留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于混合遗传算法的径向滑动轴承表面织构优化

张永芳 刘成 李莎 李贤伟 严冬 吕延军

张永芳, 刘成, 李莎, 李贤伟, 严冬, 吕延军. 基于混合遗传算法的径向滑动轴承表面织构优化[J]. 交通运输工程学报, 2017, 17(3): 90-98.
引用本文: 张永芳, 刘成, 李莎, 李贤伟, 严冬, 吕延军. 基于混合遗传算法的径向滑动轴承表面织构优化[J]. 交通运输工程学报, 2017, 17(3): 90-98.
ZHANG Yong-fang, LIU Cheng, LI Sha, LI Xian-wei, YAN Dong, LU Yan-jun. Surface texture optimization of journal bearing based on hybrid genetic algorithm[J]. Journal of Traffic and Transportation Engineering, 2017, 17(3): 90-98.
Citation: ZHANG Yong-fang, LIU Cheng, LI Sha, LI Xian-wei, YAN Dong, LU Yan-jun. Surface texture optimization of journal bearing based on hybrid genetic algorithm[J]. Journal of Traffic and Transportation Engineering, 2017, 17(3): 90-98.

基于混合遗传算法的径向滑动轴承表面织构优化

基金项目: 

国家自然科学基金项目 51375380

机械传动国家重点实验室开放课题 SKLMT-KFKT-201510

陕西省教育厅科学研究计划项目 15JS068

详细信息
    作者简介:

    张永芳(1975-), 女, 内蒙古乌兰察布人, 西安理工大学副教授, 工学博士, 从事机电系统运动稳定性研究

  • 中图分类号: U664.21

Surface texture optimization of journal bearing based on hybrid genetic algorithm

More Information
    Author Bio:

    ZHANG Yong-fang(1975-), female, associate professor, PhD, +86-29-82312513, zhangyf@xaut.edu.cn

  • 摘要: 在内燃机曲轴系统的径向滑动轴承表面设计了球形凹坑织构, 以改善润滑性能; 为了获得最大的轴承承载力和最小的摩擦因数, 提出了基于序列二次规划算法和遗传算法的混合进化优化方法, 构建了径向滑动轴承球形凹坑织构的优化模型, 对凹坑织构的分布位置和结构参数进行了全局寻优, 得到了给定工况下最优的织构角度和最大深度; 为了求解径向滑动轴承的承载力和摩擦因数, 考虑曲轴和轴承表面粗糙度对油膜流动的影响, 采用质量守恒的JFO空穴算法处理油膜的破裂和再形成行为, 基于平均Reynolds方程和Greenwood-Tripp微凸体接触方程构建了球形凹坑织构径向滑动轴承的混合润滑模型, 分析了球形凹坑织构的分布位置和结构参数(数量、面积率和最大深度) 对径向滑动轴承承载力和摩擦因数的影响。分析结果表明: 径向滑动轴承的承载力和摩擦因数是凹坑面积率的单调函数; 存在最优的凹坑织构角度和最大深度使得径向滑动轴承的承载力最大与摩擦因数最小; 当偏心率由0.3增加到0.7时, 轴承承载力的提升量由13.38%下降到0.62%, 摩擦因数的降低量由0.73%逐渐下降至负数, 因此, 当偏心率较小时, 球形凹坑织构能够有效降低径向滑动轴承的摩擦因数, 增大承载力, 当偏心率较大时, 球形凹坑织构无益于轴承摩擦因数的降低。

     

  • 图  1  球形凹坑织构的优化流程

    Figure  1.  Optimization flowchart of spherical dimple texture

    图  2  曲轴系统

    Figure  2.  Crankshaft system

    图  3  径向滑动轴承

    Figure  3.  Journal bearing

    图  4  具有球形凹坑的径向滑动轴承展开图

    Figure  4.  Unfolded diagram of journal bearing with spherical dimples

    图  5  球形凹坑

    Figure  5.  Spherical dimple

    图  6  承载力和织构区域起始角度的关系曲线

    Figure  6.  Relationship curves of load-carrying capacity and start angle of texture region

    图  7  承载力和凹坑面积率的关系曲线

    Figure  7.  Relationship curves of load-carrying capacity and dimple area density

    图  8  承载力和凹坑最大深度的关系曲线

    Figure  8.  Relationship curves of load-carrying capacity and dimple maximum depth

    图  9  摩擦因数和织构角度的关系曲线

    Figure  9.  Relationship curves of friction factor and texture angle

    图  10  摩擦因数和凹坑面积率的关系曲线

    Figure  10.  Relationship curves of friction factor and dimple area density

    图  11  摩擦因数和凹坑最大深度的关系曲线

    Figure  11.  Relationship curves of friction factor and dimple maximum depth

    图  12  无织构轴承的承载力

    Figure  12.  Load-carrying capacity of untextured bearing

    图  13  无织构轴承的摩擦因数

    Figure  13.  Friction factor of untextured bearing

    图  14  承载力的提升量和偏心率的关系曲线

    Figure  14.  Relationship curve of increment of load-carrying capacity and eccentricity

    图  15  摩擦因数的降低量和偏心率的关系曲线

    Figure  15.  Relationship curve of decrement of friction factor and eccentricity

    表  1  承载力最大时的凹坑织构角度和最大深度

    Table  1.   Texture angles and maximum depths of dimple when load-carrying capacity is maximum

    下载: 导出CSV

    表  2  摩擦因数最小时的凹坑织构角度和最大深度

    Table  2.   Texture angles and maximum depths of dimple when friction factor is minimum

    下载: 导出CSV
  • [1] LIU Jun, MOCHIMARU Y. The effects of trapezoidal groove on a self-acting fluid-lubricated herringbone grooves journal bearing[J]. ISRN Tribology, 2013, 2013: 1-7.
    [2] MUZAKKIR S M, HIRANI H, THAKRE G D. Lubricant for heavily loaded slow-speed journal bearing[J]. Tribology Transactions, 2013, 56 (6): 1060-1068. doi: 10.1080/10402004.2013.823530
    [3] GROPPER D, WANG Ling, HARVEY T J. Hydrodynamic lubrication of textured surfaces: a review of modeling techniques and key findings[J]. Tribology International, 2016, 94: 509-529. doi: 10.1016/j.triboint.2015.10.009
    [4] RAO T V V L N, RANI A M A, NAGARAJAN T, et al. Analysis of micropolar and power law fluid-lubricated slider and journal bearing with partial slip-partial slip texture configuration[J]. Tribology Transactions, 2016, 59 (5): 896-910. doi: 10.1080/10402004.2015.1121310
    [5] YU Ru-fei, LI Pei, CHEN Wei. Study of grease lubricated journal bearing with partial surface texture[J]. Industrial Lubrication and Tribology, 2016, 68 (2): 149-157. doi: 10.1108/ILT-03-2015-0028
    [6] ZHANG Jin-yu, MENG Yong-gang. A study of surface texturing of carbon steel by photochemical machining[J]. Journal of Materials Processing Technology, 2012, 212 (10): 2133-2140. doi: 10.1016/j.jmatprotec.2012.05.018
    [7] MENG F M, ZHANG L, LONG T. Effect of groove textures on the performances of gaseous bubble in the lubricant of journal bearing[J]. Journal of Tribology, 2017, 139 (3): 1-11.
    [8] JI Jing-hu, FU Yong-hong, BI Qin-sheng. Influence of geometric shapes on the hydrodynamic lubrication of a partially textured slider with micro-grooves[J]. Journal of Tribology, 2014, 136 (4): 1-8.
    [9] KANGO S, SINGH D, SHARMA R K. Numerical investigation on the influence of surface texture on the performance of hydrodynamic journal bearing[J]. Meccanica, 2012, 47 (2): 469-482. doi: 10.1007/s11012-011-9460-y
    [10] DADOUCHE A, CONLON M J. Operational performance of textured journal bearings lubricated with a contaminated fluid[J]. Tribology International, 2016, 93: 377-389. doi: 10.1016/j.triboint.2015.09.022
    [11] MUZAKKIR S M, HIRANI H, THAKRE G D. Experimental investigations on effectiveness of axial and circumferential grooves in minimizing wear of journal bearing operating in mixed lubrication regime[J]. International Journal of Current Engineering and Technology, 2015, 5 (1): 486-489.
    [12] ADATEPE H, BIYIKLIOGLU A, SOFUOGLU H. An investigation of tribological behaviors of dynamically loaded non-grooved and micro-grooved journal bearings[J]. Tribology International, 2013, 58: 12-19. doi: 10.1016/j.triboint.2012.09.009
    [13] ASHIHARA K, HASHIMOTO H. Theoretical modeling for microgrooved journal bearings under mixed lubrication[J]. Journal of Tribology, 2010, 132 (4): 1-16.
    [14] LIU Fu-xi, LU Yan-jun, ZHANG Qi-meng, et al. Load performance analysis of three-pad fixing pad aerodynamic journal bearings with parabolic grooves[J]. Lubrication Science, 2016, 28 (4): 207-220. doi: 10.1002/ls.1326
    [15] KHATRI C B, SHARMA S C. Influence of textured surface on the performance of non-recessed hybrid journal bearing operating with non-Newtonian lubricant[J]. Tribology International, 2016, 95: 221-235. doi: 10.1016/j.triboint.2015.11.017
    [16] WANG G R, ZHONG L, HE X, et al. Experimental study of tribological properties of surface texture on rock bit sliding bearings[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2014, 228 (12): 1392-1402. doi: 10.1177/1350650114539937
    [17] BRIZMER V, KLIGERMAN Y. A laser surface textured journal bearing[J]. Journal of Tribology, 2012, 134 (3): 1-9.
    [18] TALA-IGHIL N, FILLON M. A numerical investigation of both thermal and texturing surface effects on the journal bearings static characteristics[J]. Tribology International, 2015, 90: 228-239. doi: 10.1016/j.triboint.2015.02.032
    [19] CUPILLARD S, GLAVATSKIH S, CERVANTES M J. Computational fluid dynamics analysis of a journal bearing with surface texturing[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2008, 222 (2): 97-107. doi: 10.1243/13506501JET319
    [20] ZHANG Hui, DONG Guang-neng, HUA Meng, et al. Parametric design of surface textures on journal bearing[J]. Industrial Lubrication and Tribology, 2015, 67 (4): 359-369. doi: 10.1108/ILT-08-2013-0089
    [21] 刘成, 吕延军, 李莎, 等. 表面织构对曲轴轴承润滑性能的影响[J]. 交通运输工程学报, 2017, 17 (3): 65-74. doi: 10.3969/j.issn.1671-1637.2017.03.007

    LIU Cheng, LU Yan-jun, LI Sha, et al. Effects of surface texture on tribological performance of crankshaft bearing[J]. Journal of Traffic and Transportation Engineering, 2017, 17 (3): 65-74. (in Chinese). doi: 10.3969/j.issn.1671-1637.2017.03.007
    [22] KANGO S, SHARMA R K, PANDEY R K. Thermal analysis of microtextured journal bearing using non-Newtonian rheology of lubricant and JFO boundary conditions[J]. Tribology international, 2014, 69: 19-29. doi: 10.1016/j.triboint.2013.08.009
    [23] PATIR N, CHENG H S. An average flow model for determining effects of three-dimensional roughness on partial hydrodynamic lubrication[J]. Journal of Lubrication Technology, 1978, 100 (1): 12-17. doi: 10.1115/1.3453103
    [24] WANG Y S, WANG Q J, LIN C, et al. Mixed lubrication of coupled journal-thrust-bearing systems including mass conserving cavitation[J]. Journal of Tribology, 2003, 125 (4): 747-755. doi: 10.1115/1.1574519
    [25] HAJJAM M, BONNEAU D. A transient finite element cavitation algorithm with application to radial lip seals[J]. Tribology International, 2007, 40 (8): 1258-1269. doi: 10.1016/j.triboint.2007.01.018
    [26] MORRIS N, RAHMANI R, RAHNEJAT H, et al. Tribology of piston compression ring conjunction under transient thermal mixed regime of lubrication[J]. Tribology International, 2013, 59: 248-258. doi: 10.1016/j.triboint.2012.09.002
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  714
  • HTML全文浏览量:  135
  • PDF下载量:  423
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-25
  • 刊出日期:  2017-06-25

目录

    /

    返回文章
    返回