留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电动汽车混入条件下随机动态用户均衡分配模型

郇宁 姚恩建 杨扬 李斌斌 张茜

郇宁, 姚恩建, 杨扬, 李斌斌, 张茜. 电动汽车混入条件下随机动态用户均衡分配模型[J]. 交通运输工程学报, 2019, 19(5): 150-161. doi: 10.19818/j.cnki.1671-1637.2019.05.015
引用本文: 郇宁, 姚恩建, 杨扬, 李斌斌, 张茜. 电动汽车混入条件下随机动态用户均衡分配模型[J]. 交通运输工程学报, 2019, 19(5): 150-161. doi: 10.19818/j.cnki.1671-1637.2019.05.015
XUN Ning, YAO En-jian, YANG Yang, LI Bin-bin, ZHANG Qian. Stochastic dynamic user equilibrium assignment model considering penetration of electric vehicles[J]. Journal of Traffic and Transportation Engineering, 2019, 19(5): 150-161. doi: 10.19818/j.cnki.1671-1637.2019.05.015
Citation: XUN Ning, YAO En-jian, YANG Yang, LI Bin-bin, ZHANG Qian. Stochastic dynamic user equilibrium assignment model considering penetration of electric vehicles[J]. Journal of Traffic and Transportation Engineering, 2019, 19(5): 150-161. doi: 10.19818/j.cnki.1671-1637.2019.05.015

电动汽车混入条件下随机动态用户均衡分配模型

doi: 10.19818/j.cnki.1671-1637.2019.05.015
基金项目: 

国家重点研发计划项目 2018YFB1601300

国家自然科学基金项目 71801012

中央高校基本科研业务费专项资金项目 2019YJS102

详细信息
    作者简介:

    郇宁(1994-), 男, 山东威海人, 北京交通大学工学博士研究生, 从事低碳交通技术研究

    姚恩建(1971-), 男, 贵州遵义人, 北京交通大学教授, 工学博士

  • 中图分类号: U491.13

Stochastic dynamic user equilibrium assignment model considering penetration of electric vehicles

More Information
  • 摘要: 为分析电动汽车动态充电需求对公共充电设施服务水平的影响, 给充电设施网络规划与运营提供参考, 在考虑燃油汽车和电动汽车出行者行为差异、路段拥堵状态、车辆能源消耗、充电设施布局与服务水平等因素的基础上, 采用巢式Logit模型描述了包含充电需求判断、充电设施和路径选择的电动汽车出行联合选择行为; 建立了考虑用户在途快速充电行为的动态交通流分配模型, 提出了混合交通下随机动态用户均衡条件及等价的变分不等式模型, 并设计了融合电动汽车充电排队仿真的动态交通流迭代算法; 通过算例验证了模型与算法的有效性, 并进一步探究了在电动汽车推广的不同阶段, 需求和供给关键因素对充电设施服务水平的影响。研究结果表明: 受路网交通流量分布和充电设施布局的影响, 充电设施利用率在时间和空间上具有明显的非均衡性; 电动汽车混入率的提高会增加平均充电等待时间, 并改变充电高峰期的时间分布; 电动汽车电池初始电量和充电设施处的排队长度均对用户的充电需求判断呈负效应; 当路网中充电设施数量与需求规模不匹配时, 会导致服务水平急剧下降, 同时极易诱发局部拥堵; 用户在充电设施处的逗留时间以15~20 min居多, 约90%用户的等待时间在9 min以内, 因此, 提出的模型符合实际, 能够充分反映混合交通网络中电动汽车充电行为引发的一系列影响。

     

  • 图  1  电动汽车出行抽象网络

    Figure  1.  Abstract network for EVs travel

    图  2  多服务台排队系统示意

    Figure  2.  Schematic of multi-servers queueing system

    图  3  角度费用

    Figure  3.  Angular cost

    图  4  绕行角度

    Figure  4.  Detour angle

    图  5  电动汽车出行行为模型结构

    Figure  5.  Model structure of EVs travel behavior

    图  6  Nguyen-Dupius网络

    Figure  6.  Nguyen-Dupius network

    图  7  车辆需求分布系数

    Figure  7.  Distribution coefficient of vehicles demand

    图  8  算法收敛过程

    Figure  8.  Convergence process of algorithm

    图  9  充电需求变化

    Figure  9.  Variation of charging demand

    图  10  OD对1-3间路径选择情况

    Figure  10.  Route choosing patterns between OD pair 1-3

    图  11  充电站处排队长度变化

    Figure  11.  Variations of queue lengths at charging stations

    图  12  用户在充电站逗留时间频数分布

    Figure  12.  Frequency distributions of uses' dwell times at charging stations

    图  13  用户在充电站等待时间频数分布

    Figure  13.  Frequency distributions of uses' waiting times at charging stations

    图  14  不同初始SOC下完成充电服务的车辆数

    Figure  14.  Numbers of vehicles completed charging service under different initial SOCs

    表  1  不同电动汽车混入率下充电服务耗时

    Table  1.   Time consumptions of charging service under different penetration rates of EV

    充电站编号 不同电动汽车混入率(%)下用户的平均等待时间/min 不同电动汽车混入率(%)下用户的平均逗留时间/min
    40 60 80 40 60 80
    7 0 3.04 9.28 17.21 20.36 26.79
    10 0 3.66 13.07 16.87 20.72 30.51
    下载: 导出CSV

    表  2  不同规模下充电设施利用情况

    Table  2.   Utilization conditions of charging facilities under different scales

    充电站编号 指标 10台充电桩 15台充电桩 20台充电桩 25台充电桩 30台充电桩
    7 平均利用率/% 93 92 76 68 54
    累计服务数/pcu 136 195 234 249 251
    10 平均利用率/% 87 84 63 48 41
    累计服务数/pcu 125 176 187 187 184
    下载: 导出CSV

    表  3  不同布局方案下的指标统计结果

    Table  3.   Statistical results of indicators under different location schemes

    充电站布局 节点7、10 节点7、9 节点6、11 节点6、9 节点5、11 节点5、10
    总费用/103 275.468 276.107 275.351 276.429 276.192 276.712
    总能耗/kJ 6.893×108 6.917×108 6.902×108 6.911×108 6.907×108 6.891×108
    均衡系数 0.115 0.361 0.204 0.719 0.448 0.393
    下载: 导出CSV
  • [1] SUN Xiao-hui, YAMAMOTO T, MORIKAWA T. Fast-charging station choice behavior among battery electric vehicle users[J]. Transportation Research Part D: Transport and Environment, 2016, 46: 26-39. doi: 10.1016/j.trd.2016.03.008
    [2] DAINA N, SIVAKUMAR A, POLAK J W. Electric vehicle charging choices: modelling and implications for smart charging services[J]. Transportation Research Part C: Emerging Technologies, 2017, 81: 36-56. doi: 10.1016/j.trc.2017.05.006
    [3] HU Liang, DONG Jing, LIN Zhen-hong. Modeling charging behavior of battery electric vehicle drivers: a cumulative prospect theory based approach[J]. Transportation Research Part C: Emerging Technologies, 2019, 102: 474-489. doi: 10.1016/j.trc.2019.03.027
    [4] JIANG Nan, XIE Chi, WALLER S T. Path-constrained traffic assignment: model and algorithm[J]. Transportation Research Record, 2012, 2283(1): 25-33. doi: 10.3141/2283-03
    [5] GARDNER L M, DUELL M, WALLER S T. A framework for evaluating the role of electric vehicles in transportation network infrastructure under travel demand variability[J]. Transportation Research Part A: Policy and Practice, 2013, 49: 76-90. doi: 10.1016/j.tra.2013.01.031
    [6] ZHANG Ti, XIE Chi, WALLER S T. Network flows of plug-in electric vehicles: impacts of electricity-charging price[C]∥TRB. Proceedings of the 92nd TRB Annual Meeting. Washington DC: TRB, 2012: 1-24.
    [7] JINAG Nan, XIE Chi, DUTHIE J C, et al. A network equilibrium analysis on destination, route and parking choices with mixed gasoline and electric vehicular flows[J]. EURO Journal on Transportation and Logistics, 2014, 3(1): 55-92. doi: 10.1007/s13676-013-0021-5
    [8] 杨扬, 姚恩建, 王梅英, 等. 电动汽车混入条件下的随机用户均衡分配模型[J]. 中国公路学报, 2015, 28(9): 91-97. doi: 10.3969/j.issn.1001-7372.2015.09.012

    YANG Yang, YAO En-jian, WANG Mei-ying, et al. Stochastic user equilibrium assignment model for electric vehicle under hybrid traffic condition[J]. China Journal of Highway and Transport, 2015, 28(9): 91-97. (in Chinese). doi: 10.3969/j.issn.1001-7372.2015.09.012
    [9] HE Fang, YIN Ya-feng, LAWPHOMGPANICH S. Network equilibrium models with battery electric vehicles[J]. Transportation Research Part B: Methodological, 2014, 67: 306-319. doi: 10.1016/j.trb.2014.05.010
    [10] HE Fang, YIN Ya-feng, ZHOU Jing. Deploying public charging stations for electric vehicles on urban road networks[J]. Transportation Research Part C: Emerging Technologies, 2015, 60: 227-240. doi: 10.1016/j.trc.2015.08.018
    [11] AGRAWAL S, ZHENG Hong, PEETA S, et al. Routing aspects of electric vehicle drivers and their effects on network performance[J]. Transportation Research Part D: Transport and Environment, 2016, 46: 246-266. doi: 10.1016/j.trd.2016.04.002
    [12] CHURCH R, REVELLE C. The maximal covering location problem[J]. Papers of the Regional Science Association, 1974, 32(1): 101-118. doi: 10.1007/BF01942293
    [13] ZHU Zhi-hong, GAO Zi-you, ZHENG Jian-feng, et al. Charging station location problem of plug-in electric vehicles[J]. Journal of Transport Geography, 2016, 52: 11-22. doi: 10.1016/j.jtrangeo.2016.02.002
    [14] ZHU Zhi-hong, GAO Zi-you, ZHENG Jian-feng, et al. Charging station planning for plug-in electric vehicles[J]. Journal of Systems Science and Systems Engineering, 2017, 4: 1-22.
    [15] 徐青山, 蔡婷婷, 刘瑜俊, 等. 考虑驾驶人行为习惯及出行链的电动汽车充电设施站址规划[J]. 电力系统自动化, 2016, 40(4): 59-65, 77. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXT201604008.htm

    XU Qing-shan, CAI Ting-ting, LIU Yu-jun, et al. Location planning of charging stations for electric vehicles based on drivers' behaviours and travel chain[J]. Automation of Electric Power Systems, 2016, 40(4): 59-65, 77. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DLXT201604008.htm
    [16] HE Jia, YANG Hai, TANG Tie-qiao, et al. An optimal charging station location model with the consideration of electric vehicle's driving range[J]. Transportation Research Part C: Emerging Technologies, 2018, 86: 641-654. doi: 10.1016/j.trc.2017.11.026
    [17] 左志, 王涛, 潘晓锋, 等. 基于通勤行为的电动汽车充电站选址模型[J]. 武汉理工大学学报(交通科学与工程版), 2016, 40(2): 233-237. doi: 10.3963/j.issn.2095-3844.2016.02.007

    ZUO Zhi, WANG Tao, PAN Xiao-feng, et al. Location model for electric vehicle charging stations based on commuting behavior[J]. Journal of Wuhan University of Technology (Transportation Science and Engineering), 2016, 40(2): 233-237. (in Chinese). doi: 10.3963/j.issn.2095-3844.2016.02.007
    [18] ZHENG Hong, HE Xiao-zheng, LI Yong-fu, et al. Traffic equilibrium and charging facility locations for electric vehicles[J]. Networks and Spatial Economics, 2017, 17(2): 435-457. doi: 10.1007/s11067-016-9332-z
    [19] HOSSEINI M, MIRHASSANI S A. Refueling-station location problem under uncertainty[J]. Transportation Research Part E: Logistics and Transportation Review, 2015, 84: 101-116. doi: 10.1016/j.tre.2015.10.009
    [20] YANG W. A user-choice model for locating congested fast charging stations[J]. Transportation Research Part E: Logistics and Transportation Review, 2018, 110: 189-213. doi: 10.1016/j.tre.2017.11.009
    [21] 勾长虹, 杜津玲. 铅酸蓄电池充电接受能力及充电方式选择[J]. 电源技术, 1996, 20(6): 243-247. https://www.cnki.com.cn/Article/CJFDTOTAL-DYJS199606003.htm

    GOU Chang-hong, DU Jin-ling. Charge acceptance and charge modes selecting for lead-acid batteries[J]. Chinese Journal of Power Sources, 1996, 20(6): 243-247. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DYJS199606003.htm
    [22] 杨扬. 电动汽车充电及路径选择行为建模及其应用研究[D]. 北京: 北京交通大学, 2015.

    YANG Yang. Research on BEV drivers' charging and route choice behavior analysis and application[D]. Beijing: Beijing Jiaotong University, 2015. (in Chinese).
    [23] HUANG Hai-jun, LAM W H K. Modeling and solving the dynamic user equilibrium route and departure time choice problem in network with queues[J]. Transportation Research Part B: Methodological, 2002, 36(3): 253-273. doi: 10.1016/S0191-2615(00)00049-7
    [24] YAO En-jian, SONG Yuan-yuan. Study on eco-route planning algorithm and environmental impact assessment[J]. Journal of Intelligent Transportation Systems: Technology, Planning, and Operations, 2013, 17(1): 42-53. doi: 10.1080/15472450.2013.747822
    [25] 宗芳, 隽志才, 张慧永, 等. 出行时间价值计算及应用研究[J]. 交通运输系统工程与信息, 2009, 9(3): 114-119. doi: 10.3969/j.issn.1009-6744.2009.03.018

    ZONG Fang, JUAN Zhi-cai, ZHANG Hui-yong, et al. Calculation and application of value of travel time[J]. Journal of Transportation Systems Engineering and Information Technology, 2009, 9(3): 114-119. (in Chinese). doi: 10.3969/j.issn.1009-6744.2009.03.018
    [26] SMITH M J. The existence, uniqueness and stability of traffic equilibrim[J]. Transportation Research Part B: Methodological, 1979, 13(4): 295-304. doi: 10.1016/0191-2615(79)90022-5
    [27] SMITH M J. A new dynamic traffic model and the existence and calculation of dynamic user equilibrium on congested capacity-constrained road network[J]. Transportation Research Part B: Methodological, 1993, 27(1): 49-63. doi: 10.1016/0191-2615(93)90011-X
    [28] LIU H X, HE Xiao-zheng, HE Bing-sheng. Method of successive weighted averages (MSWA) and self-regulated averaging schemes for solving stochastic user equilibrium problem[J]. Networks and Spatial Economics, 2009, 9(4): 485-503. doi: 10.1007/s11067-007-9023-x
    [29] NGUYEN S, DUPUIS C. An efficient method for computing traffic equilibria in networks with asymmetric transportation costs[J]. Transportation Science, 1984, 18(2): 185-202. doi: 10.1287/trsc.18.2.185
    [30] RIEMANN R, WANG D Z W, BUSCH F. Optimal location of wireless charging facilities for electric vehicles: flow-capturing location model with stochastic user equilibrium[J]. Transportation Research Part C: Emerging Technologies, 2015, 58: 1-12. doi: 10.1016/j.trc.2015.06.022
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  1324
  • HTML全文浏览量:  279
  • PDF下载量:  677
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-22
  • 刊出日期:  2019-10-25

目录

    /

    返回文章
    返回