留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电动汽车驱动电机结构参数优化设计

王军年 刘健 初亮 王庆年 吴坚

王军年, 刘健, 初亮, 王庆年, 吴坚. 电动汽车驱动电机结构参数优化设计[J]. 交通运输工程学报, 2016, 16(6): 72-81.
引用本文: 王军年, 刘健, 初亮, 王庆年, 吴坚. 电动汽车驱动电机结构参数优化设计[J]. 交通运输工程学报, 2016, 16(6): 72-81.
WANG Jun-nian, LIU Jian, CHU Liang, WANG Qing-nian, WU Jian. Optimal design of driving motor structural parameters for electric vehicle[J]. Journal of Traffic and Transportation Engineering, 2016, 16(6): 72-81.
Citation: WANG Jun-nian, LIU Jian, CHU Liang, WANG Qing-nian, WU Jian. Optimal design of driving motor structural parameters for electric vehicle[J]. Journal of Traffic and Transportation Engineering, 2016, 16(6): 72-81.

电动汽车驱动电机结构参数优化设计

基金项目: 

国家自然科学基金项目 51205153

吉林省自然科学基金项目 20140101072JC

详细信息
    作者简介:

    王军年(1981-), 男, 甘肃兰州人, 吉林大学副教授, 工学博士, 从事电动汽车驱动理论与控制技术研究

  • 中图分类号: U469.72

Optimal design of driving motor structural parameters for electric vehicle

More Information
    Author Bio:

    WANG Jun-nian(1981-), male, associate professor, PhD, +86-431-85094866, wjn@jlu.edu.cn

  • 摘要: 在研究电动汽车驱动电机参数匹配过程中, 提出了一种驱动电机结构参数优化设计方法。在已知电机基本参数基础上, 分析了电机轴向长度、转子外径、绕组匝数、线径、极弧因数、永磁体厚度等参数对电机效率的影响。建立了电机主要本体结构参数与效率特性的映射关系, 提出了电机本体结构参数的初始设计和优化设计流程。利用优化设计得到的电机效率特性, 通过正向仿真整车模型, 在4种典型工况下进行了整车的经济性仿真验证。仿真结果表明: 在外特性方面, 优化电机相比初始电机的转矩脉动明显降低, 其中恒转矩区域降低为14%, 恒功率区域不超过40%, 且最高效率提升为94%;在整车经济性方面, 优化电机在NEDC、UDDS、JC08、1015工况使整车单位里程能耗分别降低7.1%、6.7%、4.1%、2.9%, 平均为5.2%。可见, 优化设计方法在满足整车动力性需求的前提下, 改善了电机在高效率区间的工作点分布, 显著提高了电机在高转速、低转矩范围的平均效率; 设计方法能更好地提升电机的驱动效率, 为从整车性能要求出发的电动汽车驱动电机本体结构参数优化设计提供理论指导。

     

  • 图  1  软件界面

    Figure  1.  Software interface

    图  2  电机初始模型

    Figure  2.  Motor preliminary model

    图  3  电机效率与转子轴向长度关系

    Figure  3.  Relationship between motor efficiency and rotor axial length

    图  4  电机效率与转子外径关系

    Figure  4.  Relationship between motor efficiency and rotor outer diameter

    图  5  电机效率与绕组匝数关系

    Figure  5.  Relationship between motor efficiency and winding turns

    图  6  电机效率与线径的关系

    Figure  6.  Relationship between motor efficiency and wire diameter

    图  7  电机效率与极弧因数的关系

    Figure  7.  Relationship between motor efficiency and pole arc factor

    图  8  电机效率与永磁体厚度的关系

    Figure  8.  Relationship between motor efficiency and permanent magnet thickness

    图  9  电机性能与主要本体结构参数的关系

    Figure  9.  Relationship between motor performance and main ontology structural parameters

    图  10  电机主要本体结构参数设计流程

    Figure  10.  Design flow of motor main ontology structural parameters

    图  11  定子槽

    Figure  11.  Stator slot

    图  12  初始电机外特性曲线

    Figure  12.  External characteristic curves of initial motor

    图  13  初始电机效率脉谱

    Figure  13.  Efficiency map of initial motor

    图  14  优化电机外特性曲线

    Figure  14.  External characteristic curves of optimized motor

    图  15  优化电机效率脉谱

    Figure  15.  Efficiency map of optimized motor

    图  16  正向仿真整车模型

    Figure  16.  Forward-facing simulation model of whole vehicle

    图  17  NEDC工况车速跟随结果

    Figure  17.  Following results of vehicle speeds under NEDC working condition

    图  18  NEDC工况下电机工作点分布

    Figure  18.  Operating points distribution of motor under NEDC working condition

    图  19  NEDC工况电机工作点效率对比

    Figure  19.  Comparison of motor operating point efficiencies under NEDC working condition

    图  20  UDDS工况电机工作点效率对比

    Figure  20.  Comparison of motor operating point efficiencies under UDDS working condition

    图  21  JC08工况电机工作点效率对比

    Figure  21.  Comparison of motor operating point efficiencies under JC08working condition

    图  22  1015工况电机工作点效率对比

    Figure  22.  Comparison of motor operating point efficiencies under 1015working condition

    表  1  电机主要性能参数

    Table  1.   Main performance parameters of motor

    下载: 导出CSV

    表  2  电机初始设计结构参数

    Table  2.   Preliminary design structural parameters of motor

    下载: 导出CSV

    表  3  电机优化设计结构参数

    Table  3.   Optimal design structural parameters of motor

    下载: 导出CSV

    表  4  整车仿真参数

    Table  4.   Simulation parameters of whole vehicle

    下载: 导出CSV

    表  5  平均效率与单位里程能耗对比

    Table  5.   Comparison of average efficiencies and energy consumptions per kilometer

    下载: 导出CSV
  • [1] 赵轩, 马建, 汪贵平. 基于制动驾驶意图辨识的纯电动客车复合制动控制策略[J]. 交通运输工程学报, 2014, 14(4): 64-75. http://transport.chd.edu.cn/article/id/201404008

    ZHAO Xuan, MA Jian, WANG Gui-ping. Composite braking control strategy of pure electric bus based on brake driving intention recognition[J]. Journal of Traffic and Transportation Engineering, 2014, 14(4): 64-75. (in Chinese). http://transport.chd.edu.cn/article/id/201404008
    [2] 连静, 韩虎, 李琳辉, 等. 基于传动系统效率最优的混合动力汽车控制策略研究[J]. 大连理工大学学报, 2013, 53(5): 666-670. https://www.cnki.com.cn/Article/CJFDTOTAL-DLLG201305008.htm

    LIAN Jing, HAN Hu, LI Lin-hui, et al. Research on HEV control strategy based on optimal efficiency of drive system[J]. Journal of Dalian University of Technology, 2013, 53(5): 666-670. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DLLG201305008.htm
    [3] EMADI A, LEE Y J, RAJASHEKARA K. Power electronics and motor drives in electric, hybrid electric, and plug-in hybrid electric vehicles[J]. IEEE Transactions on Industrial Electronics, 2008, 55(6): 2237-2245. doi: 10.1109/TIE.2008.922768
    [4] LASKARIS K I, KLADAS A G. Internal permanent magnet motor design for electric vehicle drive[J]. IEEE Transactions on Industrial Electronics, 2010, 57(1): 138-145. doi: 10.1109/TIE.2009.2033086
    [5] 星野昭広, 磯部真一, 森本雅之, など. 特定用途指向型モータの一設計法[J]. 電気学会論文誌, 2003, 123(11): 1262-1268.

    HOSHINO A, ISOBE S I, MORIMOTO M, et al. A design procedure for the applications—specific electric motors[J]. IEEJ Transactions on Industry Applications, 2003, 123(11): 1262-1268.
    [6] 赤津観, 涌井伸二, 有満稔. 要求出力特性を満足する永久磁石同期電動機自動設計手法[J]. 電気学会論文誌, 2004, 124(9): 946-955.

    AKATSU K, WAKUI S, ARIMITSU M. Automatic design method for PM motor which satisfies the output NT requirements[J]. IEEJ Transactions on Industry Applications, 2004, 124(9): 946-955.
    [7] SCHOFIELD N, GIRAUD-AUDINE C. Design procedure for brushless PM traction machines for electric vehicle applications[C]//IEEE. Proceedings of 2005 International Conference on Electric Machines and Drives. New York: IEEE, 2005: 1788-1792.
    [8] 黄万友, 程勇, 纪少波, 等. 变工况下电动汽车驱动系统效率优化控制[J]. 电机与控制学报, 2012, 16(3): 53-59. doi: 10.3969/j.issn.1007-449X.2012.03.009

    HUANG Wan-you, CHENG Yong, JI Shao-bo, et al. The optimization of EV powertrain's efficiency control strategy under dynamic operation condition[J]. Electric Machines and Control, 2012, 16(3): 53-59. (in Chinese). doi: 10.3969/j.issn.1007-449X.2012.03.009
    [9] 李珂, 张承慧, 崔纳新. 电动汽车用感应电机效率优化控制策略的对比研究[C]//IEEE. 第8届智能控制与自动化世界年会论文集. 纽约: IEEE, 2010: 1882-1887.

    LI Ke, ZHANG Cheng-hui, CUI Na-xin. Comparative study of induction motor efficiency optimization control strategy for electric vehicle[C]//IEEE. Proceedings of 8th World Congress on Intelligent Control and Automation. New York: IEEE, 2010: 1882-1887. (in Chinese).
    [10] 郭伟, 张承宁. 车用永磁同步电机的铁耗与瞬态温升分析[J]. 电机与控制学报, 2009, 13(1): 83-87, 92. doi: 10.3969/j.issn.1007-449X.2009.01.016

    GUO Wei, ZHANG Cheng-ning. Iron losses and transient temperature analysis of the permanent magnet synchronous motor for electric vehicles[J]. Electric Machines and Control, 2009, 13(1): 83-87, 92. (in Chinese). doi: 10.3969/j.issn.1007-449X.2009.01.016
    [11] 陈阳生, 王文中. 在恒转矩和弱磁控制状态下的各种永磁同步电机负载铁耗[J]. 电工技术学报, 2007, 22(9): 45-50. doi: 10.3321/j.issn:1000-6753.2007.09.009

    CHEN Yang-sheng, WANG Wen-zhong. Iron loss in PM synchronous motors under constant torque and fieldweakening control[J]. Transactions of China Electrotechnical Society, 2007, 22(9): 45-50. (in Chinese). doi: 10.3321/j.issn:1000-6753.2007.09.009
    [12] OKI S, ISHIKAWA S, IKEMI T. Development of high-power and high-efficiency motor for a newly developed electric vehicle[J]. SAE International Journal of Alternative Powertrains, 2012, 5(1): 104-111.
    [13] SATO Y, ISHIKAWA S, OKUBO T, et al. Development of high response motor and inverter system for the Nissan LEAF electric vehicle[C]//SAE. SAE 2011World Congress and Exhibition. Detroit: SAE International, 2011: 1-8.
    [14] SHIMIZU H, OKUBO T, HIRANO I, et al. Development of an integrated electrified powertrain for a newly developed electric vehicle[C]//SAE. SAE 2013 World Congress and Exhibition. Detroit: SAE International, 2013: 1-8.
    [15] NAKADA T, ISHIKAWA S, OKI S. Development of an electric motor for a newly developed electric vehicle[C]//SAE. SAE 2014 World Congress and Exhibition. Detroit: SAE International, 2014: 1-7.
    [16] ARAI K, HIGASHI K, IIYAMA T, et al. High power density motor and inverter for RWD hybrid vehicles[C]//SAE. SAE 2011 World Congress and Exhibition. Detroit: SAE International, 2011: 9-19.
    [17] NONAKA T, MAKINO S, HIRAYAMA M, et al. Efficiency evaluation of new variable magnetic flux motor: development of EV motor with wide range high-efficiency drive[C]//SAE. SAE 2011 World Congress and Exhibition. Detroit: SAE International, 2011: 20-23.
    [18] BERR F L, ABDELLI A, BENLAMINE R. Sensitivity study on the design methodology of an electric vehicle[C]//SAE. SAE 2012 World Congress and Exhibition. Detroit: SAE International, 2012: 1-13.
    [19] ABDELLI A, BERR F L, BENLAMINE R. Efficient design methodology of an all-electric vehicle powertrain using multiobjective genetic optimization algorithm[C]//SAE. SAE 2013World Congress and Exhibition. Detroit: SAE International, 2013: 9-21.
    [20] KATO S. Design optimization of interior permanent magnet synchronous motors for HEV and EV[C]//SAE. SAE 2010World Congress and Exhibition. Detroit: SAE International, 2010: 1-8.
    [21] LAZARI P, WANG Jia-bin, CHEN Liang. A computationally efficient design technique for electric-vehicle traction machines[J]. IEEE Transactions on Industry Applications, 2014, 50(5): 3203-3213. doi: 10.1109/TIA.2014.2304619
    [22] WANG Jia-bin, YUAN Xi-bo, ATALLAH K. Design optimization of a surface-mounted permanent-magnet motor with concentrated windings for electric vehicle applications[J]. IEEE Transactions on Vehicular Technology, 2013, 62(3): 1053-1064. doi: 10.1109/TVT.2012.2227867
    [23] 吴雪. 纯电动轿车动力系统参数匹配方法研究[D]. 长春: 吉林大学, 2013.

    WU Xue. Research on powertrain parameters design of pure electric car[D]. Changchun: Jilin University, 2013. (in Chinese).
    [24] 初亮, 张培志, 林婷婷. 纯电动轿车模式识别及模式切换策略[J]. 华中科技大学学报: 自然科学版, 2014, 42(6): 12-16. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201406003.htm

    CHU Liang, ZHANG Pei-zhi, LIN Ting-ting. Study on mode recognition and mode switching strategy of electric vehicle[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2014, 42(6): 12-16. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201406003.htm
    [25] 王军年, 刘德春, 张运昌, 等. 新型双电机构型纯电动汽车节能潜力分析[J]. 吉林大学学报: 工学版, 2016, 46(1): 28-34. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201601005.htm

    WANG Jun-nian, LIU De-chun, ZHANG Yun-chang, et al. Analysis of energy conservation potential of novel pure electric vehicle with dual motors configuration[J]. Journal of Jilin University: Engineering and Technology Edition, 2016, 46(1): 28-34. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201601005.htm
  • 加载中
图(22) / 表(5)
计量
  • 文章访问数:  3350
  • HTML全文浏览量:  131
  • PDF下载量:  3823
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-07
  • 刊出日期:  2016-12-25

目录

    /

    返回文章
    返回