. 低温液氢储存的现状及存在问题[J]. 低温与超导, 2019, 47(6): 21-29. https://www.cnki.com.cn/Article/CJFDTOTAL-DWYC201906004.htm

    GUO Zhi-fan, JU Yong-lin. Status and problems of cryogenic liquid hydrogen storage[J]. Cryogenics and Superconductivity, 2019, 47(6): 21-29. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DWYC201906004.htm
    [63] HODOSHIMA S, ARAI H, TAKAIWA S, et al. Catalytic decalin dehydrogenation/naphthalene hydrogenation pair as a hydrogen source for fuel-cell vehicle[J]. International Journal of Hydrogen Energy, 2003, 28(11): 1255-1262.
    [64] 双慧丽. 全氢化有机液体储氢物低温催化脱氢研究[D]. 杭州: 浙江大学, 2020.

    SHUANG Hui-li. Study of dehydrogenation of hydrogen-rich liauid organic hydrogen carriers at low temperature[D]. Hangzhou: Zhejiang University, 2020. (in Chinese)
    [65] 汪云华, 王靖坤, 赵家春, 等. 固体储氢材料的研究进展[J]. 材料导报, 2011, 25(9): 120-124. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201109028.htm

    WANG Yun-hua, WANG Jing-kun, ZHAO Jia-chun, et al. Research progress of solid-state hydrogen storage materials[J]. Materials Reports, 2011, 25(9): 120-124. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201109028.htm
    [66] 卢国俭, 周仕学, 姜瑶瑶, 等. 金属合金及碳材料储氢的研究进展[J]. 材料导报, 2007, 21(3): 86-89. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB200703024.htm

    LU Guo-jian, ZHOU Shi-xue, JIANG Yao-yao, et al. Overview of alloy and carbon material for hydrogen storage[J]. Materials Reports, 2007, 21(3): 86-89. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB200703024.htm
    [67] REN J W, MUSYOKA N M, LANGMI H W, et al. Current research trends and perspectives on materials-based hydrogen storage solutions: a critical review[J]. International Journal of Hydrogen Energy, 2017, 42(1): 289-311.
    [68] 陈俊, 陈秋雄, 陈运文, 等. 水合物储能技术研究现状[J]. 储能科学与技术, 2015, 4(2): 131-140. https://www.cnki.com.cn/Article/CJFDTOTAL-CNKX201502008.htm

    CHEN Jun, CHEN Qiu-xiong, CHEN Yun-wen, et al. Current status of energy storage using hydrates[J]. Energy Storage Science and Technology, 2015, 4(2): 131-140. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CNKX201502008.htm
    [69] KAMIYA S, NISHIMURA M, HARADA E. Study on introduction of CO2 free energy to Japan with liquid hydrogen[J]. Physics Procedia, 2015, 67: 11-19.
    [70] DE STEFANO M, ROCOURT X, SOCHET I, et al. Hydrogen dispersion in a closed environment[J]. International Journal of Hydrogen Energy, 2019, 44: 9031-9040.
    [71] 李云浩, 喻源, 张庆武. 车库内氢气扩散和分布状态的数值模拟[J]. 安全与环境学报, 2017, 17(5): 1884-1889. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201705052.htm

    LI Yun-hao, YU Yuan, ZHANG Qing-wu. Numerical simulation for the hydrogen dispersion and distribution behaviors in the garage context[J]. Journal of Safety and Environment, 2017, 17(5): 1884-1889. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201705052.htm
    [72] 刘延雷, 郑津洋, 徐平, 等. 环境温度对高压储氢罐泄漏扩散影响的数值模拟[J]. 工程热物理学报, 2008, 29(5): 770-772. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB200805013.htm

    LIU Yan-lei, ZHENG Jin-yang, XU Ping, et al. Numerical simulation on the influnce of environment temperature on the leakage and diffusion of high pressured hydrogen due to storage tank failure[J]. Journal of Engineering Thermophysics, 2008, 29(5): 770-772. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB200805013.htm
    [73] 徐平, 刘鹏飞, 刘延雷, 等. 高压储氢罐不同位置泄漏扩散的数值模拟研究[J]. 高校化学工程学报, 2008, 22(6): 921-926.

    XU Ping, LIU Peng-fei, LIU Yan-lei, et al. Numerical simulation on the leakage and diffusion of hydrogen due to high pressured storage tank failure at different positions[J]. Journal of Chemical Engineering of Chinese Universities, 2008, 22(6): 921-926. (in Chinese)
    [74] 郑津洋, 刘延雷, 徐平, 等. 障碍物对高压储氢罐泄漏扩散影响的数值模拟[J]. 浙江大学学报(工学版), 2008, 42(12): 2177-2180. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC200812024.htm

    ZHENG Jin-yang, LIU Yan-lei, XU Ping, et al. Numerical simulation of obstacle influence on leakage and diffusion of hydrogen due to high-pressure storage tank failure[J]. Journal of Zhejiang University (Engineering Science), 2008, 42(12): 2177-2180. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC200812024.htm
    [75] 李峰. 燃料电池客船氢气系统设计与氢泄漏数值模拟研究[D]. 武汉: 武汉理工大学, 2018.

    LI Feng. Study on the design of hydrogen system and numerical simulation of hydrogen leakatge in fuel cell passenger ship[D]. Wuhan: Wuhan University of Technology, 2018. (in Chinese)
    [76] BRENNAN S, MOLKOV V. Pressure peaking phenomenon for indoor hydrogen releases[J]. International Journal of Hydrogen Energy, 2018, 43(39): 18530-18541.
    [77] FUSTER B, HOUSSIN-AGBOMSON D, JALLAIS S, et al. Guidelines and recommendations for indoor use of fuel cells and hydrogen systems[J]. International Journal of Hydrogen Energy, 2017, 42: 7600-7607.
    [78] LIU Yuan-liang, LIU Zhan, WEI Jian-jian, et al. Spread characteristics of hydrogen vapor cloud for liquid hydrogen spill under different source conditions[J]. International Journal of Hydrogen Energy, 2021, 46(5): 4606-4613.
    [79] LIU Yuan-liang, WEI Jian-jian, LEI Gang, et al. Spread of hydrogen vapor cloud during continuous liquid hydrogen spills[J]. Cryogenics, 2019, 103(3): 102975.
    [80] LIU Yuan-liang, WEI Jian-jian, LEI Gang, et al. Modeling the development of hydrogen vapor cloud considering the presence of air humidity[J]. International Journal of Hydrogen Energy, 2019, 44(3): 2059-2068.
    [81] SHAO Xiang-yu, PU Liang, LI Qiang, et al. Numerical investigation of flammable cloud on liquid hydrogen spill under various weather conditions[J]. International Journal of Hydrogen Energy, 2018, 43(10): 5249-5260.
    [82] LIU Yuan-liang, LIU Zhan, WEI Jian-jian, et al. Evaluation and prediction of the safe distance in liquid hydrogen spill accident[J]. Process Safety and Environmental Protection, 2021, 146: 1-8.
    [83] SATO Y, IWABUCHI H, GROETHE M, et al. Experiments on hydrogen deflagration[J]. Journal of Power Sources, 2006, 159(1): 144-148.
    [84] SCHEFER R W, GROETHE M, HOUF W G, et al. Experimental evaluation of barrier walls for risk reduction of unintended hydrogen releases[J]. International Journal of Hydrogen Energy, 2009, 34(3): 1590-1606.
    [85] SCHIAVETTI M, CARCASSI M N. Experimental tests of inhomogeneous hydrogen deflagrations in the presence of obstacles[J]. International Journal of Hydrogen Energy, 2021, 46(23): 12455-12463.
    [86] DOROFEEV S B. Evaluation of safety distances related to unconfined hydrogen explosions[J]. International Journal of Hydrogen Energy, 2007, 32(13): 2118-2124.
    [87] XIAO Hua-hua, DUAN Qiang-ling, SUN Jin-hua. Premixed flame propagation in hydrogen explosions[J]. Renewable and Sustainable Energy Reviews, 2018, 81(2): 1988-2001.
    [88] LIANG Zhe, GARDNER L, CLOUTHIER T, et al. Hydrogen deflagrations in stratified flat layers in the large-scale vented combustion test facility[J]. International Journal of Hydrogen Energy, 2021, 46(23): 12533-12544.
    [89] LI Xin-feng, MA Xian-feng, ZHANG Jin, et al. Review of hydrogen embrittlement in metals: hydrogen diffusion, hydrogen characterization, hydrogen embrittlement mechanism and prevention[J]. Acta Metallurgica Sinica(English Letters), 2020, 33: 759-773.
    [90] 尹谢平, 李斌, 高增梁, 等. 高压气瓶用34CrMo4钢抗氢脆性能及影响因素[J]. 中国特种设备安全, 2018, 34(1): 24-29. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGLA201801008.htm

    YIN Xie-ping, LI Bin, GAO Zeng-liang, et al. Hydrogen embrittlement resistant and influence factors of 34CrMo4 steel in high pressure cylinders[J]. China Special Equipment Safety, 2018, 34(1): 24-29. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGLA201801008.htm
    [91] 李志勇, 潘相敏, 谢佳, 等. 加氢站风险评价研究现状与进展[J]. 科技导报, 2009, 27(16): 93-98. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB200916040.htm

    LI Zhi-yong, PAN Xiang-min, XIE Jia, et al. Risk assessment on hydrogen refueling stations[J]. Science and Technology Guide, 2009, 27(16): 93-98. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB200916040.htm
    [92] NILSEN S, ANDERSEN H S, HAUGOM G P, et al. Risk assessments of hydrogen refuelling station concepts based on onsite production[R]. Porsgrunn: Norsk Hydro ASA, 2003.
    [93] 张陈诗. 燃料电池汽车加氢站风险评价研究[D]. 重庆: 重庆大学, 2019.

    ZHANG Chen-shi. Research on risk evaluation of fuel cell vehicle hydrogen refueling station[D]. Chongqing: Chongqing University, 2019. (in Chinese)
    [94] DADASHZADEH M, KASHKAROV S, MAKAROV D, et al. Risk assessment methodology for onboard hydrogen storage[J]. International Journal of Hydrogen Energy, 2018, 43(12): 6462-6475.
    [95] 李静媛, 赵永志, 郑津洋. 加氢站高压氢气泄漏爆炸事故模拟及分析[J]. 浙江大学学报(工学版), 2015, 49(7): 1389-1394. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201507026.htm

    LI Jing-yuan, ZHAO Yong-zhi, ZHENG Jin-yang. Simulation and analysis on leakage and explosion of high pressure hydrogen in hydrogen refueling station[J]. Journal of Zhejiang University (Engineering Science), 2015, 49(7): 1389-1394. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201507026.htm
    [96] RIGAS F, SKLAVOUNOS S. Evaluation of hazards associated with hydrogen storage facilities[J]. International Journal of Hydrogen Energy, 2005, 30(13/14): 1501-1510.
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  2201
  • HTML全文浏览量:  553
  • PDF下载量:  329
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-19
  • 网络出版日期:  2022-10-08
  • 刊出日期:  2022-08-25

目录

    /

    返回文章
    返回