留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钢-混凝土组合试件长期推出试验与有限元分析

宋瑞年 占玉林 刘芳 赵人达

宋瑞年, 占玉林, 刘芳, 赵人达. 钢-混凝土组合试件长期推出试验与有限元分析[J]. 交通运输工程学报, 2019, 19(3): 36-45. doi: 10.19818/j.cnki.1671-1637.2019.03.005
引用本文: 宋瑞年, 占玉林, 刘芳, 赵人达. 钢-混凝土组合试件长期推出试验与有限元分析[J]. 交通运输工程学报, 2019, 19(3): 36-45. doi: 10.19818/j.cnki.1671-1637.2019.03.005
SONG Rui-nian, ZHAN Yu-lin, LIU Fang, ZHAO Ren-da. Long-term push out test and finite element analysis of steel-concrete composite specimens[J]. Journal of Traffic and Transportation Engineering, 2019, 19(3): 36-45. doi: 10.19818/j.cnki.1671-1637.2019.03.005
Citation: SONG Rui-nian, ZHAN Yu-lin, LIU Fang, ZHAO Ren-da. Long-term push out test and finite element analysis of steel-concrete composite specimens[J]. Journal of Traffic and Transportation Engineering, 2019, 19(3): 36-45. doi: 10.19818/j.cnki.1671-1637.2019.03.005

钢-混凝土组合试件长期推出试验与有限元分析

doi: 10.19818/j.cnki.1671-1637.2019.03.005
基金项目: 

国家重点研发计划项目 2016YFB1200401

国家自然科学基金项目 51878564

四川省重点研发项目 2017GZ0369

四川省科技计划项目 2018GZ0052

详细信息
    作者简介:

    宋瑞年(1988-), 男, 山东胶州人, 西南交通大学工学博士研究生, 从事钢-混凝土组合结构抗剪连接件性能研究

    赵人达(1961-), 男, 贵州毕节人, 西南交通大学教授, 工学博士

    通讯作者:

    占玉林(1978-), 男, 湖北黄冈人, 西南交通大学教授, 工学博士

  • 中图分类号: U448.38

Long-term push out test and finite element analysis of steel-concrete composite specimens

More Information
  • 摘要: 采用推出试验和有限元方法研究了采用不同剪力连接件的钢-混凝土组合试件的界面长期滑移和应变发展过程; 参考Eurocode 4中推出试验标准试件, 设计了2组试件用于长期推出试验; 分别采用栓钉和PBL作为剪力连接件, 采用螺杆施加长期荷载, 测试了长期加载过程中的界面滑移、混凝土应变和钢梁应变; 同步加载测试了150 mm×150 mm×300 mm的混凝土试块的长期变形, 并以此变形计算混凝土徐变系数; 对比了徐变模型对计算结果的影响, 并讨论了不同混凝土徐变模拟方法。研究结果表明: 界面滑移和混凝土应变在加载初期增长较快, 加载120 d后达到稳定状态; 栓钉试件和PBL试件的最大界面滑移分别为0.162和0.068 mm, 最大值均位于界面底部; 栓钉试件和PBL试件的混凝土最大应变分别为7.30×10-5和1.34×10-4, 最大值均位于混凝土板底部; 钢梁应变在整个试验过程中基本保持稳定, 未出现明显的应力重分布, 栓钉试件和PBL试件的钢梁最大应变分别为3.7×10-5和6.5×10-5, 最大值均位于钢梁顶部; 混凝土徐变是影响钢-混凝土组合试件长期性能的主要因素, 不同混凝土徐变模型计算所得混凝土徐变系数与测试值的偏差为60%~140%, 说明混凝土徐变模型对有限元结果影响显著; 采用指数函数拟合混凝土徐变系数测试结果的拟合误差为2.4%, CEB-FIP90模型计算所得混凝土徐变系数在加载后期与测试值的误差为3.71%, 建议无法实测时可采用CEB-FIP90模型计算混凝土徐变系数。

     

  • 图  1  SS1~SS3试件构造(单位: mm)

    Figure  1.  Structures of specimens SS1-SS3 (unit: mm)

    图  2  SP1~SP3试件构造(单位: mm)

    Figure  2.  Structures of specimens SP1-SP3 (unit: mm)

    图  3  界面滑移和应变测点布置

    Figure  3.  Arrangements of interface slip and strain test points

    图  4  长期加载装置和推出试件

    Figure  4.  Long-term loading equipment and push out specimen

    图  5  长期荷载变化

    Figure  5.  Changes of long-term loads

    图  6  混凝土徐变参数测试装置

    Figure  6.  Testing equipment of concrete creep parameter

    图  7  混凝土徐变应变和徐变系数测试结果

    Figure  7.  Test results of concrete creep strain and creep coefficient

    图  8  环境温度和湿度测试结果

    Figure  8.  Test results of environmental temperature and humidity

    图  9  界面长期滑移测试结果

    Figure  9.  Test results of long-term interface slip

    图  10  混凝土徐变应变测试结果

    Figure  10.  Test results of concrete creep strain

    图  11  钢梁长期应变测试结果

    Figure  11.  Test results of long-term steel girder strain

    图  12  混凝土试块有限元模型

    Figure  12.  Finite element model of concrete specimen

    图  13  混凝土有效模量取值和混凝土徐变系数计算结果

    Figure  13.  Values of concrete effective modulus and calculating results of concrete creep coefficient

    图  14  混凝土徐变应变与徐变系数拟合结果

    Figure  14.  Fitting results of concrete creep strain and creep coefficient

    图  15  不同徐变模型计算的混凝土徐变系数

    Figure  15.  Concrete creep coefficients calculated by different creep models

    图  16  长期推出试验有限元模型

    Figure  16.  Finite element model of long-term push out test

    图  17  顶部测点在不同徐变模型中的界面长期滑移

    Figure  17.  Long-term interface slips of upper measuring point with different creep models

    图  18  底部测点在不同徐变模型中的界面长期滑移

    Figure  18.  Long-term interface slips of bottom measuring point with different creep models

    图  19  中部测点混凝土应变发展

    Figure  19.  Developments of concrete strain of middle measuring point

    图  20  中部测点钢梁应变发展

    Figure  20.  Developments of steel girder strain of middle measuring point

    图  21  栓钉附近混凝土应变发展

    Figure  21.  Developments of concrete strain around stud

    表  1  钢材力学性能

    Table  1.   Mechanical properties of steels

    试件 屈服强度/MPa 极限强度/MPa 弹性模量/GPa 泊松比
    型钢翼缘 370.4 513.3 202.3 0.28
    型钢腹板 331.3 468.4 204.2 0.28
    开孔钢板 364.2 507.3 203.1 0.27
    栓钉 263.1 499.8 203.2 0.27
    钢筋 433.5 565.7 193.2 0.27
    下载: 导出CSV

    表  2  拟合系数取值

    Table  2.   Values of fitting coefficients

    拟合系数 i=1 i=2 i=3
    αi 0.60 0.30 0.10
    βi -0.01 -0.05 -0.02
    下载: 导出CSV

    表  3  界面滑移曲线皮尔逊相关系数

    Table  3.   Pearson correlation coefficients of interface slip curves

    部位 计算模型
    TDFM模型 EMM模型 CEB-FIP90模型
    顶部 0.987 0.971 0.978
    底部 0.969 0.957 0.934
    均值 0.978 0.964 0.956
    下载: 导出CSV
  • [1] 徐腾飞, 向天宇, 赵人达. 钢筋混凝土偏心受压柱长期变形随机分析[J]. 西南交通大学学报, 2014, 49 (4): 626-630. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201404010.htm

    XU Teng-fei, XIANG Tian-yu, ZHAO Ren-da. Long-term random deflection of eccentrically loaded RC column[J]. Journal of Southwest Jiaotong University, 2014, 49 (4): 626-630. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201404010.htm
    [2] RANZI G, LEONI G, ZANDONINI R. State of the art on the time-dependent behaviour of composite steel-concrete structures[J]. Journal of Constructional Steel Research, 2013, 80: 252-263. doi: 10.1016/j.jcsr.2012.08.005
    [3] XUE Wei-chen, DING Min, HE Chi, et al. Long-term behavior of prestressed composite beams at service loads for one year[J]. Journal of Structural Engineering, 2008, 134 (6): 930-937. doi: 10.1061/(ASCE)0733-9445(2008)134:6(930)
    [4] FAN Jian-sheng, NIE Jian-guo, LI Quan-wang, et al. Long-term behavior of composite beams under positive and negative bending. Ⅰ: experimental study[J]. Journal of Structural Engineering, 2010, 136 (7): 849-857. doi: 10.1061/(ASCE)ST.1943-541X.0000175
    [5] 吕朝锋, 杨庆卫, 陈伟球. 收缩徐变对钢-混凝土组合梁弯曲变形的影响分析[J]. 建筑结构学报, 2010, 31 (7): 32-39. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201007007.htm

    LYU Chao-feng, YANG Qing-wei, CHEN Wei-qiu. Effects of shrinkage and creep strains on bending behavior of steel-concrete composite beams[J]. Journal of Building Structures, 2010, 31 (7): 32-39. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201007007.htm
    [6] TEHAMI M, RAMDANE K. Creep behaviour modelling of a composite steel-concrete section[J]. Journal of Constructional Steel Research, 2009, 65 (5): 1029-1033. doi: 10.1016/j.jcsr.2009.01.001
    [7] 占玉林, 向天宇, 赵人达. 几何非线性结构的徐变效应分析[J]. 工程力学, 2006, 23 (7): 45-48. doi: 10.3969/j.issn.1000-4750.2006.07.009

    ZHAN Yu-lin, XIANG Tian-yu, ZHAO Ren-da. Creep effect analysis of geometric nonlinear structures[J]. Engineering Mechanics, 2006, 23 (7): 45-48. (in Chinese). doi: 10.3969/j.issn.1000-4750.2006.07.009
    [8] BRADFORD M A, GILBERT R I. Time-dependent behaviour of simply-supported steel-concrete composite beams[J]. Magazine of Concrete Research, 1991, 43 (157): 265-274. doi: 10.1680/macr.1991.43.157.265
    [9] BRADFORD M A, GILBERT R I. Composite beams with partial interaction under sustained loads[J]. Journal of Structural Engineering, 1992, 118 (7): 1871-1883. doi: 10.1061/(ASCE)0733-9445(1992)118:7(1871)
    [10] GILBERT R I, BRADFORD M A. Time-dependent behavior of continuous composite beams at service loads[J]. Journal of Structural Engineering, 1995, 121 (2): 319-327. doi: 10.1061/(ASCE)0733-9445(1995)121:2(319)
    [11] AL-DEEN S, RANZI G, VRCELJ Z. Full-scale long-term and ultimate experiments of simply-supported composite beams with steel deck[J]. Journal of Constructional Steel Research, 2011, 67 (10): 1658-1676. doi: 10.1016/j.jcsr.2011.04.010
    [12] AL-DEEN S, RANZI G, VRCELJ Z. Full-scale long-term experiments of simply supported composite beams with solid slabs[J]. Journal of Constructional Steel Research, 2011, 67 (3): 308-321. doi: 10.1016/j.jcsr.2010.11.001
    [13] AL-DEEN S, RANZI G, VRCELJ Z. Long-term experiments of composite steel-concrete beams[J]. Procedia Engineering, 2011, 14: 2807-2814. doi: 10.1016/j.proeng.2011.07.353
    [14] 樊健生, 聂建国, 王浩. 考虑收缩、徐变及开裂影响的组合梁长期受力性能研究(Ⅰ)——试验及计算[J]. 土木工程学报, 2009, 42 (3): 8-15. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200903006.htm

    FAN Jian-sheng, NIE Jian-guo, WANG Hao. Long-term behavior of composite beams with shrinkage, creep and cracking (Ⅰ): experiment and calculation[J]. China Civil Engineering Journal, 2009, 42 (3): 8-15. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200903006.htm
    [15] 薛伟辰, 李杰, 何池. 预应力组合梁长期性能试验研究与时随分析[J]. 中国公路学报, 2003, 16 (4): 40-43. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200304009.htm

    XUE Wei-chen, LI Jie, HE Chi. Experimental study and time-dependent analysis of prestressed steel-concrete composite beam[J]. China Journal of Highway and Transport, 2003, 16 (4): 40-43. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200304009.htm
    [16] 薛伟辰, 孙天荣, 刘婷. 2年持续荷载下城市轻轨预应力钢-混凝土组合梁试验研究[J]. 土木工程学报, 2013, 46 (3): 110-118. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201303015.htm

    XUE Wei-chen, SUN Tian-rong, LIU Ting. Experimental study on prestressed steel-concrete composite beams for urban light rails under sustained loads of two years[J]. China Civil Engineering Journal, 2013, 46 (3): 110-118. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201303015.htm
    [17] 樊健生, 聂鑫, 李全旺. 考虑收缩、徐变及开裂影响的组合梁长期受力性能研究(Ⅱ) —理论分析[J]. 土木工程学报, 2009, 42 (3): 16-22. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200903007.htm

    FAN Jian-sheng, NIE Xin, LI Quan-wang. Long-term behavior of composite beams with shrinkage, creep and cracking (Ⅱ): theoretical analysis[J]. China Civil Engineering Journal, 2009, 42 (3): 16-22. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200903007.htm
    [18] 孙海林, 叶列平, 陆新征. 钢-混凝土组合梁收缩和徐变的影响分析和计算[J]. 建筑结构, 2006, 36 (增1): 899-902. https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG2006S1224.htm

    SUN Hai-lin, YE Lie-ping, LU Xin-zheng. Long term deformation analysis of shrinkage and creep of steel-concrete composite beams[J]. Building Structure, 2006, 36 (S1): 899-902. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG2006S1224.htm
    [19] JURKIEWIEZ B, BUZON S, SIEFFERT J G. Incremental viscoelastic analysis of composite beams with partial interaction[J]. Computers and Structures, 2005, 83 (21/22): 1780-1791.
    [20] RANZI G, BRADFORD M A. Analytical solutions for the time-dependent behaviour of composite beams with partial interaction[J]. International Journal of Solids and Structures, 2006, 43 (13): 3770-3793.
    [21] 王文炜, 何初生, 冯竹林, 等. 钢-混凝土组合梁混凝土收缩徐变的增量微分方法[J]. 东南大学学报(自然科学版), 2010, 40 (6): 1252-1256. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201006025.htm

    WANG Wen-wei, HE Chu-sheng, FENG Zhu-lin, et al. Incremental differential modeling of creep and shrinkage of steel-concrete composite beams[J]. Journal of Southeast University (Natural Science Edition), 2010, 40 (6): 1252-1256. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201006025.htm
    [22] NGUYEN Q H, HJIAJ M, ARIBERT J M. A space-exact beam element for time-dependent analysis of composite members with discrete shear connection[J]. Journal of Constructional Steel Research, 2010, 66 (11): 1330-1338.
    [23] GARA F, RANZI G, LEONI G. Time analysis of composite beams with partial interaction using available modelling techniques: a comparative study[J]. Journal of Constructional Steel Research, 2006, 62 (9): 917-930.
    [24] 赵刚云, 向天宇, 徐腾飞, 等. 钢-混凝土组合梁收缩徐变效应的随机分析[J]. 计算力学学报, 2014, 31 (1): 67-71. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201401012.htm

    ZHAO Gang-yun, XIANG Tian-yu, XU Teng-fei, et al. Stochastic analysis of shrinkage and creep effect of steel-concrete composite beam[J]. Chinese Journal of Computational Mechanics, 2014, 31 (1): 67-71. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201401012.htm
    [25] FRAGIACOMO M, AMADIO C, MACORINI L. Finite-element model for collapse and long-term analysis of steel-concrete composite beams[J]. Journal of Structural Engineering, 2004, 130 (3): 489-497.
    [26] 张婧, 寇立亚, 胡夏闽, 等. PBL连接件在长期荷载作用下的试验研究[J]. 工业建筑, 2018, 48 (4): 144-152. https://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ201804028.htm

    ZHANG Jing, KOU Li-ya, HU Xia-min, et al. Experimental research on perfobond shear connectors under long-term loading[J]. Industrial Construction, 2018, 48 (4): 144-152. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ201804028.htm
    [27] BAZANT Z P. Prediction of concrete creep effects using age-adjusted effective modulus method[J]. Journal of the American Concrete Institute, 1972, 69: 212-217.
    [28] MIRZA O, UY B. Finite element model for the long-term behaviour of composite steel-concrete push tests[J]. Steel and Composite Structures, 2010, 10 (1): 45-67.
    [29] 杨奇涛. 钢-混凝土组合连续梁桥收缩徐变效应分析[D]. 成都: 西南交通大学, 2014.

    YANG Qi-tao. Analysis of shrinkage and creep effect on steel-concrete composite continuous beam bridges[D]. Chengdu: Southwest Jiaotong University, 2014. (in Chinese).
    [30] 张望喜, 谭泽腾, 薛凯. 基于ABAQUS的钢筋混凝土收缩徐变分析[J]. 西安建筑科技大学学报(自然科学版), 2015, 47 (3): 347-353. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJZ201503007.htm

    ZHANG Wang-xi, TAN Ze-teng, XUE Kai. Analysis of shrinkage and creep of reinforced concrete based on ABAQUS[J]. Journal of Xi'an University of Architecture and Technology (Natural Science Edition), 2015, 47 (3): 347-353. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XAJZ201503007.htm
  • 加载中
图(21) / 表(3)
计量
  • 文章访问数:  1063
  • HTML全文浏览量:  586
  • PDF下载量:  555
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-01
  • 刊出日期:  2019-06-25

目录

    /

    返回文章
    返回