留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

民用机场乘客登机流程优化综述

柏强 武帅 曹蕊 蒙思源 徐誌蔓

柏强, 武帅, 曹蕊, 蒙思源, 徐誌蔓. 民用机场乘客登机流程优化综述[J]. 交通运输工程学报, 2022, 22(4): 68-88. doi: 10.19818/j.cnki.1671-1637.2022.04.005
引用本文: 柏强, 武帅, 曹蕊, 蒙思源, 徐誌蔓. 民用机场乘客登机流程优化综述[J]. 交通运输工程学报, 2022, 22(4): 68-88. doi: 10.19818/j.cnki.1671-1637.2022.04.005
BAI Qiang, WU Shuai, CAO Rui, MENG Si-yuan, XU Zhi-man. Review on passenger boarding process optimization at civil airports[J]. Journal of Traffic and Transportation Engineering, 2022, 22(4): 68-88. doi: 10.19818/j.cnki.1671-1637.2022.04.005
Citation: BAI Qiang, WU Shuai, CAO Rui, MENG Si-yuan, XU Zhi-man. Review on passenger boarding process optimization at civil airports[J]. Journal of Traffic and Transportation Engineering, 2022, 22(4): 68-88. doi: 10.19818/j.cnki.1671-1637.2022.04.005

民用机场乘客登机流程优化综述

doi: 10.19818/j.cnki.1671-1637.2022.04.005
基金项目: 

国家重点研发计划 2018YFB1601202

详细信息
    作者简介:

    柏强(1980-),男,湖北十堰人,长安大学副教授,工学博士,从事交通规划研究

  • 中图分类号: U491

Review on passenger boarding process optimization at civil airports

Funds: 

National Key Research and Development Program of China 2018YFB1601202

More Information
  • 摘要: 基于近年来民用机场乘客登机流程优化研究,从面向乘客、面向飞机、面向研究方法和面向新冠肺炎疫情方面分析了当前研究现状和研究成果,探讨了民用机场乘客登机流程优化的方法及措施,根据现有研究的不足展望了未来的研究方向。研究结果表明:面向乘客的优化研究通常将群体乘客作为主要考虑因素,以最小登机时间及登机干扰作为目标函数建立相关模型,并针对不同优先级乘客和迟到乘客进行分组考虑;WilMA和RP是综合性能较优的2种登机策略,Side-Slip新型座椅对登机时间影响最显著;乘客登机优化的求解方法包括模型法和仿真法,其中模型主要包括统计物理模型和数学模型,仿真包括元胞自动机和智能体;面向新冠肺炎疫情的登机研究更多地考虑了乘客的健康问题,并将登机时间和健康风险作为评估登机优劣的两大主要指标;未来研究需综合不同登机策略的优点以弥补单个策略的不足;自主性强的智能体仿真和未突出个体性差异的元胞自动机仿真需要相互结合;优化模型应考虑更多因素,寻找求解质量更高的启发式算法;需更加注重社交距离、戴口罩乘客人数及群体登机人数等对疫情环境下登机流程的影响研究;疫情防控常态化情况下如何最大化乘客安全和登机效率也是重要的研究方向。

     

  • 图  1  飞机周转过程

    Figure  1.  Process of aircraft turnaround

    图  2  飞机机舱内部干扰

    Figure  2.  Internal interference in aircraft cabin

    图  3  登机策略的类别

    Figure  3.  Categories of boarding strategies

    图  4  基于智能体乘客登机仿真流程

    Figure  4.  Flow of agent-based passenger boarding simulation

    表  1  登机策略概述

    Table  1.   Overview of boarding strategies

    登机策略 描述 优点 缺点 代表航空公司
    Random 仅一个登机组;登机没有给定的顺序,但是每位乘客都分配到一个特定的座位 易于理解;结伴乘客可一起登机;速度较快;迟到的乘客不会影响效率 鲁棒性差 南方航空、春秋航空、首都航空、东方航空、吉祥航空、山东航空、EasyJet、Tarom、WizzAir、Northwest、Air France
    BF 从飞机后部到前部按乘客组顺序依次登机 容易实现;结伴乘客可以一起登机 拥堵会集中在飞机的一小块区域;速度较慢 中国国航、Eva Air、Air Canada、British Airways、American Airlines、Japan Airlines、Korean Air、Virgin Atlantic、Spirit
    OI/WilMA 乘客被分为三组,靠窗座位的乘客组首先登机,然后是中间座位的乘客组,最后是过道座位乘客组 速度较快,没有座位干扰 结伴乘客可能因此会分开登机 United Airlines
    RP BF和OI的混合模式;乘客按照对角线方案登机,首先是飞机后排靠窗座位乘客组登机,最后是前排过道座位乘客组登机 登机速度快 登机相当复杂;结伴乘客可能因此会分开登机 America West、JetBlue
    By Block 连续几排的乘客一起登机;BF或Front-to- Back的一般化登机形式;可以跳过一些排或组,稍后再让这些乘客一起登机 结伴乘客可以一起登机 拥堵集中在飞机的小区域;超过一组,登机速度慢于Random;组数越多,登机速度越慢 American Airlines
    By Row 同一排乘客一起登机 结伴乘客可以一起登机 登机速度慢,登机组数量大 Continental Airlines、Delta Airlines
    Steffen 首个登机的乘客在最后一排靠窗位置就座,第2个乘客在相隔两排的靠窗位置就座(20A、18A、16A、…),两侧靠窗位置坐满以后,以相同的方式继续让乘客坐在中间和过道的座位上 非常快;没有座位干扰,少量过道干扰 相当复杂;结伴乘客可能因此会分开登机
    Open Seating 没有为乘客指定座位;乘客在登机时可以选择任意空闲的座位 结伴乘客可以一起登机;乘客可以通过选择座位来避免干扰 大部分乘客认为有压力;先到先服务原则的缺点为最后一批群体登机的乘客可能没有相邻的座位 Southwest Airlines
    下载: 导出CSV

    表  2  群体乘客登机文献概述

    Table  2.   Literature overview of group passenger boarding

    文献 评估指标 登机场景 模型
    [25] 登机时间 单门单过道飞机A321;3人组团、2人组团、单独出行乘客比例分别为7%、38%、55%;携带0、1、2件行李的乘客比例分别为45%、40%、15% 基于MATLAB的仿真模型
    [26] 登机时间、座位干扰 单门单过道飞机(30×6=180座位);设置2种载客率;设置2种群体出行比例;设置2种步行速度的乘客比例;乘客携带1件行李; 基于智能体仿真模型
    [27] 登机时间 单门单过道飞机(31×6=186座位);群体出行乘客设置为3人;乘客最多可携带2件行李 考虑乘客期望的数学模型(SA求解)
    [24] 登机时间、检票延误 单门单过道飞机(25×6=150座位);群体出行和单独出行乘客随机分布;乘客最多可携带2件行李 考虑乘客群体特征和行李的常微分方程模型
    [28] 登机时间、座位干扰 单门单过道飞机(25×6=150座位);群体出行和单独出行乘客随机分布;群体出行乘客优先选择座位
    [29] 登机时间 单门单过道飞机(25×6=150座位);群体出行和单独出行乘客随机分布;携带0、1、2件行李的乘客比例分别为20%、60%、20%
    [31] 登机时间 双门单过道飞机(30×6=180座位);双摆渡车;群体出行和单独出行乘客按比例分布;设置7种行李分配比例 混合整数规划模型
    [32]、[33] 登机时间、过道座位风险持续时间、靠窗座位风险持续时间 双门单过道飞机(29×4=116座位); 4人乘客结伴登机并就座;社交距离为1.6 m 混合整数规划模型
    [34] 过道座位风险持续时间、靠窗座位风险持续时间 单门单过道飞机(20×6=120座位);不同人数群体乘客出行的组别;设置不同的社交距离 混合整数规划模型
    [35] 登机时间、座位干扰、过道干扰 单门单过道飞机(25×6=150座位);3人组团、2人组团、单独出行乘客比例分别为7%、38%、55%;机舱座椅为Side-Slip座椅 基于元胞自动机仿真
    下载: 导出CSV

    表  3  飞机座椅文献概述

    Table  3.   Literature overview of aircraft seats

    文献 评估指标 登机场景 模型/仿真
    [43] 登机时间 3种窄体飞机分别为136座位的B737-300、144座位的A320、184座位的B757 蒙特卡罗模拟
    [45]、[46] A320(29×6=174座位);机舱座椅为Side-Slip座椅 基于ASEP的仿真,进化算法求解
    [47] 单门单过道飞机(25×6=150座位);机舱座椅为Side-Slip座椅 基于元胞自动机的仿真
    [44] 3种机舱类型分别为每排9、6、4个座位;设置7种行李分配比例 MATLAB编程仿真
    [35] 登机时间、座位干扰、过道干扰 单门单过道飞机(25×6=150座位);3人组团、2人组团、单独出行乘客比例分别为7%、38%、55%;机舱座椅为Side-Slip座椅 基于元胞自动机仿真
    下载: 导出CSV

    表  4  飞机过道文献概述

    Table  4.   Literature overview of aircraft aisle

    文献 评估指标 登机场景 模型/仿真
    [48]、[49] 登机时间、座位干扰、过道干扰 单门单过道飞机(23×6=138座位);设置不同比例的载客率;携带0、1、2件行李的乘客比例分别为60%、30%、10% 基于元胞自动机的MATLAB仿真
    [51] 登机时间 2种类型飞机分别为180座位的单过道飞机、300座位的双过道飞机;机舱座椅为Side-Slip座椅 基于智能体的仿真
    [52] 双过道飞机A320;携带0、1、2件行李的乘客比例分别为60%、30%、10%;2种机舱座椅分别为Side-Slip座椅和普通座椅 ASEP粒子动力学模型
    [50] 登机时间 B777和B380两种飞机机型;6种不同的群体乘客类型 基于智能体的仿真
    下载: 导出CSV

    表  5  双门飞机登机文献概述

    Table  5.   Literature overview of two-door aircraft boarding

    文献 评估指标 登机场景 仿真
    [53] 登机时间、座位干扰 双门A320(30×6=180座位)满载;双摆渡车;设置不同行李分配比例 基于智能体的仿真
    [54] 双门A320(30×6=180座位)满载;双摆渡车;设置不同行李分配比例
    [55] 双门A320(30×6=180座位);设置不同比例的载客率;双摆渡车;不同行李分配比例
    [13] 双门A320(30×6=180座位);双摆渡车;设置不同行李分配比例
    [56] 双门A320(30×6=180座位);设置不同比例的载客率;不同的行李分配比例;双摆渡车
    [31] 登机时间 双门A320(30×6=180座位)满载;双摆渡车
    下载: 导出CSV

    表  6  基于统计物理模型的登机优化研究

    Table  6.   Studies on boarding optimization based on statistical physics models

    模型 文献 评估指标 登机场景
    ASEP粒子动力学模型 [60]~[63] 登机时间 单门单过道飞机
    [64]、[65] A320(29×6=174座位);单门单过道
    [52] 双过道A320飞机;携带0、1、2件行李的乘客比例分别为60%、30%、10%;设置2种机舱座椅, 分别为Side-Slip座椅、普通座椅
    [5]、[18] A320(29×6=174座位);单门单过道
    统计力学模型 [66] 单门单过道飞机(20×6=120座位)
    下载: 导出CSV

    表  7  基于数学模型的登机优化研究

    Table  7.   Studies on boarding optimization based on mathematical models

    模型 文献 评估指标 登机场景
    混合整数规划模型 [16]、[68] 登机时间、座位干扰、过道干扰 A320单门单过道(23×6=138座位)
    [69] 登机时间 单门单过道飞机(23×6=138座位);携带0、1、2件行李的乘客比例分别为60%、30%、10%
    [70] A320单门单过道(23×6=138座位);设置不同组别的乘客登机
    [12] 单门单过道飞机(20×6=120座位);3种行李分配比例
    [7] 单门单过道飞机(20×6=120座位);乘客最多可携带2件行李
    [38] 单门单过道飞机(20×6=120座位);乘客最多携带2件行李;设置不同比例的优先级乘客
    0-1线性规划模型 [75] 登机时间 单门单过道窄体飞机
    常微分方程模型 [72] 登机时间 A320单门单过道(23×6=138座位)
    [28] 登机时间、座位干扰 单门单过道飞机(25×6=150座位);群体出行和单独出行乘客随机分布;群体出行乘客优先选择座位
    [24] 登机时间、延误 单门单过道飞机(25×6=150座位);群体出行和单独出行乘客随机分布;乘客最多可携带2件行李
    [29] 登机时间 单门单过道飞机(25×6=150座位);群体出行和单独出行乘客随机分布;携带0、1、2件行李的乘客比例分别为20%、60%、20%
    指数高斯分布模型 [76] 登机时间、乘客感知时间 单门单过道飞机
    离散事件模型 [71] 登机时间 A320单门单过道飞机(23×6=138座位)
    [77] A320单门单过道飞机(25×6=150座位)
    行人流跟驰模型 [30]、[73] 登机时间、座位干扰、过道干扰 单门单过道飞机(25×6=150座位)
    基于任务网络的多参数分析模型 [78] 登机时间 单门单过道飞机(24×6=144座位)
    基于马尔科夫链蒙特卡罗优化模型 [14] 登机时间 单门单过道飞机(20×6=120座位);随机分配行李数
    结构方程模型 [20] 登机时间 单门单过道飞机
    正态分布、韦布尔分布、泊松分布模型 [79] 登机时间 训练数据为北京首都机场2013年运营数据;测试数据为北京首都机场2014年1~8月运营数据
    LSTM模型 [80] 登机时间 单门单过道飞机
    多格子元胞自动机模型 [81] 登机时间、过道干扰(速度干扰、入座干扰) A320单门单过道飞机(23×6=138座位);设置不同比例的载客率;携带0、1、2件行李的乘客比例分别为60%、30%、10%
    具有凹边界条件的1+1多核增长模型 [82] 登机时间 A320单门单过道飞机(29×6=174座位)
    二维洛仑兹几何渐进模型 [83]~[85] 登机时间 单门单过道飞机
    下载: 导出CSV

    表  8  智能体仿真平台比较

    Table  8.   Comparison of different agent-based modelling platforms

    分组 智能体仿真平台
    StarLogo Swarm NetLogo Repast Mason
    开发年份 1990 1996 1999 2000 2003
    开发单位 MIT Santa Fe Institute Northwestern University University of Chicago George Mason University
    官方网站 http://education.mit.edu/starlogo http://www.swarm.org/mailman/listinfo http://ccl.northwestern.edu/netlogo http://repast.sourceforge.net http://cs.gmu.edu/~eclab/projects/mason
    操作系统 Windows, UNIX, Linux Windows, UNIX, Linux, Mac OSX Windows, UNIX, Linux, Mac OSX Windows, UNIX, Linux, Mac OSX Windows, UNIX, Linux, Mac
    安装难度 非常容易 较难 非常容易 容易 容易
    需要的编程技术 基本 专业 基本 专业 专业
    集成GIS功能 × ×
    集成显卡 ×
    可视化环境 Interface Observer swarm Interface None ModelwithUI
    实际系统环境 Observer Model swarm Observer Model Model
    空间环境 Spaceland Space World Space Field
    Agent状态探测 Monitor Probe display Monitor Probe Inspector
    Agent执行事件 Procedure Action Procedure Action Steppable
    运行速度 适中 适中 适中 非常快
    下载: 导出CSV

    表  9  仿真试验中乘客携带行李分配

    Table  9.   Allocation of passengers' luggage in simulation experiment

    行李分配情况 携带行李乘客的百分比/%
    0 1小包 2小包 1大包 1大包和1小包
    S1 10 10 0 10 70
    S2 15 20 5 10 50
    S3 25 20 10 15 30
    S4 35 25 10 15 15
    S5 60 10 10 10 10
    S6 80 5 5 5 5
    S7 100 0 0 0 0
    下载: 导出CSV

    表  10  基于元胞自动机的仿真文献概述

    Table  10.   Literature overview of simulation based on cellular automata

    文献 考虑乘客 考虑机型 考虑新型座椅 考虑行李 登机策略
    载客率/% 结伴 迟到 窄体飞机 宽体飞机 Free Random BF FB RP OI RZ By Row By Seat Flying Carpet By Block Steffen
    [107] 100
    [112] 100
    [49] 100
    [108] 100
    [116] 100
    [40] 100
    [77] 100
    [81] 30~100
    [109] 100
    [113] 100
    [114] 100
    [47] 100
    [111] 100
    [41] 100
    [115] 60~100
    [35] 100
    下载: 导出CSV

    表  11  新冠肺炎疫情下乘客登机文献概述

    Table  11.   Literature overview of passenger boarding during COVID-19 pandemic

    文献 评估指标 登机环境 登机策略 模型/仿真/方法
    [126] 登机时间、3类座位干扰次数、放置行李总时间、过道座位风险持续时间、靠窗座位风险持续时间 单门单过道飞机(30×4=120座位);设置7种携带行李乘客比例;设置3种社交距离分别为1.0、1.5、2.0 m Free、Random、WilMA、BF By Group、BF By Row、RP 基于智能体仿真
    [127] 登机时间、3类座位干扰数量、过道座位风险持续时间、靠窗座位风险持续时间 单门单过道飞机(30×4=120座位);设置7种携带行李乘客比例;不同社交距离 Random、BF 混合整数规划模型
    [128] 登机时间、3类座位干扰数量、过道座位风险持续时间、靠窗座位风险持续时间 单门单过道飞机(30×4=120座位);乘客分3组进行登机;携带0、1小件、1大件、2小件行李的乘客比例分别为10%、10%、10%、70%;社交距离为1.0 m RP 全网格搜索算法、局部搜索优化、基于智能体仿真
    [129] BF 灰色聚类方法、基于智能体仿真
    [130] 登机时间、3类座位干扰数量、过道座位风险持续时间、靠窗座位风险持续时间 单门单过道飞机(30×4=120座位);乘客分组登机;设置7种携带行李乘客比例;设置2种社交距离分别为1.0、2.0 m RP-Spread、RP-Steep 基于智能体仿真
    [131] 双门单过道飞机(30×4=120座位);10辆机场摆渡车;乘客分组登机;设置7种携带行李乘客比例;设置2种社交距离分别为1.0、2.0 m BF、WilMA、RP
    [132] 单门单过道飞机(30×4=120座位);设置7种携带行李乘客比例;设置2种社交距离分别为1.0、2.0 m BF、RP、WilMA
    [133] RP
    [32] 登机时间、过道座位风险持续时间、靠窗座位风险持续时间 双门单过道飞机(29×4=116座位);4人乘客结伴登机并就座;社交距离为1.6 m Random、BF、By Block、OI、RP 混合整数规划模型、元胞自动机仿真
    下载: 导出CSV
  • [1] MALANDRI C, MANTECCHINI L, REIS V. Aircraft turnaround and industrial actions: how ground handlers' strikes affect airport airside operational efficiency[J]. Journal of Air Transport Management, 2019, 78: 23-32. doi: 10.1016/j.jairtraman.2019.04.007
    [2] JAEHN F, NEUMANN S. Airplane boarding[J]. European Journal of Operational Research, 2015, 244(2): 339-359. doi: 10.1016/j.ejor.2014.12.008
    [3] NYQUIST D C, MCFADDEN K L. A study of the airline boarding problem[J]. Journal of Air Transport Management, 2008, 14(4): 197-204. doi: 10.1016/j.jairtraman.2008.04.004
    [4] SCHMIDT M. A review of aircraft turnaround operations and simulations[J]. Progress in Aerospace Sciences, 2017, 92: 25-38. doi: 10.1016/j.paerosci.2017.05.002
    [5] SCHULTZ M. Fast aircraft turnaround enabled by reliable passenger boarding[J]. Aerospace, 2018, 5(1): 1-18.
    [6] SIMONE N. Is the boarding process on the critical path of the airplane turn-around[J]. European Journal of Operational Research, 2019, 277: 128-137. doi: 10.1016/j.ejor.2019.02.001
    [7] MILNE R, SALARI M, KATTAN L. Robust optimization of airplane passenger seating assignments[J]. Aerospace, 2018, 5(3): 1-13.
    [8] 任新惠, 张思雨. 航空旅客登机策略研究综述[J]. 长安大学学报(社会科学版), 2016, 18(1): 30-35. doi: 10.3969/j.issn.1671-6248.2016.01.006

    REN Xin-hui, ZHANG Si-yu. Overview of researches on passengers aircraft boarding[J]. Journal of Chang'an University (Social Science Edition), 2016, 18(1): 30-35. (in Chinese) doi: 10.3969/j.issn.1671-6248.2016.01.006
    [9] BIDANDA R, GENG Z, WINAKOR J, et al. A review of optimization models for boarding a commercial airplane[C]// FERTSCH M, STACHOWIAK A, MRUGALSKA B, et al. 24th International Conference on Production Research. Poznan: Poznan University of Technology, 2017: 1-6.
    [10] ZHANG Lin-feng, YANG Hang-jun, WANG Kun, et al. The impact of COVID-19 on airline passenger travel behavior: an exploratory analysis on the Chinese aviation market[J]. Journal of Air Transport Management, 2021, 95: 102084. doi: 10.1016/j.jairtraman.2021.102084
    [11] MILNE R J, KELLY A R. A new method for boarding passengers onto an airplane[J]. Journal of Air Transport Management, 2014, 34: 93-100. doi: 10.1016/j.jairtraman.2013.08.006
    [12] MILNE R J, SALARI M. Optimization of assigning passengers to seats on airplanes based on their carry-on luggage[J]. Journal of Air Transport Management, 2016, 54: 104-110. doi: 10.1016/j.jairtraman.2016.03.022
    [13] MILNE R J, DELCEA C, COTFAS L, et al. New methods for two-door airplane boarding using apron buses[J]. Journal of Air Transport Management, 2019, 80: 101705. doi: 10.1016/j.jairtraman.2019.101705
    [14] STEFFEN J H. Optimal boarding method for airline passengers[J]. Journal of Air Transport Management, 2008, 14(3): 146-150. doi: 10.1016/j.jairtraman.2008.03.003
    [15] STEFFEN J H, HOTCHKISS J. Experimental test of airplane boarding methods[J]. Journal of Air Transport Management, 2012, 18: 64-67. doi: 10.1016/j.jairtraman.2011.10.003
    [16] VAN DEN BRIEL M H L, VILLALOBOS J R, HOGG G L, et al. America west airlines develops efficient boarding strategies[J]. Interfaces, 2005, 35(3): 191-201. doi: 10.1287/inte.1050.0135
    [17] KIERZKOWSKI A, KISIEL T. The human factor in the passenger boarding process at the airport[J]. Procedia Engineering, 2017, 187: 348-355. doi: 10.1016/j.proeng.2017.04.385
    [18] SCHULTZ M. Field trial measurements to validate a stochastic aircraft boarding model[J]. Aerospace, 2018, 5(1): 1-20.
    [19] SCHULTZ M, REITMANN S. Consideration of passenger interactions for the prediction of aircraft boarding time[J]. Aerospace, 2018, 5(4): 1-14.
    [20] HUTTER L, JAEHN F, NEUMANN S. Influencing factors on airplane boarding times[J]. Omega, 2019, 87: 177-190. doi: 10.1016/j.omega.2018.09.002
    [21] SCHULTZ M, EVLER J, ASADI E, et al. Future aircraft turnaround operations considering post-pandemic requirements[J]. Journal of Air Transport Management, 2020, 89: 101886. doi: 10.1016/j.jairtraman.2020.101886
    [22] PITCHFORTH J, WU P, MENGERSEN K. Applying a validation framework to a working airport terminal model[J]. Expert Systems with Application, 2014, 41(9): 4388-4400. doi: 10.1016/j.eswa.2014.01.013
    [23] LAHIJANI M S, ISLAM T, SRINIVASAN A, et al. Constrained linear movement model (CALM): simulation of passenger movement in airplanes[J]. Plos One, 2020, 15(3): 1-14.
    [24] TANG Tie-qiao, YANG Shao-peng, OU Hui, et al. An aircraft boarding model with the group behavior and the quantity of luggage[J]. Transportation Research Part C: Emerging Technologies, 2018, 93: 115-127. doi: 10.1016/j.trc.2018.05.029
    [25] STEINER A, PHILIPP M. Speeding up the airplane boarding process by using pre-boarding areas[C]//HOOGENDOORN S, NIJKAMP P, HANSON S. 9th Swiss Transport Research Conference. Ascona: ETH, 2009: 1-30.
    [26] BUDESCA G C, JUAN A A, CASAS P. Optimization of aircraft boarding processes considering passengers' grouping characteristics[C]//TOLK A, YILMAZ L, DIALLO S Y, et al. 2014 Winter Simulation Conference. New York: IEEE, 2014: 1977-1988.
    [27] WITTMANN J. Customer-oriented optimization of the airplane boarding process[J]. Journal of Air Transport Management, 2019, 76: 31-39. doi: 10.1016/j.jairtraman.2019.02.002
    [28] TANG Tie-qiao, YANG Shao-peng, OU Hui, et al. An aircraft boarding model accounting for group behavior[J]. Journal of Air Transport Management, 2018, 69: 182-189. doi: 10.1016/j.jairtraman.2018.03.004
    [29] TANG Tie-qiao, YANG Shao-peng, CHEN Liang. An extended boarding strategy accounting for the luggage quantity and group behavior[J]. Journal of Advanced Transportation, 2019, DOI: 10.1155/2019/8908935.
    [30] TANG Tie-qiao, WU Yong-hong, HUANG Hai-jun, et al. An aircraft boarding model accounting for passengers' individual properties[J]. Transportation Research Part C: Emerging Technologies, 2012, 22: 1-16. doi: 10.1016/j.trc.2011.11.005
    [31] MILNE R J, COTFAS L, DELCEA C, et al. Airplane boarding method for passenger groups when using apron buses[J]. IEEE Access, 2020, 8: 18019-18035. doi: 10.1109/ACCESS.2020.2968410
    [32] SCHULTZ M, SOOLAKI M. Analytical approach to solve the problem of aircraft passenger boarding during the coronavirus pandemic[J]. Transportation Research Part C: Emerging Technologies, 2021, 124: 1-17.
    [33] SCHULTZ M, LUBIG D, ASADI E, et al. Implementation of a long-range air traffic flow management for the Asia-Pacific Region[J]. IEEE Access, 2021, 9: 124640-124659. doi: 10.1109/ACCESS.2021.3110371
    [34] SALARI M, MILNE R J, DELCEA C, et al. Social distancing in airplane seat assignments for passenger groups[J]. Transportmetrica B: Transport Dynamics, 2022, 10(1): 1070-1098. doi: 10.1080/21680566.2021.2007816
    [35] QIANG Sheng-jie, HUANG Qing-xia. New boarding strategies for a novel aircraft cabin installed with side-slip seats[J]. Transportmetrica B: Transport Dynamics, 2022, 10(1): 1010-1031. doi: 10.1080/21680566.2021.1997673
    [36] BACHMAT E. Airplane boarding meets express line queues[J]. European Journal of Operational Research, 2019, 275(3): 1165-1177. doi: 10.1016/j.ejor.2018.12.017
    [37] KISIEL T. Resilience of passenger boarding strategies to priority fares offered by airlines[J]. Journal of Air Transport Management, 2020, 87: 101853. doi: 10.1016/j.jairtraman.2020.101853
    [38] SALARI M, MILNE R J, KATTAN L. Airplane boarding optimization considering reserved seats and passengers' carry-on bags[J]. Opsearch, 2019, 56(3): 806-823. doi: 10.1007/s12597-019-00405-z
    [39] BACHMAT E, ERLAND S, JAEHN F, et al. Air passenger preferences: an international comparison affects boarding theory[J]. Operations Research, 2021, DOI: 10.1287/opre.2021.2148.
    [40] ZEINEDDINE H. A dynamically optimized aircraft boarding strategy[J]. Journal of Air Transport Management, 2017, 58: 144-151. doi: 10.1016/j.jairtraman.2016.10.010
    [41] ZEINEDDINE H. Reducing the effect of passengers' non- compliance with aircraft boarding rules[J]. Journal of Air Transport Management, 2021, 92: 102041. doi: 10.1016/j.jairtraman.2021.102041
    [42] HIEMSTRA-VAN MASTRIGT S, OTTENS R, VINK P. Identifying bottlenecks and designing ideas and solutions for improving aircraft passengers' experience during boarding and disembarking[J]. Applied Ergonomics, 2019, 77: 16-21. doi: 10.1016/j.apergo.2018.12.016
    [43] 史跃亚, 张俊然. 基于冲突的窄体运输机登机过程仿真模型[J]. 计算机仿真, 2015, 32(7): 46-50, 74. doi: 10.3969/j.issn.1006-9348.2015.07.011

    SHI Yue-ya, ZHANG Jun-ran. A simulation model of boarding process for narrow-body aircraft on the basis of interference[J]. Computer Simulation, 2015, 32(7): 46-50, 74. (in Chinese) doi: 10.3969/j.issn.1006-9348.2015.07.011
    [44] OLIVEIRA D B P, COELHO J N, MORAES A D O. A simplified model to assess the influence of the configuration of commercial aircraft on boarding and deboarding[J]. International Journal of Aerospace Engineering, 2021, DOI: 10.1155/2021/8872992.
    [45] SCHULTZ M. Dynamic change of aircraft seat condition for fast boarding[J]. Transportation Research Part C: Emerging Technologies, 2017, 85: 131-147. doi: 10.1016/j.trc.2017.09.014
    [46] SCHULTZ M. Faster aircraft boarding enabled by infrastructural changes[C]//CHAN V, DAMBROGIO A, ZACHAREWICZ G, et al. 2017 Winter Simulation Conference. New York: IEEE, 2017: 2530-2541.
    [47] 强生杰, 黄青霞. 新型客机座舱环境下的旅客登机效率研究[J]. 交通运输系统工程与信息, 2020, 20(4): 209-215. doi: 10.16097/j.cnki.1009-6744.2020.04.030

    QIANG Sheng-jie, HUANG Qing-xia. Evaluation of passenger boarding efficiency in a novel aircraft cabin environment[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(4): 209-215. (in Chinese) doi: 10.16097/j.cnki.1009-6744.2020.04.030
    [48] 任新惠, 唐少勇. 单通道客机旅客登机策略比较研究[J]. 交通运输系统工程与信息, 2014, 14(4): 173-179. doi: 10.3969/j.issn.1009-6744.2014.04.025

    REN Xin-hui, TANG Shao-yong. Comparative study of boarding strategies for single-aisle aircraft[J]. Journal of Transportation Systems Engineering and Information Technology, 2014, 14(4): 173-179. (in Chinese) doi: 10.3969/j.issn.1009-6744.2014.04.025
    [49] 任新惠, 唐少勇. 单通道客机登机策略模拟研究[J]. 科学技术与工程, 2015, 15(1): 120-126, 131. doi: 10.3969/j.issn.1671-1815.2015.01.022

    REN Xin-hui, TANG Shao-yong. The simulation study of single aisle aircraft boarding strategy[J]. Science Technology and Engineering, 2015, 15(1): 120-126, 131. (in Chinese) doi: 10.3969/j.issn.1671-1815.2015.01.022
    [50] IYIGUNLU S, YARLAGADDA P, FOOKES C. Agent- based application on different boarding strategies[J]. Applied Mechanics and Materials, 2014, 568-570: 1893-1897.
    [51] SCHMIDT M, HEINEMANN P, HORNUNG M. Boarding and turnaround process assessment of single- and twin-aisle aircraft[C]//PAYOT A, RENDALL T, ALLEN C B. 55th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2017: 1-15.
    [52] SCHULTZ M. Implementation and application of a stochastic aircraft boarding model[J]. Transportation Research Part C: Emerging Technologies, 2018, 90: 334-349. doi: 10.1016/j.trc.2018.03.016
    [53] DELCEA C, MILNE R J, COTFAS L, et al. Methods for accelerating the airplane boarding process in the presence of apron buses[J]. IEEE Access, 2019, 7: 134372-134387. doi: 10.1109/ACCESS.2019.2941532
    [54] DELCEA C, COTFAS L, CHIRIǍ N, et al. A two-door airplane boarding approach when using apron buses[J]. Sustainability, 2018, 10(3619): 1-14.
    [55] COTFAS L A, DELCEA C, MILNE R J, et al. Testing new methods for boarding a partially occupied airplane using apron buses[J]. Symmetry-Basel, 2019, 11(1044): 1-23.
    [56] MILNE R J, COTFAS L, DELCEA C, et al. Greedy method for boarding a partially occupied airplane using apron buses[J]. Symmetry-Basel, 2019, 11(1221): 1-19.
    [57] 王馨, 张江, 吴金闪. 统计物理学基础研究新进展[J]. 上海理工大学学报, 2012, 34(3): 205-220. doi: 10.3969/j.issn.1007-6735.2012.03.001

    WANG Xin, ZHANG Jiang, WU Jin-shan. Progress in studies of foundation of statistical physics[J]. Journal of University of Shanghai for Science and Technology, 2012, 34(3): 205-220. (in Chinese) doi: 10.3969/j.issn.1007-6735.2012.03.001
    [58] 史启鸿. 非对称排它过程中的复杂相变研究[D]. 合肥: 中国科学技术大学, 2012.

    SHI Qi-hong. Study on the complex phase transitions of asymmetric simple exclusion processes[D]. Hefei: University of Science and Technology of China, 2012. (in Chinese)
    [59] GORISSEN M, LAZARESCU A, MALLICK K, et al. Exact current statistics of the asymmetric simple exclusion process with open boundaries[J]. Physical Review Letters, 2012, 109(17): 1-5.
    [60] FRETTE V, HEMMER P. Time needed to board an airplane: a power law and the structure behind it[J]. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2012, 85: 011130. doi: 10.1103/PhysRevE.85.011130
    [61] BERNSTEIN N. Comment on "time needed to board an airplane: a power law and the structure behind it"[J]. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2012, 86: 023101. doi: 10.1103/PhysRevE.86.023101
    [62] BAEK Y, HA M, JEONG H. Impact of sequential disorder on the scaling behavior of airplane boarding time[J]. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2013, 87: 052803. doi: 10.1103/PhysRevE.87.052803
    [63] BRICS M, KAUPUZS J, MAHNKE R. Scaling behavior of an airplane-boarding model[J]. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2013, 87: 042117. doi: 10.1103/PhysRevE.87.042117
    [64] QIANG Sheng-jie, JIA Bin, HUANG Qing-xia, et al. Mechanism behind phase transitions in airplane boarding process[J]. International Journal of Modern Physics C, 2016, 27(6): 1-12.
    [65] QIANG Sheng-jie, JIA Bin, HUANG Qing-xia. A stochastic airplane boarding model in a framework of ASEP with distinguishable particles[J]. International Journal of Modern Physics C, 2018, 29(10): 1-17.
    [66] STEFFEN J H. A statistical mechanics model for free-for-all airplane passenger boarding[J]. American Journal of Physics, 2008, 76: 1114-1119. doi: 10.1119/1.2982636
    [67] 《中国公路学报》编辑部. 中国交通工程学术研究综述·2016[J]. 中国公路学报, 2016, 29(6): 1-161. doi: 10.3969/j.issn.1001-7372.2016.06.001

    Editorial Department of China Journal of Highway and Transport. Review on China's traffic engineering research progress: 2016[J]. China Journal of Highway and Transport, 2016, 29(6): 1-161. (in Chinese) doi: 10.3969/j.issn.1001-7372.2016.06.001
    [68] BAZARGAN M. A linear programming approach for aircraft boarding strategy[J]. European Journal of Operational Research, 2007, 183(1): 394-411. doi: 10.1016/j.ejor.2006.09.071
    [69] 刘洋, 刘振兆, 贾利民. 一种高效的登机策略[J]. 交通运输系统工程与信息, 2008, 8(5): 118-123. doi: 10.3969/j.issn.1009-6744.2008.05.020

    LIU Yang, LIU Zhen-zhao, JIA Li-min. Adaptive approach to aircraft boarding strategy[J]. Journal of Transportation Systems Engineering and Information Technology, 2008, 8(5): 118-123. (in Chinese) doi: 10.3969/j.issn.1009-6744.2008.05.020
    [70] SOOLAKI M, MAHDAVI I, MAHDAVI-AMIRI N, et al. A new linear programming approach and genetic algorithm for solving airline boarding problem[J]. Applied Mathematical Modelling, 2012, 36(9): 4060-4072. doi: 10.1016/j.apm.2011.11.030
    [71] 柯源. 飞机登机策略分析Ⅰ——离散事件模拟模型[J]. 数学的实践与认识, 2007, 37(18): 85-94. doi: 10.3969/j.issn.1000-0984.2007.18.013

    KE Yuan. Analysis of airplane boarding strategies Ⅰ—a discrete event simulation model[J]. Mathematics in Practice and Theory, 2007, 37(18): 85-94. (in Chinese) doi: 10.3969/j.issn.1000-0984.2007.18.013
    [72] 柯源. 飞机登机策略分析Ⅱ——利用微分几何模拟登机[J]. 数学的实践与认识, 2007, 37(19): 71-78. doi: 10.3969/j.issn.1000-0984.2007.19.012

    KE Yuan. Analysis of airplane boarding strategies Ⅱ—modeling the airplane boarding with differential geometry[J]. Mathematics in Practice and Theory, 2007, 37(19): 71-78. (in Chinese) doi: 10.3969/j.issn.1000-0984.2007.19.012
    [73] TANG Tie-qiao, HUANG Hai-jun, SHANG Hua-yan. A new pedestrian-following model for aircraft boarding and numerical tests[J]. Nonlinear Dynamics, 2012, 67(1): 437-443. doi: 10.1007/s11071-011-9992-7
    [74] 杨文强, 吴文渊. 线性常微分方程的全局误差估计和优化求解方法[J]. 中国科学: 数学, 2021, 51(1): 239-256. https://www.cnki.com.cn/Article/CJFDTOTAL-JAXK202101015.htm

    YANG Wen-qiang, WU Wen-yuan. Global error estimation for linear ordinary differential equations and their numerical optimal solutions[J]. Scientia Sinica (Mathematica), 2021, 51(1): 239-256. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JAXK202101015.htm
    [75] KUO C C. An improved zero-one linear programming model for the plane boarding problem[J]. Applications of Management Science, 2015, 17: 53-69.
    [76] MIURA A, NISHINARI K. A passenger distribution analysis model for the perceived time of airplane boarding/deboarding, utilizing an ex-Gaussian distribution[J]. Journal of Air Transport Management, 2017, 59: 44-49. doi: 10.1016/j.jairtraman.2016.11.010
    [77] JAFER S, MI W. Comparative study of aircraft boarding strategies using cellular discrete event simulation[J]. Aerospace, 2017, 4(4): 1-22.
    [78] BACHMAT E, BEREND D, SAPIR L, et al. Analysis of airplane boarding times[J]. Operations Research, 2009, 57(2): 499-513. doi: 10.1287/opre.1080.0630
    [79] 冯霞, 张鑫, 陈锋. 飞机过站上客过程持续时间分布[J]. 交通运输工程学报, 2017, 17(2): 98-105. doi: 10.3969/j.issn.1671-1637.2017.02.011

    FENG Xia, ZHANG Xin, CHEN Feng. Boarding duration distribution of aircraft turnaround[J]. Journal of Traffic and Transportation Engineering, 2017, 17(2): 98-105. (in Chinese) doi: 10.3969/j.issn.1671-1637.2017.02.011
    [80] SCHULTZ M, REITMANN S. Machine learning approach to predict aircraft boarding[J]. Transportation Research Part C: Emerging Technologies, 2019, 98: 391-408. doi: 10.1016/j.trc.2018.09.007
    [81] 任新惠, 焦阳, 赵嶷飞. 考虑行李的多格子元胞自动机登机模型[J]. 交通运输工程学报, 2017, 17(4): 122-129. doi: 10.3969/j.issn.1671-1637.2017.04.013

    REN Xin-hui, JIAO Yang, ZHAO Yi-fei. Multi-grid cellular automata boarding model considering carried baggages[J]. Journal of Traffic and Transportation Engineering, 2017, 17(4): 122-129. (in Chinese) doi: 10.3969/j.issn.1671-1637.2017.04.013
    [82] BACHMAT E, KHACHATUROV V, KUPERMAN R. Optimal back-to-front airplane boarding[J]. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2013, 87: 062805. doi: 10.1103/PhysRevE.87.062805
    [83] BACHMAT E, BEREND D, SAPIR L, et al. Analysis of airplane boarding via space-time geometry and random matrix theory[J]. Journal of Physics A: Mathematical and General, 2005, 39(29): 1-4.
    [84] ERLAND S, KAUPUŽS J, FRETTE V, et al. Lorentzian geometry based analysis of airplane boarding policies highlights "slow passengers first" as better[J]. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2019, 100: 062313. doi: 10.1103/PhysRevE.100.062313
    [85] ERLAND S, KAUPUŽS J, STEINER A, et al. Lorentzian geometry and variability reduction in airplane boarding: slow passengers first outperforms random boarding[J]. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2021, 103: 062310. doi: 10.1103/PhysRevE.103.062310
    [86] 鲁建厦, 方荣, 兰秀菊. 国内仿真技术的研究热点——系统仿真学报近期论文综述[J]. 系统仿真学报, 2004, 16(9): 1910-1913. doi: 10.3969/j.issn.1004-731X.2004.09.016

    LU Jian-sha, FANG Rong, LAN Xiu-ju. Hot research areas of simulation technique in the country—review of Journal of System Simulation in recent years[J]. Journal of System Simulation, 2004, 16(9): 1910-1913. (in Chinese) doi: 10.3969/j.issn.1004-731X.2004.09.016
    [87] 郭谨一, 刘爽, 陈绍宽, 等. 行人运动仿真研究综述[J]. 系统仿真学报, 2008, 20(9): 2237-2242. https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ200809002.htm

    GUO Jin-yi, LIU Shuang, CHEN Shao-kuan, et al. Review of pedestrian movement simulation studies[J]. Journal of System Simulation, 2008, 20(9): 2237-2242. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ200809002.htm
    [88] LANDEGHEM H V, BEUSELINCK A. Reducing passenger boarding time in airplanes: a simulation based approach[J]. European Journal of Operational Research, 2002, 142(2): 294-308. doi: 10.1016/S0377-2217(01)00294-6
    [89] FERRARI P, KAI N. Robustness of efficient passenger boarding strategies for airplanes[J]. Transportation Research Record, 2005(1915): 44-54.
    [90] MAS S, JUAN A A, ARIAS P, et al. A simulation study regarding different aircraft boarding strategies[C]//FERNANDEZIZQUIERDO M A, MUNOZTORRES M J, LEON R. International Conference on Modeling and Simulation in Engineering, Economics, and Management. Berlin: Springer, 2013: 145-152.
    [91] QIANG Sheng-jie, JIA Bin, HUANG Qing-xia. Evaluation of airplane boarding/deboarding strategies: a surrogate experimental test[J]. Symmetry-Basel, 2017, 9(10): 1-15.
    [92] GWYNNE S M V, SENARATH YAPA U, CODRINGTON L, et al. Small-scale trials on passenger microbehaviours during aircraft boarding and deplaning procedures[J]. Journal of Air Transport Management, 2018, 67: 115-133. doi: 10.1016/j.jairtraman.2017.11.008
    [93] REN Xin-hui, XU Xiao-bing. Experimental analyses of airplane boarding based on interference classification[J]. Journal of Air Transport Management, 2018, 71: 55-63. doi: 10.1016/j.jairtraman.2018.06.007
    [94] REN Xin-hui, ZHOU Xi-yu, XU Xiao-bing. A new model of luggage storage time while boarding an airplane: an experimental test[J]. Journal of Air Transport Management, 2020, 84: 101761. doi: 10.1016/j.jairtraman.2019.101761
    [95] 陈悦峰, 董原生, 邓立群. 基于Agent仿真平台的比较研究[J]. 系统仿真学报, 2011, 23(增1): 110-116. https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ2011S1025.htm

    CHEN Yue-feng, DONG Yuan-sheng, DENG Li-qun. Comparison of agent-based simulation platforms[J]. Journal of System Simulation, 2011, 23(S1): 110-116. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ2011S1025.htm
    [96] THIELE J C, KURTH W, GRIMM V R. NetLogo: an R package for running and exploring individual-based models implemented in NetLogo[J]. Methods in Ecology and Evolution, 2012, 3(3): 480-483. doi: 10.1111/j.2041-210X.2011.00180.x
    [97] DELCEA C, COTFAS L, PAUN R. Agent-based evaluation of the airplane boarding strategies' efficiency and sustainability[J]. Sustainability, 2018, 10(1879): 1-26.
    [98] DELCEA C, COTFAS L, CRǍCIUN L, et al. Are seat and aisle interferences affecting the overall airplane boarding time? An agent-based approach[J]. Sustainability, 2018, 10(4217): 1-23.
    [99] DELCEA C, COTFAS L, SALARI M, et al. Investigating the random seat boarding method without seat assignments with common boarding practices using an agent-based modeling[J]. Sustainability, 2018, 10(4623): 1-28.
    [100] CIMLER R, KAUTZKÁ E, OLŠ EVI AČ OVÁ K, et al. Agent- based model for comparison of aircraft boarding methods[C]// RAMIK J, STAVAREK D. 30th International Conference on Mathematical Methods in Economics. Karvina: Silesian University in Opava, 2012: 73-78.
    [101] LUO Li-juan, HONG Shao-zhi, SHANG Shan-shan, et al. Intelligent boarding modelling and evaluation: a simulation-based approach[J]. Journal of Advanced Transportation, 2021, DOI: 10.1155/2021/9973336.
    [102] NAGEL K, SCHRECKENBERG M. A cellular automaton model for freeway traffic[J]. Journal De Physique Ⅰ, 1992, 2(12): 2221-2229. doi: 10.1051/jp2:1992262
    [103] JIN Cheng-jie, WANG Wei, JIANG Rui. Cellular automaton simulations of a T-shaped unsignalised intersection with refined configurations[J]. Transportmetrica A: Transport Science, 2014, 10(3): 273-283. doi: 10.1080/23249935.2013.765930
    [104] KNOSPE W, SANTEN L, SCHADSCHNEIDER A, et al. Towards a realistic microscopic description of highway traffic[J]. Journal of Physics A: Mathematical and General, 2000, 33(48): 477-485. doi: 10.1088/0305-4470/33/48/103
    [105] BROCKFELD E, BARLOVIC R, SCHADSCHNEIDER A, et al. Optimizing traffic lights in a cellular automaton model for city traffic[J]. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2001, 64: 056132. doi: 10.1103/PhysRevE.64.056132
    [106] HOU Guang-yang, CHEN Su-ren, CHEN Feng. Framework of simulation-based vehicle safety performance assessment of highway system under hazardous driving conditions[J]. Transportation Research Part C: Emerging Technologies, 2019, 105: 23-36. doi: 10.1016/j.trc.2019.05.035
    [107] 尚华艳, 陆化普, 彭愚. 基于元胞自动机的乘客登机策略[J]. 清华大学学报(自然科学版), 2010, 50(9): 1330-1333. doi: 10.16511/j.cnki.qhdxxb.2010.09.037

    SHANG Hua-yan, LU Hua-pu, PENG Yu. Aircraft boarding strategy based on cellular automata[J]. Journal of Tsinghua University (Science and Technology), 2010, 50(9): 1330-1333. (in Chinese) doi: 10.16511/j.cnki.qhdxxb.2010.09.037
    [108] 任新惠, 苏欣. 大面积延误下登机口处旅客快速登机问题研究[J]. 计算机仿真, 2015, 32(6): 425-429. doi: 10.3969/j.issn.1006-9348.2015.06.094

    REN Xin-hui, SU Xin. Methods of quick boarding at departure gate in case of extensive delay[J]. Computer Simulation, 2015, 32(6): 425-429. (in Chinese) doi: 10.3969/j.issn.1006-9348.2015.06.094
    [109] 任新惠, 徐小冰. 基于正交试验的旅客登机关键因素仿真分析[J]. 实验技术与管理, 2018, 35(12): 122-126. https://www.cnki.com.cn/Article/CJFDTOTAL-SYJL201812032.htm

    REN Xin-hui, XU Xiao-bing. Simulation analysis of passengers' boarding key factors based on orthogonal test[J]. Experimental Technology and Management, 2018, 35(12): 122-126. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYJL201812032.htm
    [110] 任新惠, 唐少勇, 赵嶷飞. 基于干扰转移的登机新策略[J]. 交通运输系统工程与信息, 2016, 16(2): 146-154. doi: 10.3969/j.issn.1009-6744.2016.02.024

    REN Xin-hui, TANG Shao-yong, ZHAO Yi-fei. A new boarding strategy based on the interference transfer[J]. Journal of Transportation Systems Engineering and Information Technology, 2016, 16(2): 146-154. (in Chinese) doi: 10.3969/j.issn.1009-6744.2016.02.024
    [111] 任新惠, 焦阳, 徐小冰. 基于时间阈值的旅客登机模型及动态登机策略[J]. 交通运输系统工程与信息, 2020, 20(1): 206-213. doi: 10.16097/j.cnki.1009-6744.2020.01.030

    REN Xin-hui, JIAO Yang, XU Xiao-bing. Passenger boarding model and dynamic boarding strategy based on time threshold[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(1): 206-213. (in Chinese) doi: 10.16097/j.cnki.1009-6744.2020.01.030
    [112] QIANG Sheng-jie, JIA Bin, XIE Dong-fan, et al. Reducing airplane boarding time by accounting for passengers' individual properties: a simulation based on cellular automaton[J]. Journal of Air Transport Management, 2014, 40: 42-47. doi: 10.1016/j.jairtraman.2014.05.007
    [113] QIANG Sheng-jie, JIA Bin, HUANG Qing-xia, et al. Simulation of free boarding process using a cellular automaton model for passenger dynamics[J]. Nonlinear Dynamics, 2018, 91(1): 257-268. doi: 10.1007/s11071-017-3867-5
    [114] 强生杰, 贾斌, 黄青霞. 基于模拟退火算法的快速登机序列特性研究[J]. 交通运输系统工程与信息, 2018, 18(2): 216-223. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201802032.htm

    QIANG Sheng-jie, JIA Bin, HUANG Qing-xia. The study of fast boarding sequence characteristics based on simulated annealing algorithm[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(2): 216-223. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201802032.htm
    [115] QIANG Sheng-jie, HUANG Qing-xia. The impact of aircraft cabin environment on passenger boarding efficiency and robustness[J]. KSCE Journal of Civil Engineering, 2021, 25(3): 1019-1030. doi: 10.1007/s12205-021-0119-5
    [116] GⅡTSIDIS T, SIRAKOULIS G C. Modeling passengers boarding in aircraft using cellular automata[J]. IEEE/CAA Journal of Automatica Sinica, 2016, 3(4): 365-384. doi: 10.1109/JAS.2016.7510076
    [117] 潘明阳, 严飞, 谢海燕. 基于智能体与元胞自动机的智能交通仿真[J]. 交通运输工程学报, 2006, 6(2): 70-74. doi: 10.3321/j.issn:1671-1637.2006.02.016

    PAN Ming-yang, YAN Fei, XIE Hai-yan. Intelligent traffic simulation based on agent and cellular automata[J]. Journal of Traffic and Transportation Engineering, 2006, 6(2): 70-74. (in Chinese) doi: 10.3321/j.issn:1671-1637.2006.02.016
    [118] LU Jing, LIN An-rong, JIANG Chang-min, et al. Influence of transportation network on transmission heterogeneity of COVID-19 in China[J]. Transportation Research Part C: Emerging Technologies, 2021, 129: 1-22.
    [119] 中国民用航空局. 2020年民航行业发展统计公报[R]. 北京: 中国民用航空局, 2021.

    Civil Aviation Administration of China. Statistical bulletin on the development of civil aviation industry in 2020[R]. Beijing: Civil Aviation Administration of China, 2021. (in Chinese)
    [120] DABACHINE Y, TAHERI H, BINIZ M, et al. Strategic design of precautionary measures for airport passengers in times of global health crisis COVID-19: parametric modelling and processing algorithms[J]. Journal of Air Transport Management, 2020, 89: 101917. doi: 10.1016/j.jairtraman.2020.101917
    [121] ENGELMANN M, KLEINHEINZ T, HORNUNG M. Advanced passenger movement model depending on the aircraft cabin geometry[J]. Aerospace, 2020, 7(182): 1-22.
    [122] ZHANG Lin-feng, YANG Hang-jun, WANG Kun, et al. The impact of COVID-19 on airline passenger travel behavior: an exploratory analysis on the Chinese aviation market[J]. Journal of Air Transport Management, 2021, 95: 102084. doi: 10.1016/j.jairtraman.2021.102084
    [123] SUN Xiao-qian, WANDELT S, ZHANG An-min. How did COVID-19 impact air transportation? A first peek through the lens of complex networks[J]. Journal of Air Transport Management, 2020, 89: 101928. doi: 10.1016/j.jairtraman.2020.101928
    [124] XIE Chuan-zhi, TANG Tie-qiao, HU Peng-cheng, et al. A civil aircraft passenger deplaning model considering patients with severe acute airborne disease[J]. Journal of Transportation Safety and Security, 2021, 14(6): 1063-1084.
    [125] AMANKWAH-AMOAH J. COVID-19 pandemic and innovation activities in the global airline industry: a review[J]. Environment International, 2021, 156: 1-7.
    [126] COTFAS L A, DELCEA C, MILNE R J, et al. Evaluating classical airplane boarding methods considering COVID-19 flying restrictions[J]. Symmetry-Basel, 2020, 12(1087): 1-26.
    [127] SALARI M, MILNE R J, DELCEA C, et al. Social distancing in airplane seat assignments[J]. Journal of Air Transport Management, 2020, 89: 101915. doi: 10.1016/j.jairtraman.2020.101915
    [128] DELCEA C, MILNE R J, COTFAS L. Determining the number of passengers for each of three reverse pyramid boarding groups with COVID-19 flying restrictions[J]. Symmetry-Basel, 2020, 12(2038): 1-23.
    [129] DELCEA C, COTFAS L A, MILNE R J, et al. Grey clustering of the variations in the back-to-front airplane boarding method considering COVID-19 flying restrictions[J]. Grey Systems Theory and Application, 2022, 12(1): 25-59. doi: 10.1108/GS-11-2020-0142
    [130] MILNE R J, COTFAS L A, DELCEA C, et al. Adapting the reverse pyramid airplane boarding method for social distancing in times of COVID-19[J]. Plos One, 2020, 15(11): 1-26.
    [131] MILNE R J, DELCEA C, COTFAS L A. Airplane boarding methods that reduce risk from COVID-19[J]. Safety Science, 2021, 134: 1-13. doi: 10.3969/j.issn.1004-5309.2021.01.01
    [132] MILNE R J, DELCEA C, COTFAS L A, et al. Evaluation of boarding methods adapted for social distancing when using apron buses[J]. IEEE Access, 2020, 8: 151650-151667. doi: 10.1109/ACCESS.2020.3015736
    [133] MILNE R J, COTFAS L A, DELCEA C. Minimizing health risks as a function of the number of airplane boarding groups[J]. Transportmetrica B: Transport Dynamics, 2022, 10(1): 901-922. doi: 10.1080/21680566.2021.1968322
    [134] SCHULTZ M, FUCHTE J. Evaluation of aircraft boarding scenarios considering reduced transmissions risks[J]. Sustainability, 2020, 12(13): 1-20.
    [135] SCHULTZ M. A metric for the real-time evaluation of the aircraft boarding progress[J]. Transportation Research Part C: Emerging Technologies, 2018, 86: 467-487. doi: 10.1016/j.trc.2017.11.002
    [136] 马永杰, 云文霞. 遗传算法研究进展[J]. 计算机应用研究, 2012, 29(4): 1201-1206, 1210. doi: 10.3969/j.issn.1001-3695.2012.04.001

    MA Yong-jie, YUN Wen-xia. Research progress of genetic algorithm[J]. Application Research of Computers, 2012, 29(4): 1201-1206, 1210. (in Chinese) doi: 10.3969/j.issn.1001-3695.2012.04.001
    [137] 谢云. 模拟退火算法综述[J]. 微计算机信息, 1998, 14(5): 63-65. https://www.cnki.com.cn/Article/CJFDTOTAL-WJSJ805.020.htm

    XIE Yun. A summary on the simulated annealing algorithm[J]. Microcomputer Information, 1998, 14(5): 63-65. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WJSJ805.020.htm
    [138] 王文义, 任刚. 多种群退火贪婪混合遗传算法[J]. 计算机工程与应用, 2005, 41(23): 60-62. doi: 10.3321/j.issn:1002-8331.2005.23.018

    WANG Wen-yi, REN Gang. Multigroup annealing greedy hybrid genetic algorithm[J]. Computer Engineering and Applications, 2005, 41(23): 60-62. (in Chinese) doi: 10.3321/j.issn:1002-8331.2005.23.018
    [139] ZHAO Z, ZHANG F, XU M, et al. Description and clinical treatment of an early outbreak of severe acute respiratory syndrome (SARS) in Guangzhou, PR China[J]. Journal of Medical Microbiology, 2003, 52(8): 715-720. doi: 10.1099/jmm.0.05320-0
    [140] JAIN S. Outbreak of swine-origin influenza A (H1N1) virus infection—Mexico, March-April 2009. [J]. MMWR Morbidity and Mortality Weekly Report, 2009, 58(17): 467-470.
    [141] FERGUSON N M, CUMMINGS D, FRASER C, et al. Strategies for mitigating an influenza pandemic[J]. Nature, 2006(442): 448-452.
    [142] CHOI J H. Changes in airport operating procedures and implications for airport strategies post-COVID-19[J]. Journal of Air Transport Management, 2021, 94: 1-13.
  • 加载中
图(4) / 表(11)
计量
  • 文章访问数:  1664
  • HTML全文浏览量:  568
  • PDF下载量:  121
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-07
  • 网络出版日期:  2022-10-08
  • 刊出日期:  2022-08-25

目录

    /

    返回文章
    返回