留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带混凝土翼板的圆管上翼缘钢-混凝土组合梁抗弯性能

段兰 王春生 朱经纬 翟晓亮

段兰, 王春生, 朱经纬, 翟晓亮. 带混凝土翼板的圆管上翼缘钢-混凝土组合梁抗弯性能[J]. 交通运输工程学报, 2019, 19(1): 48-59. doi: 10.19818/j.cnki.1671-1637.2019.01.006
引用本文: 段兰, 王春生, 朱经纬, 翟晓亮. 带混凝土翼板的圆管上翼缘钢-混凝土组合梁抗弯性能[J]. 交通运输工程学报, 2019, 19(1): 48-59. doi: 10.19818/j.cnki.1671-1637.2019.01.006
DUAN Lan, WANG Chun-sheng, ZHU Jing-wei, ZHAI Xiao-liang. Bending performance of circle tubular up-flange steel and concrete composite girder with concrete flange[J]. Journal of Traffic and Transportation Engineering, 2019, 19(1): 48-59. doi: 10.19818/j.cnki.1671-1637.2019.01.006
Citation: DUAN Lan, WANG Chun-sheng, ZHU Jing-wei, ZHAI Xiao-liang. Bending performance of circle tubular up-flange steel and concrete composite girder with concrete flange[J]. Journal of Traffic and Transportation Engineering, 2019, 19(1): 48-59. doi: 10.19818/j.cnki.1671-1637.2019.01.006

带混凝土翼板的圆管上翼缘钢-混凝土组合梁抗弯性能

doi: 10.19818/j.cnki.1671-1637.2019.01.006
基金项目: 

国家自然科学基金项目 51378070

交通运输部应用基础研究项目 2014319812080

中央高校基本科研业务费专项资金项目 310821153501

国家高层次人才特殊支持计划项目 211321180103

详细信息
    作者简介:

    段兰(1985-), 女, 陕西乾县人, 长安大学讲师, 工学博士, 从事钢与组合结构桥梁研究

    通讯作者:

    王春生(1972-), 男, 黑龙江绥化人, 长安大学教授, 工学博士

  • 中图分类号: U441.4

Bending performance of circle tubular up-flange steel and concrete composite girder with concrete flange

More Information
  • 摘要: 考虑不同加载方式与下翼缘宽度, 对3根带混凝土翼板的圆管翼缘钢-混凝土组合梁进行抗弯性能试验, 分析了试验梁的抗弯承载性能与破坏形态; 基于试验梁的抗弯特征, 推导了组合梁屈服弯矩和极限弯矩简化计算公式。研究结果表明: 试验梁均发生典型的塑性弯曲破坏, 稳定性良好; 达到极限承载力时, 梁端处上翼缘钢管与混凝土翼板相对滑移均小于0.43 mm, 试验梁体现了良好的协同工作性能; 随下翼缘宽度的增加, 试验梁刚度与承载力增大, 对于下翼缘宽度分别为150、260、300 mm的试验梁, 其屈服弯矩的比值为1∶1.44∶1.55, 极限承载力的比值为1∶1.31∶1.40;随着试验梁承受弯矩的增大, 当中性轴上升至混凝土翼板时, 钢管混凝土处于受拉状态, 可不考虑钢管与内填混凝土的套箍效应, 而当塑性中性轴位于上翼缘钢管混凝土内时, 可不计入该套箍作用对极限抗弯承载力的影响, 但其可促进延性的继续发展; 试验梁的位移延性系数均大于3.35, 延性较好; 屈服弯矩、极限弯矩理论计算值与试验值的比值分别为1.02~1.04、0.96~1.03, 吻合良好, 因此, 所出提出的简化理论计算公式简单、可靠。

     

  • 图  1  试验梁

    Figure  1.  Test girder

    图  2  试验梁B1横断面(单位: mm)

    Figure  2.  Cross section of test girder B1 (unit: mm)

    图  3  试验梁加载

    Figure  3.  Loading of test girders

    图  4  测点布置

    Figure  4.  Arrangement of measuring points

    图  5  试验梁破坏形态

    Figure  5.  Failure modes of test girders

    图  6  跨中截面的弯矩-挠度曲线

    Figure  6.  Moment-deflection curves at mid-span sections

    图  7  M/Mu-相对滑移曲线

    Figure  7.  M/Mu-relative slip curves

    图  8  试验梁跨中截面弯矩-应变曲线

    Figure  8.  Moment-strain curves at mid-span sections of test girders

    图  9  试验梁B1跨中截面环向应变与纵向应变比曲线

    Figure  9.  Ratio curve of hoop strain to longitudinal strain at mid-span section of test girder B1

    图  10  双点加载试验梁跨中截面应变分布

    Figure  10.  Strain distributions of mid-span sections for test girders adopting two-point loading

    图  11  单点加载试验梁跨中截面应变分布

    Figure  11.  Strain distributions of mid-span sections for test girders adopting one-point loading

    图  12  屈服弯矩计算图示

    Figure  12.  Calculation diagrams of yielding moment

    图  13  第1类截面极限弯矩计算图示

    Figure  13.  Calculation diagrams of first kind of section for ultimate moment

    图  14  第2类截面极限弯矩计算图示

    Figure  14.  Calculation diagrams of second kind of section for ultimate moment

    表  1  试验梁参数

    Table  1.   Parameters of test girders

    试验梁 下翼缘宽度/mm 中性轴高度/mm 剪跨长度/mm 加载方案
    B1 150 342 1 500 双点
    B2 260 318 2 000 单点
    B3 300 310 2 000 双点/单点
    下载: 导出CSV

    表  2  屈服弯矩理论计算值与测试值对比

    Table  2.   Comparison of theoretical calculated values and measured values for yielding moment

    试验梁 Myc/ (kN·m) My/ (kN·m) Myc/My
    B1 409.9 397.5 1.03
    B2 595.8 570.5 1.04
    B3 662.4 649.4 1.02
    下载: 导出CSV

    表  3  极限弯矩理论计算值与测试值对比

    Table  3.   Comparison of theoretical calculated values and measured values for ultimate moment

    试验梁 Muc/ (kN·m) Mu/ (kN·m) Muc/Mu
    B1 568.0 594.2 0.96
    B2 784.5 780.1 0.99
    B3 857.1 830.3 1.03
    下载: 导出CSV
  • [1] 聂建国, 余志武. 钢-混凝土组合梁在我国的研究及应用[J]. 土木工程学报, 1999, 32 (2): 3-8. doi: 10.3321/j.issn:1000-131X.1999.02.001

    NIE Jian-guo, YU Zhi-wu. Research and practice of composite steel-concrete beams in China[J]. China Civil Engineering Journal, 1999, 32 (2): 3-8. (in Chinese). doi: 10.3321/j.issn:1000-131X.1999.02.001
    [2] MERTZ D R. Trends in design and construction of steel highway bridges in the United States[J]. Progress in Structural Engineering and Materials, 2001, 3: 5-12. doi: 10.1002/pse.56
    [3] 潘际炎. 中国钢桥[J]. 中国工程科学, 2007, 9 (7): 18-26. doi: 10.3969/j.issn.1009-1742.2007.07.003

    PAN Ji-yan. Steel bridges in China[J]. Engineering Science, 2007, 9 (7): 18-26. (in Chinese). doi: 10.3969/j.issn.1009-1742.2007.07.003
    [4] 冯正霖. 我国桥梁技术发展战略的思考[J]. 中国公路, 2015 (11): 38-41. doi: 10.3969/j.issn.1006-3897.2015.11.003

    FENG Zheng-lin. Thinking on the development strategy of bridge technology in China[J]. China Highway, 2015 (11): 38-41. (in Chinese). doi: 10.3969/j.issn.1006-3897.2015.11.003
    [5] 方秦汉, 高宗余, 李加武. 中国铁路钢桥的发展历程及展望[J]. 建筑科学与工程学报, 2008, 25 (4): 1-5. doi: 10.3321/j.issn:1673-2049.2008.04.001

    FANG Qin-han, GAO Zong-yu, LI Jia-wu. Development course and prospect of steel railway bridges in China[J]. Journal of Architecture and Civil Engineering, 2008, 25 (4): 1-5. (in Chinese). doi: 10.3321/j.issn:1673-2049.2008.04.001
    [6] 王春生, 段兰, 王继明, 等. 基于混合设计的高性能钢梁抗弯性能及延性试验[J]. 中国公路学报, 2012, 25 (2): 81-89. doi: 10.3969/j.issn.1001-7372.2012.02.014

    WANG Chun-sheng, DUAN Lan, WANG Ji-ming, et al. Bending behavior and ductility test of high performance steel beam based on hybrid design[J]. China Journal of Highway and Transport, 2012, 25 (2): 81-89. (in Chinese). doi: 10.3969/j.issn.1001-7372.2012.02.014
    [7] 段兰, 王春生, 王世超, 等. 高强度工字钢梁腹板抗剪性能试验[J]. 中国公路学报, 2017, 30 (3): 65-71. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201703007.htm

    DUAN Lan, WANG Chun-sheng, WANG Shi-chao, et al. Web shear behavior test for high strength I steel girders[J]. China Journal of Highway and Transport, 2017, 30 (3): 65-71. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201703007.htm
    [8] KAYSER C R, SWANSON J A, LINZELL D G. Characterization of material properties of HPS485W (70W) TMCP for bridge girder applications[J]. Journal of Bridge Engineering, 2006, 11 (1): 99-108. doi: 10.1061/(ASCE)1084-0702(2006)11:1(99)
    [9] AZIZINAMINI A, BARTH K, DEXTER R, et al. High performance steel: research front—historical account of research activities[J]. Journal of Bridge Engineering, 2004, 9 (3): 212-217.
    [10] SMITH A. Design of HPS bridge girders with tubular flange[D]. Bethlehem: Lehigh University, 2001.
    [11] SAUSE R, KIM B G, WIMER M R. Experimental study of tubular flange girder[J]. Journal of Structural Engineering, 2008, 124 (3): 384-392.
    [12] 王春生, 常全禄, 翟晓亮, 等. 管翼缘组合梁桥设计与结构分析[J]. 钢结构, 2015, 30 (6): 17-21.

    WANG Chun-sheng, CHANG Quan-lu, ZHAI Xiao-liang, et al. Design and structure analysis of tubular flange composite girder bridge[J]. Steel Construction, 2015, 30 (6): 17-21. (in Chinese).
    [13] ABBAS H H, SAUSE R, DRIVER R G. Analysis of flange transverse bending of corrugated web I-girders under in-plane loads[J]. Journal of Structural Engineering, 2007, 133 (3): 347-355.
    [14] SAUSE R. Innovative steel bridge girders with tubular flanges[J]. Structure and Infrastructure Engineering, 2015, 11 (4): 450-465.
    [15] FAN Zhuo, SAUSE R. Behavior of horizontally curved steel tubular flange bridge girders[R]. Bethlehem: Lehigh University, 2007.
    [16] SAUSE R, ABBAS H, KIM B G, et al. Innovative high performance steel girders for highway bridges[C]∥ASCE. Proceedings of the International Conference on High Performance Materials in Bridges. Reston: ASCE, 2003: 309-318.
    [17] KIM B G, SAUSE R. High performance steel girders with tubular flange[R]. Bethlehem: Lehigh University, 2005.
    [18] KIM B G, SAUSE R. Lateral torsional buckling strength of tubular flange girders[J]. Journal of Structural Engineering, 2008, 134 (6): 902-910.
    [19] 王春生, 朱经纬, 翟晓亮, 等. 双管翼缘钢-混凝土新型组合梁抗弯性能试验[J]. 中国公路学报, 2017, 30 (3): 147-158. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201703016.htm

    WANG Chun-sheng, ZHU Jing-wei, ZHAI Xiao-liang, et al. Flexural behavior experimental of steel and concrete composite girder with double tubular flanges[J]. China Journal of Highway and Transport, 2017, 30 (3): 147-158. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201703016.htm
    [20] 朱经纬, 王春生, 翟晓亮, 等. 圆管翼缘钢-混凝土新型组合梁极限抗弯承载力与延性[J]. 交通运输工程学报, 2018, 18 (1): 29-41. http://transport.chd.edu.cn/article/id/201801003

    ZHU Jing-wei, WANG Chun-sheng, ZHAI Xiao-liang, et al. Ultimate flexural strength and ductility of steel and concrete composite girder with circle tubular flange[J]. Journal of Traffic and Transportation Engineering, 2018, 18 (1): 29-41. (in Chinese). http://transport.chd.edu.cn/article/id/201801003
    [21] 翟晓亮. 带钢管混凝土上翼缘的钢-高性能混凝土组合梁抗剪性能试验研究[D]. 西安: 长安大学, 2009.

    ZHAI Xiao-liang. Experimental investigation of shearing behavior for steel and high performance concrete composite girders with concrete filled tubular up-flanges[D]. Xi'an: Chang'an University, 2009. (in Chinese).
    [22] 朱经纬. 新型管翼缘组合梁抗弯性能试验研究[D]. 西安: 长安大学, 2012.

    ZHU Jing-wei. Experimental investigation of bending behavior for the new style tubular flange composite girder[D]. Xi'an: Chang'an University, 2012. (in Chinese).
    [23] WIMER M R, SAUSE R. Rectangular tubular flange girders with corrugated and flat webs[R]. Bethlehem: Lehigh University, 2004.
    [24] HASSANEIN M F, KHAROOB O F, HADIDY A M. Lateral-torsional buckling of hollow tubular flange plate girders with slender stiffened webs[J]. Thin-Walled Structures, 2013, 65: 49-61.
    [25] HASSANEIN M F, KHAROOB O F. Shear capacity of stiffened plate girders with compression tubular flanges and slender webs[J]. Thin-Walled Structures, 2013, 70: 81-92.
    [26] DONG Jun. Analytically study of horizontally curved hollow tubular flange girders[D]. Bethlehem: Lehigh University, 2008.
    [27] MANS P, YAKEL A J, AZIZINAMINI A. Full-scale testing of composite plate girders constructed using 485-MPa high-performance steel[J]. Journal of Bridge Engineering, 2001, 6 (6): 598-604.
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  1416
  • HTML全文浏览量:  225
  • PDF下载量:  1214
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-26
  • 刊出日期:  2019-02-25

目录

    /

    返回文章
    返回