留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改性沥青疲劳破坏判定指标适用性

王淋 郭乃胜 温彦凯 侯一烈 俞春晖 尤占平

王淋, 郭乃胜, 温彦凯, 侯一烈, 俞春晖, 尤占平. 改性沥青疲劳破坏判定指标适用性[J]. 交通运输工程学报, 2020, 20(4): 91-106. doi: 10.19818/j.cnki.1671-1637.2020.04.007
引用本文: 王淋, 郭乃胜, 温彦凯, 侯一烈, 俞春晖, 尤占平. 改性沥青疲劳破坏判定指标适用性[J]. 交通运输工程学报, 2020, 20(4): 91-106. doi: 10.19818/j.cnki.1671-1637.2020.04.007
WANG Lin, GUO Nai-sheng, WEN Yan-kai, HOU Yi-lie, YU Chun-hui, YOU Zhan-ping. Applicability of determination indexes for fatigue failure of modified asphalt[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 91-106. doi: 10.19818/j.cnki.1671-1637.2020.04.007
Citation: WANG Lin, GUO Nai-sheng, WEN Yan-kai, HOU Yi-lie, YU Chun-hui, YOU Zhan-ping. Applicability of determination indexes for fatigue failure of modified asphalt[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 91-106. doi: 10.19818/j.cnki.1671-1637.2020.04.007

改性沥青疲劳破坏判定指标适用性

doi: 10.19818/j.cnki.1671-1637.2020.04.007
基金项目: 

国家自然科学基金项目 51308084

中央高校基本科研业务费专项资金项目 3132016223

辽宁省自然科学基金项目 2018030659-301

详细信息
    作者简介:

    王淋(1992-), 女, 辽宁葫芦岛人, 大连海事大学工学博士研究生, 从事道路工程研究

    郭乃胜(1978-), 男, 辽宁鞍山人, 大连海事大学教授, 工学博士

  • 中图分类号: U416.217

Applicability of determination indexes for fatigue failure of modified asphalt

Funds: 

National Natural Science Foundation of China 51308084

Fundamental Research Funds for the Central Universities 3132016223

Natural Science Foundation of Liaoning Province 2018030659-301

More Information
  • 摘要: 采用Malvern动态剪切流变仪, 在应力/应变2种荷载控制模式下对90#基质沥青、SBS改性沥青、岩沥青改性沥青、胶粉改性沥青、岩沥青/SBS复合改性沥青和岩沥青/胶粉复合改性沥青(RA/CRCMA)进行了时间扫描疲劳试验; 采用5种疲劳失效定义方式确定了改性沥青疲劳寿命; 使用统计学分析方法评价了改性沥青疲劳破坏判定指标的适用性; 采用推荐指标对比分析了改性沥青的疲劳性能。研究结果表明: 基于归一化动态模量确定的指标独立于荷载控制模式和沥青种类; 基于相位角和累积耗散能比确定的指标显著依赖于改性沥青种类和荷载控制模式, 且不具备普适性; 基于耗散能变化率确定的指标仅适用于应力控制模式的疲劳寿命判断; 基于简化耗散能变化率确定的指标受沥青种类影响较小, 对本研究所有试验沥青均具有较好的疲劳寿命评价效果; 归一化动态模量和简化耗散能变化率确定的指标在应力/应变控制模式下的相关系数高达0.94, 平均绝对误差低于20%, 展现出了较好的相关性及等效的疲劳寿命排序结果, 由于其计算简单, 定义明确, 因此, 推荐其作为时间扫描疲劳试验中检测沥青疲劳失效的判定标准; 采用推荐指标对本研究试验沥青的疲劳寿命排序可知, 添加18%胶粉和5%岩沥青的RA/CRCMA在应力/应变2种控制模式下均展现出较优的抗疲劳性能。

     

  • 图  1  沥青改性剂材料

    Figure  1.  Asphalt modifier materials

    图  2  沥青试件与DSR

    Figure  2.  Asphalt specimen and dynamic shear rheometer

    图  3  应力与应变试验结果

    Figure  3.  Test results of stress and strain

    图  4  5R/2S的Rr-N关系

    Figure  4.  Rr-N relation of 5R/2S

    图  5  应力控制模式下的δ-N关系

    Figure  5.  δ-N relation under stress-controlled mode

    图  6  应变控制模式下的δ-N关系

    Figure  6.  δ-N relation under strain-controlled mode

    图  7  2S和5R/2S的Rc-N关系

    Figure  7.  Rc-N relation of 2S and 5R/2S

    图  8  应力控制模式下的Rd-N关系

    Figure  8.  Rd-N relation under stress-controlled mode

    图  9  应变控制模式下的Rd-N关系

    Figure  9.  Rd-N relation under strain-controlled mode

    图  10  Nf50-Np20的线性拟合

    Figure  10.  Linear fittings of Nf50-Np20

    图  11  忽略荷载控制模式的M

    Figure  11.  M under neglecting load control modes

    图  12  忽略荷载控制模式的Ga

    Figure  12.  Ga under neglecting load control modes

    图  13  忽略荷载控制模式的S

    Figure  13.  S under neglecting load control modes

    图  14  应力控制模式下的M

    Figure  14.  M under stress-controlled mode

    图  15  应力控制模式下的Ga

    Figure  15.  Ga under stress-controlled mode

    图  16  应力控制模式下的S

    Figure  16.  S under stress-controlled mode

    图  17  应变控制模式下的M

    Figure  17.  M under strain-controlled mode

    图  18  应变控制模式下的Ga

    Figure  18.  Ga under strain-controlled mode

    图  19  应变控制模式下的S

    Figure  19.  S under strain-controlled mode

    表  1  基质沥青技术性能

    Table  1.   Technical properties of OB

    检测项目 检测值 《公路沥青路面施工技术规范》要求
    软化点/℃ 47.5 ≥44
    延度(15 ℃)/cm > 100 ≥100
    针入度(25 ℃)/0.1 mm 89 80~100
    闪点/℃ 254 ≥245
    密度(15 ℃)/(g·cm-3) 1.003 实测记录
    溶解度(三氯乙烯)/% 99.87 ≥99.5
    短期老化残留物 质量损失/% 0.05 ≤0.8
    25 ℃针入度比/% 73.2 ≥57
    10 ℃残留延度/cm 22.3 ≥8
    下载: 导出CSV

    表  2  岩沥青改性剂的技术指标

    Table  2.   Technical properties of rock asphalt modifier

    技术指标 检测值
    密度/(g·cm-3) 1.02
    闪点/℃ 235
    软化点/℃ 170~200
    目数 80
    灰分/% 8
    下载: 导出CSV

    表  3  SBS改性剂的技术指标

    Table  3.   Technical properties of SBS modifier

    技术指标 检测值
    苯乙烯与丁二烯比 30/70
    充油率/% 0
    挥发份/% ≤0.7
    灰份/% ≤0.20
    300%定伸应力/MPa ≥2.2
    拉伸强度/MPa ≥13.0
    扯断伸长率/% ≥620
    扯断永久变形/% ≤25
    邵氏硬度/A ≥68
    熔体流动速率/[g·(10 min)-1] 0.5~2.5
    下载: 导出CSV

    表  4  胶粉改性剂的技术指标

    Table  4.   Technical properties of crumb rubber modifier

    技术指标 检测值/%
    加热减量 0.34
    灰份 6.0
    丙酮抽出物 7.4
    炭黑含量 30
    纤维含量 0.45
    金属含量 0.017
    筛余物 5.2
    橡胶烃含量 54.6
    下载: 导出CSV

    表  5  改性沥青配比

    Table  5.   Compositions of modified asphalts

    岩沥青/% SBS/% 胶粉/%
    0 2 14 18
    0
    5
    10
    12
    下载: 导出CSV

    表  6  改性沥青分类

    Table  6.   Classification of modified asphalts

    试验组 沥青
    OB 2S 12R 14C 5R/2S 10R/14C 12R/14C 5R/18C
    G1
    G2
    G3
    下载: 导出CSV

    表  7  疲劳寿命判定结果

    Table  7.   Determination results of fatigue life

    沥青种类 控制模式 疲劳寿命/104
    Nf50 Np20 NR Nδ Nfm
    OB 应力 0.128 0.093 0.121 0.207 0.196
    应变 2.975 1.727 2.521 2.917
    2S 应力 6.082 4.521 5.251 8.976 7.325
    应变 20.918 9.235 24.001
    12R 应力 0.504 0.381 0.685 0.564 0.999
    应变 4.239 4.053 3.852 4.082
    14C 应力 2.316 1.814 2.101 3.521 2.814
    应变 24.001 10.406 25.201
    5R/2S 应力 7.834 6.335 6.601 9.351 8.589
    应变 14.658 7.467 19.321
    10R/14C 应力 0.382 0.309 0.324 0.409 0.425
    应变 3.956 2.604 3.521 3.013
    12R/14C 应力 1.421 1.306 1.242 1.472 1.453
    应变 0.659 0.443 0.784 0.585
    5R/18C 应力 6.996 5.455 5.701 7.442 7.574
    应变 33.765 20.474 29.503 31.801
    下载: 导出CSV

    表  8  疲劳指标之间的 R2

    Table  8.   R2between fatigue indexes

    疲劳指标 G1 G2 G3
    应力和应变 应力 应变 应力和应变 应力 应变 应力和应变 应力 应变
    Nf50-Np20 0.93 0.99 0.92 0.93 0.99 0.91 0.99 0.99 0.99
    Nf50-NR 0.96 0.99 0.94 0.95 0.99 0.94 0.99 0.99 0.99
    Nf50-Nδ 0.98 0.95 0.99 0.98 0.94 0.99 0.99 0.99 0.99
    Nf50-Nfm 0.98 0.98 0.99
    Np20-NR 0.82 0.99 0.78 0.81 0.99 0.75 0.99 0.99 0.99
    Np20-Nδ 0.98 0.93 0.99 0.98 0.92 0.99 0.99 0.99 0.99
    Np20-Nfm 0.97 0.96 0.99
    NR-Nδ 0.98 0.96 0.99 0.98 0.96 0.99 0.99 0.99 0.99
    NR-Nfm 0.99 0.99 0.99
    Nδ-Nfm 0.98 0.98 0.99
    下载: 导出CSV

    表  9  疲劳破坏判定指标的适用性

    Table  9.   Applicability of fatigue failure criterions

    沥青种类 忽略荷载控制模式 考虑荷载控制模式
    应力控制 应变控制
    G1 Nf50NRNδ Nf50NδNfm Nf50NRNδ
    G2 Nf50NRNδ Nf50NδNfm Nf50NRNδ
    G3 Nf50NRNδ Nf50NδNfm Nf50NRNδ
    OB Nf50NRNδ Nf50NRNp20 Nf50NRNδ
    2S Nf50NR Nf50NRNp20 Nf50NR
    5R/2S Nf50NR Nf50NδNfm Nf50NR
    12R Nf50NRNδNp20 Nf50NRNδ Nf50NRNδNp20
    14C Nf50NR Nf50NδNfm Nf50NR
    下载: 导出CSV
  • [1] 吴少鹏, 江承建, 林俊涛, 等. 老化沥青胶结料的疲劳特性研究[J]. 武汉理工大学学报(交通科学与工程版), 2013, 37(3): 451-455. doi: 10.3963/j.issn.2095-3844.2013.03.001

    WU Shao-peng, JIANG Cheng-jian, LIN Jun-tao, et al. Study on fatigue characteristics of aged asphalt binder[J]. Journal of Wuhan University of Technology (Transportation Science and Engineering), 2013, 37(3): 451-455. (in Chinese). doi: 10.3963/j.issn.2095-3844.2013.03.001
    [2] WU Shao-peng, MO Lian-tong, CONG Pei-liang, et al. Flammability and rheological behavior of mixed flame retardant modified asphalt binders[J]. Fuel, 2008, 87(1): 120-124. doi: 10.1016/j.fuel.2007.03.039
    [3] KIM Y R, LITTLE D N, SONG I. Effect of mineral fillers on fatigue resistance and fundamental material characteristics: mechanism evaluation[J]. Transportation Research Record, 2003(1832): 1-8.
    [4] CHEN Zi-xuan, WANG Tao, PEI Jian-zhong, et al. Low temperature and fatigue characteristics of treated crumb rubber modified asphalt after a long term aging procedure[J]. Journal of Cleaner Production, 2019, 234: 1262-1274. doi: 10.1016/j.jclepro.2019.06.147
    [5] 田霜. 基于黏弹特性的沥青损伤演化规律分析[D]. 哈尔滨: 哈尔滨工业大学, 2017.

    TIAN Shuang. Analysis of asphalt damage evolution based on viscoelastic characteristics[D]. Harbin: Harbin Institute of Technology, 2017. (in Chinese).
    [6] LIAO M C, CHEN J S, TSOU K W. Fatigue characteristics of bitumen-filler mastics and asphalt mixtures[J]. Journal of Materials in Civil Engineering, 2012, 24(7): 916-923. doi: 10.1061/(ASCE)MT.1943-5533.0000450
    [7] BENEDETTO H D, ROCHE C D L, BAAJ H, et al. Fatigue of bituminous mixtures[J]. Materials and Structures, 2004, 37(6): 202-216.
    [8] 郑健龙, 马健, 吕松涛, 等. 老化沥青混合料粘弹性疲劳损伤模型研究[J]. 工程力学, 2010, 27(3): 116-122. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201003021.htm

    ZHENG Jian-long, MA Jian, LYU Song-tao, et al. Research on viscoelastic fatigue damage model of aging asphalt mixtures[J]. Engineering Mechanics, 2010, 27(3): 116-122. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201003021.htm
    [9] BAHIA H U, HANSON D I, ZENG M, et al. Characterization of modified asphalt binders in superpave mix design[R]. Washington DC: Transportation Research Board, 2001.
    [10] RAITHBY K B, SRERLING A B. Some effect of loading history on the performance of rolled asphalt[R]. Crowthorne: Transport and Road Research Laboratory, 1972.
    [11] WANG Yang, WANG Chao, BAHIA H. Comparison of the fatigue failure behavior for asphalt binder using both cyclic and monotonic loading modes[J]. Construction and Building Materials, 2017, 151: 767-774. doi: 10.1016/j.conbuildmat.2017.06.144
    [12] 单丽岩, 谭忆秋, 许亚男, 等. 应力、应变控制模式下沥青疲劳损伤演化规律[J]. 中国公路学报, 2016, 29(1): 16-21. doi: 10.3969/j.issn.1001-7372.2016.01.002

    SHAN Li-yan, TAN Yi-qiu, XU Ya-nan, et al. Fatigue damage evolution rules of asphalt under controlled-stress mode and controlled-stain modes[J]. China Journal of Highway and Transport, 2016, 29(1): 16-21. (in Chinese). doi: 10.3969/j.issn.1001-7372.2016.01.002
    [13] CARPENTER S H, SHEN S. Dissipated energy approach to study hot-mix asphalt healing in fatigue[J]. Transportation Research Record, 2006(1970): 178-185.
    [14] 刘全涛. 沥青胶浆的疲劳性能研究[D]. 武汉: 武汉理工大学, 2008.

    LIU Quan-tao. Evaluation of the fatigue properties of bituminous binders[D]. Wuhan: Wuhan University of Technology, 2008. (in Chinese).
    [15] BHASIN A, BRANCOV T F C, MASAD E, et al. Quantitative comparison of energy methods to characterize fatigue in asphalt materials[J]. Journal of Materials in Civil Engineering, 2009, 21(2): 83-92. doi: 10.1061/(ASCE)0899-1561(2009)21:2(83)
    [16] MASAD E, BRANCOV T F C, LITTLE D N, et al. A unified method for the analysis of controlled-strain and controlled-stress fatigue testing[J]. International Journal of Pavement Engineering, 2008, 9(4): 233-246. doi: 10.1080/10298430701551219
    [17] YU J M, TSAI B W, ZHANG X N, et al. Development of asphalt pavement fatigue cracking prediction model based on loading mode transfer function[J]. Road Materials and Pavement Design, 2012, 13(3): 501-517. doi: 10.1080/14680629.2012.695240
    [18] KHIAVI A K, AMERRI M. Investigating the fatigue endurance limit of hma mixture using RDEC approach[J]. Construction and Building Materials, 2014, 55: 97-102. doi: 10.1016/j.conbuildmat.2014.01.013
    [19] ZHOU F, MOGAWER W, LI H, et al. Evaluation of fatigue tests for characterizing asphalt binders[J]. Journal of Materials in Civil Engineering, 2013, 25(5): 610-617. doi: 10.1061/(ASCE)MT.1943-5533.0000625
    [20] 陈浩浩, 吴少鹏, 刘全涛, 等. 沥青的疲劳性能评价方法研究[J]. 武汉理工大学学报, 2015, 37(12): 47-52. https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY201512009.htm

    CHEN Hao-hao, WU Shao-peng, LIU Quan-tao, et al. Study on evaluation methods for fatigue property of asphalt[J]. Journal of Wuhan University of Technology, 2015, 37(12): 47-52. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY201512009.htm
    [21] SHEN S, CARPENTER S H. Application of dissipated energy concept in fatigue endurance limit testing[J]. Transportation Research Record, 2005(1929): 165-173.
    [22] 孙大权, 林添坂, 曹林辉. 基于动态剪切流变试验的沥青疲劳寿命分析方法[J]. 建筑材料学报, 2015, 18(2): 346-350. doi: 10.3969/j.issn.1007-9629.2015.02.028

    SUN Da-quan, LIN Tian-ban, CAO Lin-hui. Evaluation method for fatigue life of asphalt based on dynamic shear rheometer test[J]. Journal of Building Materials, 2015, 18(2): 346-350. (in Chinese). doi: 10.3969/j.issn.1007-9629.2015.02.028
    [23] MARTONO W, BAHIA H U, D'ANGELO J. Effect of testing geometry on measuring fatigue of asphalt binders and mastics[J]. Journal of Materials in Civil Engineering, 2007, 19(9): 746-752. doi: 10.1061/(ASCE)0899-1561(2007)19:9(746)
    [24] 王明, 林发金, 刘黎萍. 基于简化能量耗散率的岩沥青改性沥青疲劳性能[J]. 建筑材料学报, 2015, 18(6): 1024-1027, 1032. doi: 10.3969/j.issn.1007-9629.2015.06.019

    WANG Ming, LIN Fa-jin, LIU Li-ping. Fatigue performance of rock asphalt modified asphalts based on reduced dissipated energy ratio[J]. Journal of Building Materials, 2015, 18(6): 1024-1027, 1032. (in Chinese). doi: 10.3969/j.issn.1007-9629.2015.06.019
    [25] 白琦峰, 钱振东, 赵延庆. 基于流变学的沥青抗疲劳性能评价方法[J]. 北京工业大学学报, 2012, 38(10): 1536-1542. doi: 10.11936/bjutxb2012101536

    BAI Qi-feng, QIAN Zhen-dong, ZHAO Yan-qing. Asphalt fatigue resistance evaluation method based on the rheology[J]. Journal of Beijing University of Technology, 2012, 38(10): 1536-1542. (in Chinese). doi: 10.11936/bjutxb2012101536
    [26] 孟勇军, 张肖宁. 基于累计耗散能量比的改性沥青疲劳性能[J]. 华南理工大学学报(自然科学版), 2012, 40(2): 99-103. doi: 10.3969/j.issn.1000-565X.2012.02.018

    MENG Yong-jun, ZHANG Xiao-ning. Fatigue performances of modified asphalts based on cumulative dissipated energy ratio[J]. Journal of South China University of Technology (Natural Science Edition), 2012, 40(2): 99-103. (in Chinese). doi: 10.3969/j.issn.1000-565X.2012.02.018
    [27] SAFAEI F, LEE J S, DO NASCIMENTO L A H, et al. Implications of warm-mix asphalt on long-term oxidative aging and fatigue performance of asphalt binders and mixtures[J]. Road Materials and Pavement Design, 2014, 15(S1): 45-61.
    [28] MICAELO R, PEREIRA A, QUARESMA L, et al. Fatigue resistance of asphalt binders: assessment of the analysis methods in strain-controlled tests[J]. Construction and Building Materials, 2015, 98: 703-712. doi: 10.1016/j.conbuildmat.2015.08.070
    [29] WANG Chao, ZHANG Han, CASTORENA C, et al. Identifying fatigue failure in asphalt binder time sweep tests[J]. Construction and Building Materials, 2016, 121: 535-546. doi: 10.1016/j.conbuildmat.2016.06.020
    [30] 单丽岩, 谭忆秋, 李晓琳. 沥青疲劳特性的研究[J]. 武汉理工大学学报(交通科学与工程版), 2011, 35(1): 190-194. doi: 10.3963/j.issn.1006-2823.2011.01.045

    SHAN Li-yan, TAN Yi-qiu, LI Xiao-lin. Fatigue characteristic of asphalt[J]. Journal of Wuhan University of Technology (Transportation Science and Engineering), 2011, 35(1): 190-194. (in Chinese). doi: 10.3963/j.issn.1006-2823.2011.01.045
    [31] 李薇, 郭乃胜, 教浡宗, 等. 岩沥青复合改性沥青流变性能[J]. 大连海事大学学报, 2018, 44(3): 79-87. https://www.cnki.com.cn/Article/CJFDTOTAL-DLHS201803015.htm

    LI Wei, GUO Nai-sheng, JIAO Bo-zong, et al. Rheological properties of rock asphalt composite modified asphalt[J]. Journal of Dalian Maritime University, 2018, 44(3): 79-87. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DLHS201803015.htm
  • 加载中
图(19) / 表(9)
计量
  • 文章访问数:  806
  • HTML全文浏览量:  137
  • PDF下载量:  3176
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-03
  • 刊出日期:  2020-04-25

目录

    /

    返回文章
    返回