留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型Halbach阵列永磁电动悬浮系统垂向稳定性

罗成 张昆仑 靖永志

罗成, 张昆仑, 靖永志. 新型Halbach阵列永磁电动悬浮系统垂向稳定性[J]. 交通运输工程学报, 2019, 19(2): 101-109. doi: 10.19818/j.cnki.1671-1637.2019.02.010
引用本文: 罗成, 张昆仑, 靖永志. 新型Halbach阵列永磁电动悬浮系统垂向稳定性[J]. 交通运输工程学报, 2019, 19(2): 101-109. doi: 10.19818/j.cnki.1671-1637.2019.02.010
LUO Cheng, ZHANG Kun-lun, JING Yong-zhi. Vertical stability of permanent magnet EDS system with novel Halbach array[J]. Journal of Traffic and Transportation Engineering, 2019, 19(2): 101-109. doi: 10.19818/j.cnki.1671-1637.2019.02.010
Citation: LUO Cheng, ZHANG Kun-lun, JING Yong-zhi. Vertical stability of permanent magnet EDS system with novel Halbach array[J]. Journal of Traffic and Transportation Engineering, 2019, 19(2): 101-109. doi: 10.19818/j.cnki.1671-1637.2019.02.010

新型Halbach阵列永磁电动悬浮系统垂向稳定性

doi: 10.19818/j.cnki.1671-1637.2019.02.010
基金项目: 

国家自然科学基金项目 51577160

中央高校基本科研业务费专项资金项目 2682015BR004EM

详细信息
    作者简介:

    罗成(1987-), 男, 四川内江人, 西南交通大学工学博士研究生, 从事电磁悬浮与线性驱动研究

    张昆仑(1964-), 男, 四川成都人, 西南交通大学教授

  • 中图分类号: U266.4

Vertical stability of permanent magnet EDS system with novel Halbach array

More Information
  • 摘要: 针对永磁电动悬浮系统的垂向动态稳定性问题, 研究了永磁电动悬浮系统的临界稳定特性; 提出了一种永磁铁加常导线圈混合构成的新型Halbach阵列, 通过在永磁体表面缠绕有源常导线圈, 实现了永磁电动悬浮系统阻尼的主动控制, 并对比了新型Halbach阵列与其他2种主动电磁阻尼控制方案; 建立了新型Halbach阵列永磁电动悬浮系统垂向动力学模型, 并采用经典PID闭环控制方法设计了悬浮控制器, 分别在无外界干扰、外界扰动力干扰和轨道不平顺干扰3种情况下仿真分析了该系统的垂向动态稳定性。研究结果表明: 永磁电动悬浮系统在扰动力作用下将进行等幅震荡而不能稳定悬浮, 连续扰动力干扰下甚至可能撞轨; 提出的新型Halbach阵列具有磁场耦合计算方便、力调节范围大的优点; 设计的悬浮控制器能使系统稳定悬浮于额定气隙0.03 m的平衡位置, 且线圈电流为0, 不产生损耗, 仿真分析所得系统悬浮气隙和线圈电流与理论分析结果的相对误差小于0.01%;当出现轨道不平顺干扰时, 系统能快速稳定悬浮于额定气隙0.03 m的平衡位置, 稳定后的线圈电流仍为0, 实现了永磁电动悬浮系统的零功率平衡; 当外界扰动力为±1 500 N时, 系统能快速稳定悬浮于额定气隙0.03 m的平衡位置, 稳定后的线圈电流分别为29.68和-30.40 A, 表明新型Halbach阵列永磁电动悬浮系统能够实现垂向动态稳定。

     

  • 图  1  永磁电动悬浮系统3D示意

    Figure  1.  3D schematic of permanent magnet EDS system

    图  2  单个轨道线圈

    Figure  2.  Single track coil

    图  3  传递函数仿真框图

    Figure  3.  Simulation frame of transfer function

    图  4  外界扰动力f1不同作用时间下的悬浮气隙波形

    Figure  4.  Suspension air gap waveforms under different action times of external disturbing force f1

    图  5  外界扰动力f1f2不同作用时间下的悬浮气隙波形

    Figure  5.  Suspension air gap waveforms under different action times of external disturbing forces f1 and f2

    图  6  新型Halbach阵列

    Figure  6.  Novel Halbach array

    图  7  PID闭环控制仿真框图

    Figure  7.  Simulation frame of PID closed-loop control

    图  8  悬浮气隙

    Figure  8.  Suspension air gap

    图  9  线圈电流

    Figure  9.  Coils current

    图  10  轨道1 mm沉降时的悬浮气隙

    Figure  10.  Suspension air gap when settlement of track is 1 mm

    图  11  轨道1 mm沉降时的线圈电流

    Figure  11.  Coils current when settlement of track is 1 mm

    图  12  f=1 500 N时的悬浮气隙

    Figure  12.  Suspension air gap when f=1 500 N

    图  13  f=1 500 N时的线圈电流

    Figure  13.  Coils current when f=1 500 N

    图  14  f=-1 500 N时的悬浮气隙

    Figure  14.  Suspension air gap when f=-1 500 N

    图  15  f=-1 500 N时的线圈电流

    Figure  15.  Coils current when f=-1 500 N

    表  1  三种永磁EDS系统主动控制方案对比

    Table  1.   Comparison of active control schemes for three permanent magnet EDS systems

    方案类型 优点 缺点
    永磁体Halbach阵列与电磁铁Halbach阵列并列放置 力调节范围大, 安装方便, 散热容易 磁场耦合计算困难, 占用空间较大
    永磁体Halbach阵列与电磁铁Halbach阵列错位放置 磁场耦合可忽略, 安装方便, 散热容易 力调节范围小, 占用空间大
    新型Halbach阵列 力调节范围大, 磁场耦合计算简单, 安装方便, 占用空间小 散热要求高
    下载: 导出CSV
  • [1] HALBACH K. Strong rare earth cobalt quadrupoles[J]. IEEE Transactions on Nuclear Science, 1979, 26 (3): 3882-3884. doi: 10.1109/TNS.1979.4330638
    [2] HALBACH K. Design of permanent multipole magnets with oriented rare earth cobalt material[R]. Berkely: University of California Lawrence, 1979.
    [3] HALBACH K. Application of permanent magnets in accelerators and electron storage rings[J]. Journal of Applied Physics, 1985, 57 (8): 3605-3608. doi: 10.1063/1.335021
    [4] 周赣, 黄学良, 周勤博, 等. Halbach型永磁阵列的应用综述[J]. 微特电机, 2008, 36 (8): 52-55. doi: 10.3969/j.issn.1004-7018.2008.08.017

    ZHOU Gan, HUANG Xue-liang, ZHOU Qin-bo, et al. The applications of the Halbach permanent magnet array: a review[J]. Small and Special Electrical Machines, 2008, 36 (8): 52-55. (in Chinese). doi: 10.3969/j.issn.1004-7018.2008.08.017
    [5] POST R F, RYUTOV D D. The Inductrack concept: a new approach to magnetic levitation[R]. Livermore: Lawrence Livermore National Laboratory, 1996.
    [6] RICHARD F P. Inductrack demonstration model[R]. Livermore: Lawrence Livermore National Laboratory, 1998.
    [7] 成玉卫. 基于Halbach结构的永磁电动悬浮技术研究[D]. 长沙: 国防科学技术大学, 2009.

    CHENG Yu-wei. Technological analysis for permanent magnet EDS system based on Halbach structure[D]. Changsha: National University of Defense Technology, 2010. (in Chinese).
    [8] CHENG Yu-wei, HE Guang, LONG Zhi-qiang. Vertical dynamic stability analysis of EDS levitation systems based on Halbach magnet arrays[C]//IEEE. 2009 Chinese Control and Decision Conference (CCDC 2009). New York: IEEE, 2009: 3726-3730.
    [9] 郑杰. 感应线圈对磁浮系统性能影响研究[D]. 长沙: 国防科学技术大学, 2006.

    ZHENG Jie. Study on effect of induction coil on performance of maglev system[D]. Changsha: National University of Defense Technology, 2006. (in Chinese).
    [10] CAI Y, ROTE D M, MULCAHY T M, et al. Dynamic stability experiment of maglev systems[R]. Chicago: Argonne National Laboratory, 1995.
    [11] ROTE D M, CAI Y. Review of dynamic stability of repulsive-force maglev suspension systems[J]. IEEE Transactions on Magnetics, 2002, 38 (2): 1383-1390. doi: 10.1109/20.996030
    [12] CAI Y, CHEN S S, MULCAHY T M, et al. Dynamic stability of maglev systems[R]. Chicago: Argonne National Laboratory, 1992.
    [13] HAM C, KO W, LIN K C, et al. Study of a hybrid magnet array for an electrodynamic maglev control[J]. Journal of Magnetics, 2013, 18 (3): 370-374. doi: 10.4283/JMAG.2013.18.3.370
    [14] KO W. Modeling and analysis of the EDS maglev system with the Halbach magnet array[D]. Orlando: University of Central Florida, 2007.
    [15] HAN Qing-hua. Analysis and modeling of the EDS maglev system based on the Halbach permanent magnet array[D]. Orlando: University of Central Florida, 2004.
    [16] HAN Q H, HAM C, PHILLIPS R. A novel maglev system[C]//IEEE. Proceedings of the Thirty-Sixth Southeastern Symposium on System Theory. New York: IEEE, 2004: 505-508.
    [17] SHUNSUKE O. Effect of the damper coils on the rotational motion of the superconducting magnetically levitated bogie[J]. IEEE Transactions on Magnetics, 2000, 36 (5): 3680-3682. doi: 10.1109/20.908939
    [18] SHUNSUKE O, OHSAKI H, MASADA E. Effect of the active damper coil system on the lateral displacement of the magnetically levitated bogie[J]. IEEE Transactions on Magnetics, 1999, 35 (5): 4001-4003. doi: 10.1109/20.800735
    [19] HE J J, COFFEY H. Magnetic damping forces in the figure-eight-shaped null-flux coil suspension system[C]//IEEE. 1997 IEEE International Magnetics Conference. New York: IEEE, 1997: 10.1109/INTMAG. 1997.597511.
    [20] HE J J, COFFEY H. Magnetic damping forces in figure-eight-shaped null-flux coil suspension systems[J]. IEEE Transactions on Magnetics, 2002, 33 (5): 4230-4232.
    [21] 贺光. 基于Halbach结构的永磁电动与电磁混合悬浮技术研究[D]. 长沙: 国防科学技术大学, 2010.

    HE Guang. Research on permanent-magnet EDS and EMS hybrid suspension system based on Halbach structure[D]. Changsha: National University of Defense Technology, 2010. (in Chinese).
    [22] LONG Zhi-qiang, HE Guang, XUE Song. Study of EDS and EMS hybrid suspension system with permanent-magnet Halbach array[J]. IEEE Transactions on Magnetics, 2011, 47 (12): 4717-4724. doi: 10.1109/TMAG.2011.2159237
    [23] 闫宇壮, 李云钢, 程虎. 电动电磁混合磁浮悬浮稳定性及技术特性分析[J]. 中国电机工程学报, 2007, 27 (6): 53-56. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC200706011.htm

    YAN Yu-zhuang, LI Yun-gang, CHENG Hu. Analysis of levitation stability and technology characters of EDS and EMS hybrid maglev[J]. Proceedings of the CSEE, 2007, 27 (6): 53-56. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC200706011.htm
    [24] 陈慧星, 李云钢, 闫宇壮. EDS & amp; amp; EMS混合磁浮系统的稳定裕度分析[J]. 电气传动, 2007, 37 (7): 50-53.

    CHEN Hui-xing, LI Yun-gang, YAN Yu-zhuang. Stable margin analysis on EDS & amp; amp; EMS hybrid maglev system[J]. Electric Drive, 2007, 37 (7): 50-53. (in Chinese).
    [25] ROTE D M. Passive damping in EDS maglev systems[R]. Chicago: Argonne National Laboratory, 2002.
    [26] STORSET O F, PADEN B. Infinite dimensional models for perforated track electrodynamic magnetic levitation[C]//IEEE. Proceedings of the 41st IEEE Conference on Decision and Control. New York: IEEE, 2002: 842-847.
    [27] POST R F, RYUTOV D D. The Inductrack: a simpler approach to magnetic levitation[J]. IEEE Transactions on Applied Superconductivity, 2000, 10 (1): 901-904.
    [28] 王莉, 熊剑, 张昆仑, 等. 永磁和电磁构成的混合式悬浮系统研究[J]. 铁道学报, 2005, 27 (3): 50-54. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200503010.htm

    WANG Li, XIONG Jian, ZHANG Kun-lun, et al. Research of hybrid suspension system made of permanent magnets and electromagnets[J]. Journal of the China Railway Society, 2005, 27 (3): 50-54. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200503010.htm
    [29] 王莉. 混合EMS磁悬浮系统研究[D]. 成都: 西南交通大学, 2006.

    WANG Li. Study on hybrid EMS technology[D]. Chengdu: Southwest Jiaotong University, 2006. (in Chinese).
    [30] 王莉. 基于零功率控制策略的混合磁悬浮系统[J]. 西南交通大学学报, 2005, 40 (5): 667-672. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT200505021.htm

    WANG Li. Hybrid magnetic suspension system based on zero power control strategy[J]. Journal of Southwest Jiaotong University, 2005, 40 (5): 667-672. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT200505021.htm
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  1163
  • HTML全文浏览量:  279
  • PDF下载量:  356
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-30
  • 刊出日期:  2019-04-25

目录

    /

    返回文章
    返回