-
摘要: 采用Malvern动态剪切流变仪, 在应力/应变2种荷载控制模式下对90#基质沥青、SBS改性沥青、岩沥青改性沥青、胶粉改性沥青、岩沥青/SBS复合改性沥青和岩沥青/胶粉复合改性沥青(RA/CRCMA)进行了时间扫描疲劳试验; 采用5种疲劳失效定义方式确定了改性沥青疲劳寿命; 使用统计学分析方法评价了改性沥青疲劳破坏判定指标的适用性; 采用推荐指标对比分析了改性沥青的疲劳性能。研究结果表明: 基于归一化动态模量确定的指标独立于荷载控制模式和沥青种类; 基于相位角和累积耗散能比确定的指标显著依赖于改性沥青种类和荷载控制模式, 且不具备普适性; 基于耗散能变化率确定的指标仅适用于应力控制模式的疲劳寿命判断; 基于简化耗散能变化率确定的指标受沥青种类影响较小, 对本研究所有试验沥青均具有较好的疲劳寿命评价效果; 归一化动态模量和简化耗散能变化率确定的指标在应力/应变控制模式下的相关系数高达0.94, 平均绝对误差低于20%, 展现出了较好的相关性及等效的疲劳寿命排序结果, 由于其计算简单, 定义明确, 因此, 推荐其作为时间扫描疲劳试验中检测沥青疲劳失效的判定标准; 采用推荐指标对本研究试验沥青的疲劳寿命排序可知, 添加18%胶粉和5%岩沥青的RA/CRCMA在应力/应变2种控制模式下均展现出较优的抗疲劳性能。Abstract: The malvern dynamic shear rheometer was used to conduct the time sweep fatigue tests on the 90# original binder, SBS modified asphalt, rock asphalt modified asphalt, crumb rubber modified asphalt, rock asphalt/SBS composite modified asphalt and rock asphalt/crumb rubber composite modified asphalt(RA/CRCMA) under the stress-controlled and strain-controlled modes. The corresponding fatigue life of modified asphalt was determined according to five fatigue failure definitions. The suitability of fatigue failure determination indexes of modified asphalt was evaluated by using the statistical analysis method. The fatigue performances of modified asphalts were compared and analyzed by using the recommended indexes. Research result shows that the index determined based on the normalized dynamic modulus is not affected by the load control mode and asphalt type. The indexes determined based on the phase angle and cumulative dissipative energy ratio are significantly affected by the asphalt type and load-controlled mode, and are not universal. The index determined based on the dissipated energy change rate is only suitable for the fatigue life judgment of stress-controlled mode. The index determined based on the reduced dissipated energy change rate is less affected by the asphalt type. It exhibits a preferable fatigue life evaluation effect on all asphalts in this study. The correlation coefficients of the indexes determined by the normalized dynamic modulus and the reduced dissipated energy change rate under the stress-controlled and strain-controlled modes are up to 0.94, and the mean absolute error is less than 20%, showing a good correlation and equivalent fatigue life ranking results. Due to the simple calculation and distinct definition, they are recommended to be used as the determination standard for testing the asphalt fatigue failure in time sweep fatigue test. According to the sequence of fatigue life of asphalts tested by the recommended indexes in this study, the RA/CRCMA with 18% crumb rubber and 5% rock asphalt shows the optimal fatigue resistance under the stress-controlled and strain-controlled modes.
-
表 1 基质沥青技术性能
Table 1. Technical properties of OB
检测项目 检测值 《公路沥青路面施工技术规范》要求 软化点/℃ 47.5 ≥44 延度(15 ℃)/cm > 100 ≥100 针入度(25 ℃)/0.1 mm 89 80~100 闪点/℃ 254 ≥245 密度(15 ℃)/(g·cm-3) 1.003 实测记录 溶解度(三氯乙烯)/% 99.87 ≥99.5 短期老化残留物 质量损失/% 0.05 ≤0.8 25 ℃针入度比/% 73.2 ≥57 10 ℃残留延度/cm 22.3 ≥8 表 2 岩沥青改性剂的技术指标
Table 2. Technical properties of rock asphalt modifier
技术指标 检测值 密度/(g·cm-3) 1.02 闪点/℃ 235 软化点/℃ 170~200 目数 80 灰分/% 8 表 3 SBS改性剂的技术指标
Table 3. Technical properties of SBS modifier
技术指标 检测值 苯乙烯与丁二烯比 30/70 充油率/% 0 挥发份/% ≤0.7 灰份/% ≤0.20 300%定伸应力/MPa ≥2.2 拉伸强度/MPa ≥13.0 扯断伸长率/% ≥620 扯断永久变形/% ≤25 邵氏硬度/A ≥68 熔体流动速率/[g·(10 min)-1] 0.5~2.5 表 4 胶粉改性剂的技术指标
Table 4. Technical properties of crumb rubber modifier
技术指标 检测值/% 加热减量 0.34 灰份 6.0 丙酮抽出物 7.4 炭黑含量 30 纤维含量 0.45 金属含量 0.017 筛余物 5.2 橡胶烃含量 54.6 表 5 改性沥青配比
Table 5. Compositions of modified asphalts
岩沥青/% SBS/% 胶粉/% 0 2 14 18 0 √ √ 5 √ √ 10 √ 12 √ √ 表 6 改性沥青分类
Table 6. Classification of modified asphalts
试验组 沥青 OB 2S 12R 14C 5R/2S 10R/14C 12R/14C 5R/18C G1 √ √ √ √ √ √ √ √ G2 √ √ √ √ √ √ √ G3 √ √ √ 表 7 疲劳寿命判定结果
Table 7. Determination results of fatigue life
沥青种类 控制模式 疲劳寿命/104次 Nf50 Np20 NR Nδ Nfm OB 应力 0.128 0.093 0.121 0.207 0.196 应变 2.975 1.727 2.521 2.917 2S 应力 6.082 4.521 5.251 8.976 7.325 应变 20.918 9.235 24.001 12R 应力 0.504 0.381 0.685 0.564 0.999 应变 4.239 4.053 3.852 4.082 14C 应力 2.316 1.814 2.101 3.521 2.814 应变 24.001 10.406 25.201 5R/2S 应力 7.834 6.335 6.601 9.351 8.589 应变 14.658 7.467 19.321 10R/14C 应力 0.382 0.309 0.324 0.409 0.425 应变 3.956 2.604 3.521 3.013 12R/14C 应力 1.421 1.306 1.242 1.472 1.453 应变 0.659 0.443 0.784 0.585 5R/18C 应力 6.996 5.455 5.701 7.442 7.574 应变 33.765 20.474 29.503 31.801 表 8 疲劳指标之间的 R2
Table 8. R2between fatigue indexes
疲劳指标 G1 G2 G3 应力和应变 应力 应变 应力和应变 应力 应变 应力和应变 应力 应变 Nf50-Np20 0.93 0.99 0.92 0.93 0.99 0.91 0.99 0.99 0.99 Nf50-NR 0.96 0.99 0.94 0.95 0.99 0.94 0.99 0.99 0.99 Nf50-Nδ 0.98 0.95 0.99 0.98 0.94 0.99 0.99 0.99 0.99 Nf50-Nfm 0.98 0.98 0.99 Np20-NR 0.82 0.99 0.78 0.81 0.99 0.75 0.99 0.99 0.99 Np20-Nδ 0.98 0.93 0.99 0.98 0.92 0.99 0.99 0.99 0.99 Np20-Nfm 0.97 0.96 0.99 NR-Nδ 0.98 0.96 0.99 0.98 0.96 0.99 0.99 0.99 0.99 NR-Nfm 0.99 0.99 0.99 Nδ-Nfm 0.98 0.98 0.99 表 9 疲劳破坏判定指标的适用性
Table 9. Applicability of fatigue failure criterions
沥青种类 忽略荷载控制模式 考虑荷载控制模式 应力控制 应变控制 G1 Nf50、NR、Nδ Nf50、Nδ、Nfm Nf50、NR、Nδ G2 Nf50、NR、Nδ Nf50、Nδ、Nfm Nf50、NR、Nδ G3 Nf50、NR、Nδ Nf50、Nδ、Nfm Nf50、NR、Nδ OB Nf50、NR、Nδ Nf50、NR、Np20 Nf50、NR、Nδ 2S Nf50、NR Nf50、NR、Np20 Nf50、NR 5R/2S Nf50、NR Nf50、Nδ、Nfm Nf50、NR 12R Nf50、NR、Nδ、Np20 Nf50、NR、Nδ Nf50、NR、Nδ、Np20 14C Nf50、NR Nf50、Nδ、Nfm Nf50、NR -
[1] 吴少鹏, 江承建, 林俊涛, 等. 老化沥青胶结料的疲劳特性研究[J]. 武汉理工大学学报(交通科学与工程版), 2013, 37(3): 451-455. doi: 10.3963/j.issn.2095-3844.2013.03.001WU Shao-peng, JIANG Cheng-jian, LIN Jun-tao, et al. Study on fatigue characteristics of aged asphalt binder[J]. Journal of Wuhan University of Technology (Transportation Science and Engineering), 2013, 37(3): 451-455. (in Chinese). doi: 10.3963/j.issn.2095-3844.2013.03.001 [2] WU Shao-peng, MO Lian-tong, CONG Pei-liang, et al. Flammability and rheological behavior of mixed flame retardant modified asphalt binders[J]. Fuel, 2008, 87(1): 120-124. doi: 10.1016/j.fuel.2007.03.039 [3] KIM Y R, LITTLE D N, SONG I. Effect of mineral fillers on fatigue resistance and fundamental material characteristics: mechanism evaluation[J]. Transportation Research Record, 2003(1832): 1-8. [4] CHEN Zi-xuan, WANG Tao, PEI Jian-zhong, et al. Low temperature and fatigue characteristics of treated crumb rubber modified asphalt after a long term aging procedure[J]. Journal of Cleaner Production, 2019, 234: 1262-1274. doi: 10.1016/j.jclepro.2019.06.147 [5] 田霜. 基于黏弹特性的沥青损伤演化规律分析[D]. 哈尔滨: 哈尔滨工业大学, 2017.TIAN Shuang. Analysis of asphalt damage evolution based on viscoelastic characteristics[D]. Harbin: Harbin Institute of Technology, 2017. (in Chinese). [6] LIAO M C, CHEN J S, TSOU K W. Fatigue characteristics of bitumen-filler mastics and asphalt mixtures[J]. Journal of Materials in Civil Engineering, 2012, 24(7): 916-923. doi: 10.1061/(ASCE)MT.1943-5533.0000450 [7] BENEDETTO H D, ROCHE C D L, BAAJ H, et al. Fatigue of bituminous mixtures[J]. Materials and Structures, 2004, 37(6): 202-216. [8] 郑健龙, 马健, 吕松涛, 等. 老化沥青混合料粘弹性疲劳损伤模型研究[J]. 工程力学, 2010, 27(3): 116-122. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201003021.htmZHENG Jian-long, MA Jian, LYU Song-tao, et al. Research on viscoelastic fatigue damage model of aging asphalt mixtures[J]. Engineering Mechanics, 2010, 27(3): 116-122. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201003021.htm [9] BAHIA H U, HANSON D I, ZENG M, et al. Characterization of modified asphalt binders in superpave mix design[R]. Washington DC: Transportation Research Board, 2001. [10] RAITHBY K B, SRERLING A B. Some effect of loading history on the performance of rolled asphalt[R]. Crowthorne: Transport and Road Research Laboratory, 1972. [11] WANG Yang, WANG Chao, BAHIA H. Comparison of the fatigue failure behavior for asphalt binder using both cyclic and monotonic loading modes[J]. Construction and Building Materials, 2017, 151: 767-774. doi: 10.1016/j.conbuildmat.2017.06.144 [12] 单丽岩, 谭忆秋, 许亚男, 等. 应力、应变控制模式下沥青疲劳损伤演化规律[J]. 中国公路学报, 2016, 29(1): 16-21. doi: 10.3969/j.issn.1001-7372.2016.01.002SHAN Li-yan, TAN Yi-qiu, XU Ya-nan, et al. Fatigue damage evolution rules of asphalt under controlled-stress mode and controlled-stain modes[J]. China Journal of Highway and Transport, 2016, 29(1): 16-21. (in Chinese). doi: 10.3969/j.issn.1001-7372.2016.01.002 [13] CARPENTER S H, SHEN S. Dissipated energy approach to study hot-mix asphalt healing in fatigue[J]. Transportation Research Record, 2006(1970): 178-185. [14] 刘全涛. 沥青胶浆的疲劳性能研究[D]. 武汉: 武汉理工大学, 2008.LIU Quan-tao. Evaluation of the fatigue properties of bituminous binders[D]. Wuhan: Wuhan University of Technology, 2008. (in Chinese). [15] BHASIN A, BRANCOV T F C, MASAD E, et al. Quantitative comparison of energy methods to characterize fatigue in asphalt materials[J]. Journal of Materials in Civil Engineering, 2009, 21(2): 83-92. doi: 10.1061/(ASCE)0899-1561(2009)21:2(83) [16] MASAD E, BRANCOV T F C, LITTLE D N, et al. A unified method for the analysis of controlled-strain and controlled-stress fatigue testing[J]. International Journal of Pavement Engineering, 2008, 9(4): 233-246. doi: 10.1080/10298430701551219 [17] YU J M, TSAI B W, ZHANG X N, et al. Development of asphalt pavement fatigue cracking prediction model based on loading mode transfer function[J]. Road Materials and Pavement Design, 2012, 13(3): 501-517. doi: 10.1080/14680629.2012.695240 [18] KHIAVI A K, AMERRI M. Investigating the fatigue endurance limit of hma mixture using RDEC approach[J]. Construction and Building Materials, 2014, 55: 97-102. doi: 10.1016/j.conbuildmat.2014.01.013 [19] ZHOU F, MOGAWER W, LI H, et al. Evaluation of fatigue tests for characterizing asphalt binders[J]. Journal of Materials in Civil Engineering, 2013, 25(5): 610-617. doi: 10.1061/(ASCE)MT.1943-5533.0000625 [20] 陈浩浩, 吴少鹏, 刘全涛, 等. 沥青的疲劳性能评价方法研究[J]. 武汉理工大学学报, 2015, 37(12): 47-52. https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY201512009.htmCHEN Hao-hao, WU Shao-peng, LIU Quan-tao, et al. Study on evaluation methods for fatigue property of asphalt[J]. Journal of Wuhan University of Technology, 2015, 37(12): 47-52. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY201512009.htm [21] SHEN S, CARPENTER S H. Application of dissipated energy concept in fatigue endurance limit testing[J]. Transportation Research Record, 2005(1929): 165-173. [22] 孙大权, 林添坂, 曹林辉. 基于动态剪切流变试验的沥青疲劳寿命分析方法[J]. 建筑材料学报, 2015, 18(2): 346-350. doi: 10.3969/j.issn.1007-9629.2015.02.028SUN Da-quan, LIN Tian-ban, CAO Lin-hui. Evaluation method for fatigue life of asphalt based on dynamic shear rheometer test[J]. Journal of Building Materials, 2015, 18(2): 346-350. (in Chinese). doi: 10.3969/j.issn.1007-9629.2015.02.028 [23] MARTONO W, BAHIA H U, D'ANGELO J. Effect of testing geometry on measuring fatigue of asphalt binders and mastics[J]. Journal of Materials in Civil Engineering, 2007, 19(9): 746-752. doi: 10.1061/(ASCE)0899-1561(2007)19:9(746) [24] 王明, 林发金, 刘黎萍. 基于简化能量耗散率的岩沥青改性沥青疲劳性能[J]. 建筑材料学报, 2015, 18(6): 1024-1027, 1032. doi: 10.3969/j.issn.1007-9629.2015.06.019WANG Ming, LIN Fa-jin, LIU Li-ping. Fatigue performance of rock asphalt modified asphalts based on reduced dissipated energy ratio[J]. Journal of Building Materials, 2015, 18(6): 1024-1027, 1032. (in Chinese). doi: 10.3969/j.issn.1007-9629.2015.06.019 [25] 白琦峰, 钱振东, 赵延庆. 基于流变学的沥青抗疲劳性能评价方法[J]. 北京工业大学学报, 2012, 38(10): 1536-1542. doi: 10.11936/bjutxb2012101536BAI Qi-feng, QIAN Zhen-dong, ZHAO Yan-qing. Asphalt fatigue resistance evaluation method based on the rheology[J]. Journal of Beijing University of Technology, 2012, 38(10): 1536-1542. (in Chinese). doi: 10.11936/bjutxb2012101536 [26] 孟勇军, 张肖宁. 基于累计耗散能量比的改性沥青疲劳性能[J]. 华南理工大学学报(自然科学版), 2012, 40(2): 99-103. doi: 10.3969/j.issn.1000-565X.2012.02.018MENG Yong-jun, ZHANG Xiao-ning. Fatigue performances of modified asphalts based on cumulative dissipated energy ratio[J]. Journal of South China University of Technology (Natural Science Edition), 2012, 40(2): 99-103. (in Chinese). doi: 10.3969/j.issn.1000-565X.2012.02.018 [27] SAFAEI F, LEE J S, DO NASCIMENTO L A H, et al. Implications of warm-mix asphalt on long-term oxidative aging and fatigue performance of asphalt binders and mixtures[J]. Road Materials and Pavement Design, 2014, 15(S1): 45-61. [28] MICAELO R, PEREIRA A, QUARESMA L, et al. Fatigue resistance of asphalt binders: assessment of the analysis methods in strain-controlled tests[J]. Construction and Building Materials, 2015, 98: 703-712. doi: 10.1016/j.conbuildmat.2015.08.070 [29] WANG Chao, ZHANG Han, CASTORENA C, et al. Identifying fatigue failure in asphalt binder time sweep tests[J]. Construction and Building Materials, 2016, 121: 535-546. doi: 10.1016/j.conbuildmat.2016.06.020 [30] 单丽岩, 谭忆秋, 李晓琳. 沥青疲劳特性的研究[J]. 武汉理工大学学报(交通科学与工程版), 2011, 35(1): 190-194. doi: 10.3963/j.issn.1006-2823.2011.01.045SHAN Li-yan, TAN Yi-qiu, LI Xiao-lin. Fatigue characteristic of asphalt[J]. Journal of Wuhan University of Technology (Transportation Science and Engineering), 2011, 35(1): 190-194. (in Chinese). doi: 10.3963/j.issn.1006-2823.2011.01.045 [31] 李薇, 郭乃胜, 教浡宗, 等. 岩沥青复合改性沥青流变性能[J]. 大连海事大学学报, 2018, 44(3): 79-87. https://www.cnki.com.cn/Article/CJFDTOTAL-DLHS201803015.htmLI Wei, GUO Nai-sheng, JIAO Bo-zong, et al. Rheological properties of rock asphalt composite modified asphalt[J]. Journal of Dalian Maritime University, 2018, 44(3): 79-87. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DLHS201803015.htm