留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

消能棚洞冲击信号动力特征

王林峰 朱洪洲 宋男男 邹政 姚昌银

王林峰, 朱洪洲, 宋男男, 邹政, 姚昌银. 消能棚洞冲击信号动力特征[J]. 交通运输工程学报, 2019, 19(5): 33-41. doi: 10.19818/j.cnki.1671-1637.2019.05.004
引用本文: 王林峰, 朱洪洲, 宋男男, 邹政, 姚昌银. 消能棚洞冲击信号动力特征[J]. 交通运输工程学报, 2019, 19(5): 33-41. doi: 10.19818/j.cnki.1671-1637.2019.05.004
WANG Lin-feng, ZHU Hong-zhou, SONG Nan-nan, ZOU Zheng, YAO Chang-yin. Impact signal dynamic characteristics of energy dissipation shed tunnel[J]. Journal of Traffic and Transportation Engineering, 2019, 19(5): 33-41. doi: 10.19818/j.cnki.1671-1637.2019.05.004
Citation: WANG Lin-feng, ZHU Hong-zhou, SONG Nan-nan, ZOU Zheng, YAO Chang-yin. Impact signal dynamic characteristics of energy dissipation shed tunnel[J]. Journal of Traffic and Transportation Engineering, 2019, 19(5): 33-41. doi: 10.19818/j.cnki.1671-1637.2019.05.004

消能棚洞冲击信号动力特征

doi: 10.19818/j.cnki.1671-1637.2019.05.004
基金项目: 

国家重点研发计划项目 2016YFC0802203

国家自然科学基金项目 51408084

国家自然科学基金项目 51478073

国家自然科学基金项目 51678097

详细信息
    作者简介:

    王林峰(1983-), 男, 重庆合川人, 重庆交通大学教授, 工学博士, 从事交通地质减灾理论与技术研究

    朱洪洲:ZHU Hong-zhou(1976-), male, professor, PhD, 273210162@qq.com

    通讯作者:

    朱洪洲(1976-), 男, 山东莱州人, 重庆交通大学教授, 工学博士

  • 中图分类号: U453.1

Impact signal dynamic characteristics of energy dissipation shed tunnel

More Information
  • 摘要: 考虑落石下落高度、质量、形状和垫层厚度等参数, 采用室内模型试验研究了消能棚洞冲击信号的动力特征, 获得了冲击信号的频谱和自相关曲线, 分析了冲击信号的时频特征和最大频谱对应的振动频率及其变化规律, 并基于小波分析方法提取了各个频段的冲击信号, 获得了冲击信号能量的主要分布范围。研究结果表明: 随着落石下落高度的增加, 棚洞顶板中心处冲击信号的频谱幅值增大, 且该冲击信号的频谱有4个峰值, 呈对称分布; 不同形状落石冲击棚洞时冲击信号频谱幅值由大到小的顺序依次为球形、长方体、立方体和圆柱体; 普通棚洞顶部垫层越厚、落石质量越小时, 棚洞顶板中心处冲击信号的频谱幅值越小; 当5 kg球形落石从0.5 m高处下落冲击顶部未铺设垫层的棚洞时, 消能棚洞冲击信号的最大频谱和自相关曲线峰值较普通棚洞分别降低了60.98%和82.57%;当5 kg球形落石从2 m高处下落冲击顶部未铺设垫层的棚洞时, 消能棚洞的落石冲击能量主要分布在冲击信号频率15.625~62.500 Hz处, 占总能量的63.73%, 普通棚洞的落石冲击能量主要分布在冲击信号频率0~15.625 Hz处, 占总能量的74.30%。可见, 消能棚洞设计时应主要考虑中频冲击, 而普通棚洞设计时应主要考虑低频冲击。

     

  • 图  1  消能棚洞

    Figure  1.  Energy dissipation shed tunnel

    图  2  落石冲击试验系统

    Figure  2.  Rockfall impact test system

    图  3  加速度传感器布置

    Figure  3.  Arrangement of acceleration sensors

    图  4  落石

    Figure  4.  Rockfalls

    图  5  普通棚洞的振动加速度

    Figure  5.  Vibration acceleration of ordinary shed tunnel

    图  6  不同落石下落高度时普通棚洞顶板中心处冲击信号频谱

    Figure  6.  Spectrums of impact signals at center of ordinary shed tunnel roof under different rockfall falling heights

    图  7  不同落石形状下普通棚洞顶板中心处冲击信号频谱

    Figure  7.  Spectrums of impact signals at center of ordinary shed tunnel roof under different rockfall shapes

    图  8  不同垫层厚度下普通棚洞顶板中心处冲击信号频谱

    Figure  8.  Spectrums of impact signals at center of ordinary shed tunnel roof under different cushion thicknesses

    图  9  不同落石质量下普通棚洞顶板中心处冲击信号频谱

    Figure  9.  Spectrums of impact signals at center of ordinary shed tunnel roof under different rockfall masses

    图  10  消能棚洞与普通棚洞冲击信号频谱对比

    Figure  10.  Comparison of impact signal spectrums between energy dissipation shed tunnel and ordinary shed tunnel

    图  11  消能棚洞和普通棚洞冲击信号的自相关曲线

    Figure  11.  Autocorrelation curves of impact signals of energy dissipation shed tunnel and ordinary shed tunnel

    图  12  消能棚洞的小波分析结果

    Figure  12.  Wavelet analysis results for energy dissipation shed tunnel

    图  13  普通棚洞的小波分析结果

    Figure  13.  Wavelet analysis results for ordinary shed tunnel

    图  14  消能棚洞和普通棚洞各频段信号的能量分布

    Figure  14.  Energy distributions of each frequency band signal for energy dissipation shed tunnel and ordinary shed tunnel

    表  1  混凝土配合比

    Table  1.   Concrete mix proportion

    材料类型 水泥
    用量/(kg·m-3) 420 185 628 1 167
    下载: 导出CSV

    表  2  混凝土强度测试结果

    Table  2.   Concrete strength test results

    强度指标 3 d平均抗压强度/MPa 28 d平均抗压强度/MPa 弹性模量/GPa
    指标值 24.2 39.5 25.0
    下载: 导出CSV

    表  3  试验因素取值

    Table  3.   Values of test factors

    因素 水平
    落石质量/kg 2 3 4 5
    垫层厚度/cm 3 6 9 12
    落石下落高度/m 0.5 1.0 1.5 2.0
    落石形状 球形 立方体 圆柱体 长方体
    下载: 导出CSV

    表  4  消能棚洞的能量百分比

    Table  4.   Energy percentages of energy dissipation shed tunnel

    频率带编号 1 2 3 4 5 6
    频段/Hz (0, 15.625] (15.625, 31.250] (31.250, 62.500] (62.500, 125.000] (125.000, 250.000] (250.000, 500.000]
    能量百分比/% 18.67 30.20 33.53 16.93 0.41 0.26
    下载: 导出CSV

    表  5  普通棚洞的能量百分比

    Table  5.   Energy percentages of ordinary shed tunnel

    频率带编号 1 2 3 4 5 6
    频段/Hz (0, 15.625] (15.625, 31.250] (31.250, 62.500] (62.500, 125.000] (125.000, 250.000] (250.000, 500.000]
    能量百分比/% 74.30 6.99 6.66 7.13 4.13 0.79
    下载: 导出CSV
  • [1] 王玉锁, 李俊杰, 李正辉, 等. 落石冲击力评定的离散元颗粒流数值模拟[J]. 西南交通大学学报, 2016, 51(1): 22-29. doi: 10.3969/j.issn.0258-2724.2016.01.004

    WANG Yu-suo, LI Jun-jie, LI Zheng-hui, et al. Assessment of rockfall impact force by particle flow code numerical simulation based on discrete element model[J]. Southwest Jiaotong University, 2016, 51(1): 22-29. (in Chinese). doi: 10.3969/j.issn.0258-2724.2016.01.004
    [2] 王林峰, 姚昌银, 邹政, 等. 基于离散元方法的落石冲击力变化规律研究[J]. 铁道建筑, 2017(6): 101-105. doi: 10.3969/j.issn.1003-1995.2017.06.25

    WANG Lin-feng, YAO Chang-yin, ZOU Zheng, et al. Study on change law of rockfall impact force based on discrete element method[J]. Railway Engineering, 2017(6): 101-105. (in Chinese). doi: 10.3969/j.issn.1003-1995.2017.06.25
    [3] EFFEINDZOUROU A, THOENI K, GIACOMINI A, et al. Efficient discrete modelling of composite structures for rockfall protection[J]. Computers and Geotechnics, 2017, 87: 99-114. doi: 10.1016/j.compgeo.2017.02.005
    [4] 袁进科, 黄润秋, 裴向军. 滚石冲击力测试研究[J]. 岩土力学, 2014, 35(1): 48-54. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201401007.htm

    YUAN Jin-ke, HUANG Run-qiu, PEI Xiang-jun. Test research on rockfall impact force[J]. Rock and Soil Mechanics, 2014, 35(1): 48-54. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201401007.htm
    [5] 王林峰, 刘丽, 唐芬, 等. 基于落石棚洞冲击试验的落石冲击力研究[J]. 防灾减灾工程学报, 2018, 38(6): 973-979. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201806012.htm

    WANG Lin-feng, LIU Li, TANG Fen, et al. Study on impact force of rockfall impact experiment on shed tunnel[J]. Journal of Disaster Prevent and Mitigation Engineering, 2018, 38(6): 973-979. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201806012.htm
    [6] 王永东, 周天跃, 柴伦磊, 等. 基于能量分析的落石对棚洞垫层冲击力学研究[J]. 地下空间与工程学报, 2018, 14(增1): 148-153. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2018S1022.htm

    WANG Yong-dong, ZHOU Tian-yue, CHAI Lun-lei, et al. Impact mechanics of rock-fall to shed cushion based on energy analysis[J]. Chinese Journal of Underground Space and Engineering, 2018, 14(S1): 148-153. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2018S1022.htm
    [7] VENTURA A, DE BIAGI V, CHIAIA B. Effects of rockfall on an elastic-plastic member: a novel compliance contact model and dynamic response[J]. Engineering Structures, 2017, 148: 126-144. doi: 10.1016/j.engstruct.2017.06.046
    [8] LI Li-ping, SUN Shang-qu, LI Shu-cai, et al. Coefficient of restitution and kinetic energy loss of rockfall impacts[J]. Journal of Civil Engineering, 2016, 20(6): 2297-2307.
    [9] CALVETTI F, DI PRISCO C. Rockfall impacts on sheltering tunnels: real-scale experiments[J]. Géotechnique, 2012, 62(10): 865-876. doi: 10.1680/geot.9.P.036
    [10] 王爽, 周晓军, 罗福君, 等. 拱形棚洞受落石冲击的模型试验研究[J]. 振动与冲击, 2017, 36(12): 215-222. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201712035.htm

    WANG Shuang, ZHOU Xiao-jun, LUO Fu-jun, et al. An experimental study on the performance of an arch shaped shed tunnel due to the impact of rockfall[J]. Journal of Vibration and Shock, 2017, 36(12): 215-222. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201712035.htm
    [11] 闫帅星, 何思明, 李新坡. 滚石冲击作用下钢筋混凝土棚洞板动力学响应及冲切损伤评估研究[J]. 兰州大学学报(自然科学版), 2019, 55(1): 64-72. https://www.cnki.com.cn/Article/CJFDTOTAL-LDZK201901009.htm

    YAN Shuai-xing, HE Si-ming, LI Xin-po. Dynamic responses and punching damage assessment of a reinforced concrete slab impacted by rock-falls[J]. Journal of Lanzhou University (Natural Science), 2019, 55(1): 64-72. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LDZK201901009.htm
    [12] 王玉锁, 周良, 李正辉, 等. 落石冲击下单压式拱形明洞的力学响应[J]. 西南交通大学学报, 2017, 52(3): 505-515. doi: 10.3969/j.issn.0258-2724.2017.03.010

    WANG Yu-suo, ZHOU Liang, LI Zheng-hui, et al. Mechanical responses of single-pressure arch-shaped open tunnel structure under rockfall impaction[J]. Journal of Southwest Jiaotong University, 2017, 52(3): 505-515. (in Chinese). doi: 10.3969/j.issn.0258-2724.2017.03.010
    [13] 王琦, 王玉锁, 耿萍. 橡胶缓冲垫层保护下棚洞结构落石冲击力学响应研究[J]. 铁道建筑, 2017(2): 64-67. doi: 10.3969/j.issn.1003-1995.2017.02.16

    WANG Qi, WANG Yu-suo, GENG Ping. Research on mechanical response of tunnel shed with protective rubber cushion subjected to impact of rockfall[J]. Railway Engineering, 2017(2): 64-67. (in Chinese). doi: 10.3969/j.issn.1003-1995.2017.02.16
    [14] BHATTI A Q, KISHI N. Impact response of RC rock-shed girder with sand cushion under falling load[J]. Nuclear Engineering and Design, 2010, 240(10): 2626-2632. doi: 10.1016/j.nucengdes.2010.07.029
    [15] BHATTI A Q. Falling-weight impact response for prototype RC type rockshed with sand cushion[J]. Materials and Structures, 2015, 48(10): 3367-3375. doi: 10.1617/s11527-014-0405-5
    [16] DELHOMME F, MOMMESSIN M, MOUGIN J P, et al. Damage mechanisms of a reinforced concrete rock-shed slab impacted by blocks[J]. Journal of Structural Engineering, 2007, 133(10): 1426-1433. doi: 10.1061/(ASCE)0733-9445(2007)133:10(1426)
    [17] 王林峰, 唐红梅, 陈洪凯. 消能棚洞的落石冲击计算及消能效果研究[J]. 中国铁道科学, 2012, 33(5): 40-46. doi: 10.3969/j.issn.1001-4632.2012.05.07

    WANG Lin-feng, TANG Hong-mei, CHEN Hong-kai. Study on the calculation method for rockfall impact and energy dissipation effect of energy dissipation shed tunnel[J]. China Railway Science, 2012, 33(5): 40-46. (in Chinese). doi: 10.3969/j.issn.1001-4632.2012.05.07
    [18] 何思明, 吴永. 新型耗能减震滚石棚洞作用机制研究[J]. 岩石力学与工程学报, 2010, 29(5): 926-932. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201005011.htm

    HE Si-ming, WU Yong. Research on cushioning mechanism of new-typed energy dissipative rock shed[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(5): 926-932. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201005011.htm
    [19] 王东坡, 何思明, 欧阳朝军, 等. 滚石冲击荷载下棚洞钢筋混凝土板动力响应研究[J]. 岩土力学, 2013, 34(3): 881-886. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201303046.htm

    WANG Dong-po, HE Si-ming, OUYANG Chao-jun, et al. Study of dynamic response of shed reinforced concrete slab to impact load of rock-fall[J]. Rock and Soil Mechanics, 2013, 34(3): 881-886. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201303046.htm
    [20] 王东坡, 黄畇坤, 何思明, 等. 波纹圆管状金属耗能器在棚洞工程中的耗能机理研究[J]. 工程科学与技术, 2018, 50(3): 193-200. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201803023.htm

    WANG Dong-po, HUANG Yun-kun, HE Si-ming, et al. Energy dissipation mechanism of corrugated cylinder metal energy dissipator in rock shed engineering[J]. Advanced Engineering Sciences, 2018, 50(3): 193-200. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201803023.htm
    [21] 陈俊, 丁杰, 闫兵, 等. 子系统参数对双层隔振系统隔振特性的影响[J]. 交通运输工程学报, 2018, 18(3): 114-128. doi: 10.3969/j.issn.1671-1637.2018.03.013

    CHEN Jun, DING Jie, YAN Bing, et al. Effect of subsystem parameters on vibration isolation characteristics of two-stage vibration isolation system[J]. Journal of Traffic and Transportation Engineering, 2018, 18(3): 114-128. (in Chinese). doi: 10.3969/j.issn.1671-1637.2018.03.013
    [22] 刘成清, 倪向勇, 杨万理, 等. 基于能量法的被动柔性棚洞防护结构设计理论[J]. 工程力学, 2016, 33(11): 95-104. doi: 10.6052/j.issn.1000-4750.2015.03.0187

    LIU Cheng-qing, NI Xiang-yong, YANG Wan-li, et al. Design theory for passive flexible shield structures based on energy method[J]. Engineering Mechanics, 2016, 33(11): 95-104. (in Chinese). doi: 10.6052/j.issn.1000-4750.2015.03.0187
    [23] 汪敏, 石少卿, 刘盈丰, 等. 防落石柔性棚洞的耗能性能分析及优化设计[J]. 振动与冲击, 2018, 37(1): 216-222. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201801033.htm

    WANG Min, SHI Shao-qing, LIU Ying-feng, et al. Energy dissipation analysis and optimum design on a flexible rock-shed for rockfall protection[J]. Journal of Vibration and Shock, 2018, 37(1): 216-222. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201801033.htm
    [24] 杨建荣, 白羽, 杨晓东, 等. 柔性棚洞结构落石冲击数值模拟与试验研究[J]. 振动与冲击, 2017, 36(9): 172-178, 264. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201709026.htm

    YANG Jian-rong, BAI Yu, YANG Xiao-dong, et al. Numerical simulation and tests for flexible rock shed subjected to rackfall impact[J]. Journal of Vibration and Shock, 2017, 36(9): 172-178, 264. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201709026.htm
    [25] 汪敏, 石少卿, 崔廉明, 等. 三开间单跨柔性棚洞在落石冲击作用下的试验研究[J]. 土木工程学报, 2018, 51(5): 37-47.

    WANG Min, SHI Shao-qing, CUI Lian-ming, et al. Experimental investigation on three-bay and single-span flexible rock-shed under impact of rockfall[J]. China Civil Engineering Journal, 2018, 51(5): 37-47. (in Chinese).
    [26] 王静峰, 赵鹏, 袁松, 等. 复合垫层钢棚洞抵抗落石冲击性能研究[J]. 土木工程学报, 2018, 51(增2): 7-13. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2018S2002.htm

    WANG Jing-feng, ZHAO Peng, YUAN Song, et al. Numerical study on impact resistance of steel shed gallery with composite cushion[J]. China Civil Engineering Journal, 2018, 51(S2): 7-13. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2018S2002.htm
    [27] 宋跃, 姜元俊, 王萌. 碎石垫层对碎屑流冲击棚洞的缓冲效应研究[J]. 岩石力学与工程学报, 2018, 37(10): 2359-2369. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201810016.htm

    SONG Yue, JIANG Yuan-jun, WANG Meng. Buffering effect of gravel cushion layer on the impact of dry granular flow against a rock shed[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(10): 2359-2369. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201810016.htm
    [28] 裴向军, 刘洋, 王东坡. 滚石冲击棚洞砂土垫层耗能缓冲机理研究[J]. 四川大学学报(工程科学版), 2016, 48(1): 15-22. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201601003.htm

    PEI Xiang-jun, LIU Yang, WANG Dong-po. Study on the energy dissipation of sandy soil cushions on the rock-shed under rockfall impact load[J]. Journal of Sichuan University (Engineering Science Edition), 2016, 48(1): 15-22. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201601003.htm
    [29] 杨青, 马蕙, 籍仙荣. 利用自相关函数和双耳自相关函数分析对交通噪声特征参量的提取[J]. 声学学报, 2014, 39(5): 624-632. https://www.cnki.com.cn/Article/CJFDTOTAL-XIBA201405013.htm

    YANG Qing, MA Hui, JI Xian-rong. Parameter extraction of traffic noise by analysis of auto-correlation function and interaural cross-correlation function[J]. Acta Acustica, 2014, 39(5): 624-632. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XIBA201405013.htm
    [30] 张玉萍. 泥石流冲击信号识别方法研究[D]. 重庆: 重庆交通大学, 2009.

    ZHANG Yu-ping. Signal identification method to debris flow impaction[D]. Chongqing: Chongqing Jiaotong University, 2009. (in Chinese).
  • 加载中
图(14) / 表(5)
计量
  • 文章访问数:  828
  • HTML全文浏览量:  123
  • PDF下载量:  485
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-03
  • 刊出日期:  2019-10-25

目录

    /

    返回文章
    返回