-
摘要: 为深化对钢-混凝土组合梁桥温度作用与效应的认识, 从施工阶段水化热温度作用与效应计算, 运营阶段温度作用模式与取值, 以及温度效应计算方法等方面, 综述了国内外研究现状, 探讨了后续的研究重点和方向。研究结果表明: 现浇组合梁桥施工阶段水化热温度作用是桥面板早期开裂的重要原因, 准确计算组合梁水化热温度效应的关键在于选取更为准确适用的水化热模型和考虑温度变化对混凝土硬化过程中弹性模量、抗拉强度以及剪力钉连接刚度发展的影响; 运营环境下组合梁桥主要考虑均匀温度、正负温度梯度等3种温度作用模式, 由于不同国家气候环境的差异及研究历程的不同, 各国规范关于组合梁桥温度作用模式和取值的规定尚不统一, 温度梯度作用的取值并非基于统计分析方法得到, 在取值时亦未充分利用已有历史气象数据资源; 组合梁桥温度效应的计算多基于有限元数值模拟展开, 求解组合梁温度效应的解析计算方法也逐渐准确化, 钢-混界面关系已从不考虑界面滑移发展到考虑界面滑移, 温度分布模式从简单的钢-混均匀温差发展到钢与混凝土任意温度分布, 但还应加强建立任意边界组合梁温度效应求解的理论模型; 组合梁桥温度问题研究的未来发展方向应集中在开展基于效应分类的组合梁温度作用模式研究, 从机理上加强对组合梁温度自生效应和次生效应的认识, 加强组合梁桥长期温度实测, 基于统计分析确定组合梁温度作用代表值; 同时充分利用中国各地区气象部门历史气象数据, 开展组合梁温度作用地域差异性取值研究。Abstract: To understand the temperature action and effect of composite girder bridge in depth, the research status of domestic and overseas, including the temperature action and effect of hydration heat in construction stage, the temperature action patterns and finding values methods in the operation stage, and the calculation methods of temperature effect, was summarized and analyzed. The subsequent research emphases and directions were discussed. Research result shows that the hydration heat temperature effect is an important reason for the early cracking of decks in cast-in-situ composite girder bridges. The accurate selection of applicable hydration heat model and the consideration of the effect of temperature history on the elastic modulus and tensile strength of hardening concrete and the connection stiffness of studs are the keys to accurately calculate the hydration heat temperature effect of composite girder. Three temperature action patterns, including uniform temperature, positive and negative temperature gradients, are generally taken into consideration on the composite girder bridge in the operation environment. The specifications of temperature action patterns and values of composite girder bridges are not coincident due to the differences in climate environments and research histories in different countries. Additionally, the temperature gradients are not obtained based on the statistical analysis and the existing historical meteorological data resources are not fully utilized. The temperature effect calculations of composite girder bridges are mostly based on the finite element numerical simulation. The analytical calculation methods for solving the temperature effect of composite girders are also improved, from taking no account of the interfacial slip and simple steel-concrete uniform temperature difference to considering the interfacial slip and arbitrary temperature distribution of steel and concrete. However, the theoretical model for solving the temperature effect of composite girder with arbitrary boundaries should be strengthened. The future research directions of composite girder bridge temperature problem should focus on the composite girder temperature action pattern based on effect classification, the in-depth understanding the temperature self-generated and secondary effects from the mechanism, and strengthening the long-term temperature measurement to determine the representative values of temperature actions by statistical analysis, as well as fully using the historical meteorological data of the meteorological departments in various regions of China to study the regional differences of the temperature action values.
-
表 1 组合梁的水化热温度场和温度效应部分典型研究
Table 1. Some typical reseaches on hydration heat caused temperature field and temperature effect of composite girder
作者 时间 研究对象 研究方法 主要研究内容 Subramaniam等[18] 2010年 跨径为32.4 m的简支钢板组合梁桥 实桥测试 桥面板水化热引起的组合梁钢和混凝土温度分布及温度应力实测 Gara等[19] 2013年 跨径组合为(40+50+40) m的连续钢箱组合梁桥 数值模拟 组合梁桥面板早期开裂产生的原因和防开裂控制方法 Choi等[10, 20] 2011年 跨径为8 m的简支钢板组合梁缩尺模型 模型测试与数值模拟 桥面板水化热引起的组合梁温度分布和湿度分布规律, 早龄期桥面板收缩、徐变和温度效应的变化规律 Bertagnoli等[21] 2017年 梁高为3.35 m简支钢板组合梁 理论推导 基于Newmark理论建立了水化热阶段考虑界面滑移的组合梁温度、收缩和徐变效应耦合的组合梁效应解析解 表 2 温度作用的特点
Table 2. Characteristics of temperature actions
温度作用 主要影响因素 时间性 作用范围 分布状态 对结构的影响 复杂性 日照温度 太阳辐射 短时急变 局部 不均匀 局部应力大 最复杂 骤然降温 强冷空气 短时变化 整体 较均匀 应力较大 较复杂 年温变化 缓慢变温 长期缓慢 整体 均匀 整体位移 简单 表 3 组合梁均匀温度的简化计算方法
Table 3. Simplified calculation methods of uniform temperatures of composite girder
来源 均匀温度类型 关系式 气温类型 适用气温范围 适用地区 Emerson[29-30] 极端日均匀温度 最高 Tu, max=Tu, min+12 遮阴处气温 常规气温条件, 非极值气温 英国 最低 Imbsen[31] 极端均匀温度 最高 Tu, max=-0.000 3T+0.014 6T+0.738 5Ta, max+9.796 2 常规气温 12.8 ℃~ 43.3 ℃ 美国 最低 Tu, min=-0.000 1T+0.003 8T+0.947 6Ta, min+0.395 5 -34.5 ℃~ 4.5 ℃ Moorty等[32-33] 极端均匀温度 最高 常规气温 美国的极端气温条件 美国 最低 +6.740 BS5400 极端均匀温度 最高 表格形式(数据有台阶, 无法拟合) 遮阴处气温 24 ℃~ 38 ℃ 英国 最低 表格形式(数据有台阶, 无法拟合) -24 ℃~ -5 ℃ Eurocode-1 极端均匀温度 最高 Tu, max=Ta, max+4 遮阴处气温 30 ℃~ 50 ℃ 欧洲 最低 Tu, min=Ta, min+4 -50 ℃~ 0 ℃ 澳大利亚桥梁规范 极端均匀温度 最高 Tu, max=0.000 4T-0.042 0T+ 2.087 5Ta, max+10.513 0 遮阴处气温 30 ℃~ 50 ℃ 澳大利亚 最低 Tu, min=-0.001 5T+0.018 5T+0.648 1Ta, min+0.209 9 -8 ℃~ 10 ℃ 《公路桥涵设计通用规范》(JTG D60—2015) 极端均匀温度 最高 日平均气温最值或日极端气温最值 20 ℃~ 45 ℃ 中国 最低 Tu, min=-0.120+0.826Ta, min -2 ℃~ -50 ℃ 表 4 组合梁温度效应的解析计算方法
Table 4. Analytical calculation methods on temperature effect of composite girder
文献 时间 界面滑移假定 温度分布形式 组合梁体系 核心微分方程 界面剪力分布 Eurocode 4、JTJ 025—1986 界面无滑移 钢-混整体矩形温差 静定体系 均匀分布 [58] 2012年 混凝土双折线温度梯度及钢-混矩形温差 静定体系 均匀分布 [59] 2017年 钢与混凝土任意温度分布 静定体系 均匀分布 [60] 2009年 界面有滑移, 满足线性滑移-剪力关系 钢-混整体矩形温差 简支梁 界面剪力二阶微分方程 双曲余弦分布 [61] 2001年 钢和混凝土温度均线性分布 简支梁 界面剪力四阶微分方程 组合双曲余弦分布 [62] 2004年 混凝土温度线性分布, 钢均匀温度分布 连续梁 [63] 2011年 钢-混整体矩形温差 简支梁 轴力二阶微分方程 双曲余弦分布 [64] 2013年 混凝土非线性温度分布, 钢梁均匀温度 简支梁 界面剪力二阶微分方程 双曲余弦分布 [65] 2014年 钢-混整体矩形温差 简支梁和连续梁 轴力二阶微分方程 双曲余弦分布(简支梁) [59] 2017年 钢与混凝土任意温度分布 简支梁 界面剪力二阶微分方程 双曲余弦分布 -
[1] 聂建国, 陶慕轩, 吴丽丽, 等. 钢-混凝土组合结构桥梁研究新进展[J]. 土木工程学报, 2012, 45(6): 110-122. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201206016.htmNIE Jian-guo, TAO Mu-xuan, WU Li-li, et al. Advances of research on steel-concrete composite bridges[J]. China Civil Engineering Journal, 2012, 45(6): 110-122. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201206016.htm [2] 刘永健, 高诣民, 周绪红, 等. 中小跨径钢-混凝土组合梁桥技术经济性分析[J]. 中国公路学报, 2017, 30(3): 1-13. doi: 10.3969/j.issn.1001-7372.2017.03.001LIU Yong-jian, GAO Yi-min, ZHOU Xu-hong, et al. Technical and economic analysis in steel-concrete composite girder bridges with small and medium span[J]. China Journal of Highway and Transport, 2017, 30(3): 1-13. (in Chinese). doi: 10.3969/j.issn.1001-7372.2017.03.001 [3] 聂建国, 王宇航. 钢-混凝土组合梁疲劳性能研究综述[J]. 工程力学, 2012, 29(6): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201206003.htmNIE Jian-guo, WANG Yu-hang. Research status on fatigue behavior of steel-concrete composite beams[J]. Engineering Mechanics, 2012, 29(6): 1-11. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201206003.htm [4] 刘永健, 刘江, 张宁. 桥梁结构日照温度作用研究综述[J]. 土木工程学报, 2019, 52(5): 59-78. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201905006.htmLIU Yong-jian, LIU Jiang, ZHANG Ning. Review on solar thermal actions of bridge structures[J]. China Civil Engineering Journal, 2019, 52(5): 59-78. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201905006.htm [5] WITTFOHT H. 意大利坎纳维诺桥在施工中发生破坏的原因[J]. 世界桥梁, 1986(4): 61-72. https://www.cnki.com.cn/Article/CJFDTOTAL-GWQL198604006.htmWITTFOHT H. Reasons for the destruction of the Cannavino Bridge in Italy during construction[J]. World Bridges, 1986(4): 61-72. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GWQL198604006.htm [6] HECKEL R. The Fourth Danube Bridge in Vienna—damage and repair[J]. Development of Bridge Design and Construction Process, 1971: 588-598. [7] 刘兴法. 混凝土结构的温度应力分析[M]. 北京: 人民交通出版社, 1991.LIU Xing-fa. Analysis of Temperature Stress of Concrete Structure[M]. Beijing: China Communications Press, 1991. (in Chinese). [8] 聂建国. 钢-混凝土组合结构桥梁[M]. 北京: 人民交通出版社, 2011.NIE Jian-guo. Steel-Concrete Composite Structure Bridge[M]. Beijing: China Communications Press, 2011. (in Chinese). [9] 张宁, 周鑫, 刘永健, 等. 基于点阵式测量的混凝土箱梁水化热温度场原位试验[J]. 土木工程学报, 2019, 52(3): 76-86. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201903008.htmZHANG Ning, ZHOU Xin, LIU Yong-jian, et al. In-situ test on hydration heat temperature of box girder based on array measurement[J]. China Civil Engineering Journal, 2019, 52(3): 76-86. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201903008.htm [10] CHOI S, CHA S W, OH B H, et al. Thermo-hygro-mechanical behavior of early-age concrete deck in composite bridge under environmental loadings. Part 1: temperature and relative humidity[J]. Materialsand Structures, 2011, 44(7): 1325-1346. doi: 10.1617/s11527-011-9751-8 [11] 朱伯芳. 大体积混凝土温度应力与温度控制[M]. 北京: 中国电力出版社, 2012.ZHU Bo-fang. Thermal Stresses and Temperature Control of Mass Concrete[M]. Beijing: China Electric Power Press, 2012. (in Chinese). [12] CRSITOFARI C, NOTTON G, LOUCHE A. Study of the thermal behaviour of a production unit of concrete structural components[J]. Applied Thermal Engineering, 2004, 24(7): 1087-1101. doi: 10.1016/S1359-4311(03)00161-3 [13] SCHUTTER G D. Finite element simulation of thermal cracking in massive hardening concrete elements using degree of hydration-based material laws[J]. Computers and Structures, 2002, 80(27-30): 2035-2042. doi: 10.1016/S0045-7949(02)00270-5 [14] ULM F J, COUSSY O. Modeling of thermochemomechanical couplings of concrete at early ages[J]. Journal of Engineering Mechanics, 1995, 121(7): 785-794. doi: 10.1061/(ASCE)0733-9399(1995)121:7(785) [15] BAZANT Z P. Constitutive equation for concrete creep and shrinkage based on thermodynamics of multiphase system[J]. Materials and Structures, l970, 3(13): 3-36. [16] DE SCHUTTER G, TAERWE L. Degree of hydration-based description of mechanical properties of early age concrete[J]. Materials and Structures, 1996, 29(6): 335-344. doi: 10.1007/BF02486341 [17] TOPKAYA C, YURA J A, WILLIAMSON E B. Composite shear stud strength at early concrete ages[J]. Journal of Structural Engineering, 2004, 130(6): 952-960. doi: 10.1061/(ASCE)0733-9445(2004)130:6(952) [18] SUBRAMANIAM K V, KUNIN J, CURTIS R, et al. Influence of early temperature rise on movements and stress development in concrete decks[J]. Journal of Bridge Engineering, 2010, 15(1): 108-116. doi: 10.1061/(ASCE)1084-0702(2010)15:1(108) [19] GARA F, LEONI G, DEZI L. Slab cracking control in continuous steel-concrete bridge decks[J]. Journal of Bridge Engineering, 2013, 18(12): 1319-1327. doi: 10.1061/(ASCE)BE.1943-5592.0000459 [20] CHOI S, CHA S W, OH B H, et al. Thermo-hygro-mechanical behavior of early-age concrete deck in composite bridge under environmental loadings. Part 2: strain and stress[J]. Materials and Structures, 2011, 44(7): 1347-1367. doi: 10.1617/s11527-011-9752-7 [21] BERTAGNOLI G, GINO D, MARTINELLI E. A simplified method for predicting early-age stresses in slabs of steel-concrete composite beams in partial interaction[J]. Engineering Structures, 2017, 140: 286-297. doi: 10.1016/j.engstruct.2017.02.058 [22] LEBET J P, DUCRET J M. Experimental and theoretical study of the behaviour of composite bridges during construction[J]. Journal of Constructional Steel Research, 1998, 46(1-3): 69-70. doi: 10.1016/S0143-974X(98)00093-5 [23] LEBET J P, DUCRET J M. Early concrete cracking of composite bridges during construction[C]//ASCE. Proceedings of the Conference: Composite Construction in Steel and Concrete. New York: ASCE, 2000: 13-24. [24] ANSNAES V, ELGAZZAR H. Concrete cracks in composite bridges[R]. Stockholm: Royal Institute of Technology, 2012. [25] ZUK W. Thermal behavior of composite bridges—insulated and uninsulated[J]. Highway Research Record, 1965(76): 231-253. [26] BERWANGER C. Transient thermal behavior of composite bridges[J]. Journal of Structural Engineering, 1983, 109(10): 2325-2339. doi: 10.1061/(ASCE)0733-9445(1983)109:10(2325) [27] DILGER W H, GHALI A, CHAN M, et al. Temperature stresses in composite box girder bridges[J]. Journal of Structural Engineering, 1983, 109(6): 1460-1478. doi: 10.1061/(ASCE)0733-9445(1983)109:6(1460) [28] FU H C, NG S F, CHEUNG M S. Thermal behavior of composite bridges[J]. Journal of Structural Engineering, 1989, 116(12): 3302-3323. [29] EMERSON M. Bridge temperature estimated from the shade temperature[R]. Berkshire: Department of Transportation, 1976. [30] EMERSON M. Thermal movements in concrete bridges—field measurements and methods of prediction[R]. Detroit: American Concrete Institute, 1981. [31] IMBSEN R A, VANDERSHAF D E, SCHAMBER R A, et al. Thermal effects in concrete bridge superstructures[R]. Washington DC: TRB, 1985. [32] MOORTY S, ROEDER C W. Temperature-dependent bridge movements[J]. Journal of Structural Engineering, 1992, 118(4): 1090-1105. doi: 10.1061/(ASCE)0733-9445(1992)118:4(1090) [33] MOORTY S. Thermal movements in bridges[D]. Seattle: University of Washington, 1991. [34] ROEDER C W. Thermal movement design procedure for steeland concrete bridges[R]. Washington DC: National Cooperative Highway Research Program, 1998. [35] ROEDER C W. Thermal movement design procedure for steel and concrete bridges[R]. Washington DC: TRB, 2002. [36] ROEDER C W. Proposed design method for thermal bridge movements[J]. Journal of Bridge Engineering, 2003, 8(1): 12-19. doi: 10.1061/(ASCE)1084-0702(2003)8:1(12) [37] 孙国晨, 关荣财, 姜英民, 等. 钢-混凝土叠合梁横截面日照温度分布研究[J]. 工程力学, 2006, 23(11): 122-127, 138. doi: 10.3969/j.issn.1000-4750.2006.11.020SUN Guo-chen, GUAN Rong-cai, JIANG Ying-min, et al. Sunshine-induced temperature distribution on cross section of steel-concrete composite beams[J]. Engineering Mechanics, 2006, 23(11): 122-127, 138. (in Chinese). doi: 10.3969/j.issn.1000-4750.2006.11.020 [38] CHEN Quan. Effects of thermal loads on Texas steel bridges[D]. Austin: University of Texas at Austin, 2008. [39] 刘江, 刘永健, 房建宏, 等. 高原高寒地区"上"形钢-混凝土组合梁的竖向温度梯度模式[J]. 交通运输工程学报, 2017, 17(4): 32-44. doi: 10.3969/j.issn.1671-1637.2017.04.004LIU Jiang, LIU Yong-jian, FANG Jian-hong, et al. Vertical temperature gradient patterns of上-shaped steel-concrete composite girder in arctic-alpine region[J]. Journal of Traffic and Transportation Engineering, 2017, 17(4): 32-44. (in Chinese). doi: 10.3969/j.issn.1671-1637.2017.04.004 [40] 盛兴旺, 郑纬奇, 朱志辉, 等. 小半径曲线刚构箱梁桥日照时变温度场与温度效应[J]. 交通运输工程学报, 2019, 19(4): 24-34. doi: 10.3969/j.issn.1671-1637.2019.04.003SHENG Xing-wang, ZHENG Wei-qi, ZHU Zhi-hui, et al. Solar radiation time-varying temperature field and temperature effect on small radius curved rigid frame box girder bridge[J]. Journal of Traffic and Transportation Engineering, 2019, 19(4): 24-34. (in Chinese). doi: 10.3969/j.issn.1671-1637.2019.04.003 [41] 陈彦江, 王力波, 李勇. 钢-混凝土组合梁桥温度场及温度效应研究[J]. 公路交通科技, 2014, 31(11): 85-91. doi: 10.3969/j.issn.1002-0268.2014.11.014CHEN Yan-jiang, WANG Li-bo, LI Yong. Research of temperature field and its effect of steel-concrete composite girder bridge[J]. Journal of Highway and Transportation Research and Development, 2014, 31(11): 85-91. (in Chinese). doi: 10.3969/j.issn.1002-0268.2014.11.014 [42] PRIESTLEY M J N. Design of concrete bridges for temperature gradients[J]. Journal of the American Concrete Institute, 1978, 75(5): 209-217. [43] KENNEDY J B, SOLIMAN M H. Temperature distribution in composite bridges[J]. Journal of Structure Engineering, 1987, 113(3): 475-82. doi: 10.1061/(ASCE)0733-9445(1987)113:3(475) [44] LIU Jiang, LIU Yong-jian, JIANG Lei, et al. Long-term field test of temperature gradients on the composite girder of a long-span cable-stayed bridge[J]. Advances in Structural Engineering, 2019, 22(13): 2785-2798. doi: 10.1177/1369433219851300 [45] MAES M A, DILGER W H, BALLYK P D. Extreme values of thermal loading parameters in concrete bridges[J]. Canadian Journal of Civil Engineering, 1992, 19(6): 935-946. doi: 10.1139/l92-112 [46] LI Dong-ning, MAES M A, DILGER W H. Thermal design criteria for deep prestressed concrete girders based on data from Confederation Bridge[J]. Canadian Journal of Civil Engineering, 2004, 31(5): 813-825. doi: 10.1139/l04-041 [47] 陶翀, 谢旭, 申永刚, 等. 基于概率分析的混凝土箱梁温度梯度模式[J]. 浙江大学学报(工学版), 2014, 48(8): 1353-1361. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201408002.htmTAO Chong, XIE Xu, SHEN Yong-gang, et al. Study on temperature gradient of concrete box girder based on probability analysis[J]. Journal of Zhejiang University (Engineering Science), 2014, 48(8): 1353-1361. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201408002.htm [48] 史道济. 实用极值统计方法[M]. 天津: 天津科学技术出版社, 2006.SHI Dao-ji. Practical Extremum Statistical Method[M]. Tianjin: Tianjin Science and Technology Press, 2006. (in Chinese). [49] 鲁乃唯, 刘扬, 肖新辉. 实测车流作用下大跨桥梁荷载效应极值外推法[J]. 交通运输工程学报, 2018, 18(5): 47-55. doi: 10.3969/j.issn.1671-1637.2018.05.005LU Nai-wei, LIU Yang, XIAO Xin-hui. Extrapolating method of extreme load effects on long-span bridge under actual traffic loads[J]. Journal of Traffic and Transportation Engineering, 2018, 18(5): 47-55. (in Chinese). doi: 10.3969/j.issn.1671-1637.2018.05.005 [50] 聂建国, 沈聚敏. 滑移效应对钢-混凝土组合梁弯曲强度的影响及其计算[J]. 土木工程学报, 1997, 30(1): 31-36. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC199701005.htmNIE Jian-guo, SHEN Ju-min. Influence of slip effect on bending strength of steel-concrete composite beams and its calculation[J]. China Civil Engineering Journal, 1997, 30(1): 31-36. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC199701005.htm [51] 王达, 王海柱, 刘扬. 中、美、欧标准中钢-混组合结构桥面系竖向温度梯度效应的比较[J]. 工业建筑, 2016, 46(10): 163-168, 173. https://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ201610033.htmWANG Da, WANG Hai-zhu, LIU Yang. In comparison with vertical temperature gradient effects of steel-concrete composite bridge deck in Chinese, American and EU Codes[J]. Industrial Construction, 2016, 46(10): 163-168, 173. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ201610033.htm [52] 苏靖海, 段树金. 钢-混凝土双面组合箱梁日照温度场研究[J]. 石家庄铁道大学学报(自然科学版), 2012, 25(2): 6-10, 80. doi: 10.3969/j.issn.2095-0373.2012.02.002SU Jing-hai, DUAN Shu-jin. Study on sunshine temperature field of double steel-concrete composite box girder by solar radiation[J]. Journal of Shijiazhuang Tiedao University (Natural Science), 2012, 25(2): 6-10, 80. (in Chinese). doi: 10.3969/j.issn.2095-0373.2012.02.002 [53] 苏靖海, 段树金. 钢-混凝土双面组合箱梁日照温度效应研究[J]. 石家庄铁道大学学报(自然科学版), 2013, 26(4): 11-14. doi: 10.3969/j.issn.2095-0373.2013.04.003SU Jing-hai, DUAN Shu-jin. Study of temperature effects of double steel-concrete composite box girder by solar radiation[J]. Journal of Shijiazhuang Tiedao University (Natural Science), 2013, 26(4): 11-14. (in Chinese). doi: 10.3969/j.issn.2095-0373.2013.04.003 [54] CHEN Xiao-qiang, LIU Qi-wei, ZHU Jun. Measurement and theoretical analysis of solar temperature field in steel-concrete composite girder[J]. Journal of Southeast University (English Edition), 2009, 25(4): 513-517. [55] 赵品, 叶见曙. 波形钢腹板箱梁桥面板横向温度效应分析[J]. 哈尔滨工程大学学报, 2019, 40(5): 974-978. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201905017.htmZHAO Pin, YE Jian-shu. Analysis of transverse temperature effects on the deck of box girder with corrugated steel webs[J]. Journal of Harbin Engineering University, 2019, 40(5): 974-978. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201905017.htm [56] 董旭, 邓振全, 李树忱, 等. 大跨波形钢腹板箱梁桥日照温度场及温差效应研究[J]. 工程力学, 2017, 34(9): 230-238. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201709027.htmDONG Xu, DENG Zhen-quan, LI Shu-chen, et al. Research on sun light temperature field and thermal difference effect of long span box girder bridge with corrugated steel webs[J]. Engineering Mechanics, 2017, 34(9): 230-238. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201709027.htm [57] 郭翔飞. 波纹钢腹板预应力混凝土箱梁温度效应研究[D]. 西安: 长安大学, 2011.GUO Xiang-fei. Research on temperature effect of prestressed concrete box girder with corrugated steel webs[D]. Xi'an: Chang'an University, 2011. (in Chinese). [58] 周良, 陆元春, 李雪峰. 钢-混凝土组合梁的温度应力计算[J]. 公路交通科技, 2012, 29(5): 83-88. doi: 10.3969/j.issn.1002-0268.2012.05.014ZHOU Liang, LU Yuan-chun, LI Xue-feng. Calculation of temperature stress of steel-concrete composite beam[J]. Journal of Highway and Transportation Research and Development, 2012, 29(5): 83-88. (in Chinese). doi: 10.3969/j.issn.1002-0268.2012.05.014 [59] 刘永健, 刘江, 张宁, 等. 钢-混凝土组合梁温度效应的解析解[J]. 交通运输工程学报, 2017, 17(4): 9-19. doi: 10.3969/j.issn.1671-1637.2017.04.002LIU Yong-jian, LIU Jiang, ZHANG Ning, et al. Analytical solution of temperature effects of steel-concrete composite girder[J]. Journal of Traffic and Transportation Engineering, 2017, 17(4): 9-19. (in Chinese). doi: 10.3969/j.issn.1671-1637.2017.04.002 [60] 吴迅, 陈经伟, 肖春, 等. 温差、收缩引起的钢-混凝土组合梁界面处剪力作用研究[J]. 结构工程师, 2009, 25(1): 41-44, 54. doi: 10.3969/j.issn.1005-0159.2009.01.009WU Xun, CHEN Jing-wei, XIAO Chun, et al. Study on shear effect caused by temperature and shrinkage on the interface of steel-concrete composite beams[J]. Structural Engineers, 2009, 25(1): 41-44, 54. (in Chinese). doi: 10.3969/j.issn.1005-0159.2009.01.009 [61] 陈玉骥, 叶梅新. 钢-混凝土结合梁在温度作用下的响应分析[J]. 中国铁道科学, 2001, 22(5): 48-53. doi: 10.3321/j.issn:1001-4632.2001.05.008CHEN Yu-ji, YE Mei-xin. Analyses of responses of composite girders under the action of temperature[J]. China Railway Science, 2001, 22(5): 48-53. (in Chinese). doi: 10.3321/j.issn:1001-4632.2001.05.008 [62] 陈玉骥, 叶梅新. 钢-混凝土连续结合梁的温度效应[J]. 中南大学学报(自然科学版), 2004, 35(1): 142-146. doi: 10.3969/j.issn.1672-7207.2004.01.028CHEN Yu-ji, YE Mei-xin. Temperature responses of steel-concrete continuous composite girders[J]. Journal of Central South University (Natural Science), 2004, 35(1): 142-146. (in Chinese). doi: 10.3969/j.issn.1672-7207.2004.01.028 [63] 朱坤宁, 万水. 温差和荷载引起的FRP-钢组合梁界面剪应力分析[J]. 解放军理工大学学报(自然科学版), 2011, 12(4): 387-392. https://www.cnki.com.cn/Article/CJFDTOTAL-JFJL201104016.htmZHU Kun-ning, WAN Shui. Interfacial shear stress of FRP-Steel composite beams subjected to temperature and load action[J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2011, 12(4): 387-392. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JFJL201104016.htm [64] 周勇超, 胡圣能, 宋磊, 等. 钢-混凝土组合梁的温度骤变效应分析[J]. 交通运输工程学报, 2013, 13(1): 20-26. doi: 10.3969/j.issn.1671-1637.2013.01.004ZHOU Yong-chao, HU Sheng-neng, SONG Lei, et al. Effect analysis of steel-concrete composite beam caused by sudden change of temperature[J]. Journal of Traffic and Transportation Engineering, 2013, 13(1): 20-26. (in Chinese). doi: 10.3969/j.issn.1671-1637.2013.01.004 [65] 阴存欣. 钢-混组合梁温度及收缩效应分析的电算方法[J]. 中国公路学报, 2014, 27(11): 76-83. doi: 10.3969/j.issn.1001-7372.2014.11.011YIN Cun-xin. Computing method for effect analysis of temperature and shrinkage on steel-concrete composite beams[J]. China Journal of Highway and Transport, 2014, 27(11): 76-83. (in Chinese). doi: 10.3969/j.issn.1001-7372.2014.11.011 [66] GIRHAMMAR U A, GOPU V K A. Composite beam-columns with interlayer slip—exact analysis[J]. Journal of Structural Engineering, 1993, 119(4): 1265-1282. doi: 10.1061/(ASCE)0733-9445(1993)119:4(1265) [67] LUCAS J M, BERRED A, LOUIS C. Thermal actions on a steel box girder bridge[J]. Structures and Buildings, 2003, 156(2): 175-182. [68] LUCAS J M, VIRLOGEUX M, LOUIS C. Temperature in the box girder of the Normandy Bridge[J]. Journal of the International Association for Bridge and Structural Engineering, 2005, 15(3): 156-165. [69] CHANG S P, IM C K. Thermal behaviour of composite box-girder bridges[J]. Structures and Buildings, 2000, 140(2): 117-126. [70] POTGIETER I C, GAMBLE W L. Nonlinear temperature distributions in bridges at different locations in the United States[J]. Journal of Precast/Prestressed Concrete Institute, 1989, 34(4): 80-103. [71] MIRAMBELL E, AGUADO A. Temperature and stress distributions in concrete box girder bridges[J]. Journal of Structural Engineering, 1990, 116(9): 2388-2409. doi: 10.1061/(ASCE)0733-9445(1990)116:9(2388) [72] 季德钧, 刘江, 张瑑芳, 等. 高原高寒地区钢-混凝土组合梁斜拉桥温度效应分析[J]. 建筑科学与工程学报, 2016, 33(1): 113-119. doi: 10.3969/j.issn.1673-2049.2016.01.016JI De-jun, LIU Jiang, ZHANG Zhuan-fang, et al. Temperature effect analysis of steel-concrete composite girder cable-stayed bridge in arctic-alpine region[J]. Journal of Architecture and Civil Engineering, 2016, 33(1): 113-119. (in Chinese). doi: 10.3969/j.issn.1673-2049.2016.01.016 [73] 王志祥. 高寒地区钢-混凝土组合梁斜拉桥施工阶段温度效应分析[D]. 西安: 长安大学, 2017.WANG Zhi-xiang. The temperature effect of the steel-concrete composite cable-stayed bridge during the construction phase in arctic-alpine region[D]. Xi'an: Chang'an University, 2017. (in Chinese). [74] 刘广龙, 刘江, 刘永健, 等. 西北极寒地区混凝土箱梁温度场实测与仿真分析[J]. 公路交通科技, 2018, 35(3): 64-71. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201803009.htmLIU Guang-long, LIU Jiang, LIU Yong-jian, et al. Measurement and simulation of temperature field of concrete box girder in northwest severe cold area[J]. Journal of Highway and Transportation Research and Development, 2018, 35(3): 64-71. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201803009.htm [75] ZANG Hai-xiang, XU Qing-shan, BIAN Hai-hong. Generation of typical solar radiation data for different climates of China[J]. Energy, 2012, 38(1): 236-248. doi: 10.1016/j.energy.2011.12.008