-
摘要: 为了解超高强钢管混凝土(UCFST)的研究现状, 分析了钢管混凝土(CFST)中钢管与核心混凝土的材料强度发展历程, 根据这2种材料不同强度等级的组合, 梳理了1套简洁的CFST分类与缩写方法; 总结了UCFST的基本力学性能、收缩性能和界面粘结性能及其主要影响因素; 探讨了核心超高强混凝土(UHSC)的制备技术要求, 展望了UCFST未来的研究方向。分析结果表明: UCFST的提出与研究可分为UHSC和超高强钢材(UHSS)2条路径, 中国以前者为主, 对后者的研究较为滞后, 实际应用也较少; 已开展的UCFST基本力学性能试验研究, 体系仍不完善, 结构层次研究极少, 主要集中于构件层次但试验量偏少, 且以轴压短柱为主, 未见构件抗剪、抗扭及其余复合受力的研究; UCFST的研究以核心混凝土为UHSC的构件为主, 核心混凝土与钢管均为超高强的次之, 其他组合的较少; 钢管与核心混凝土的强度匹配研究才刚刚开始, 应继续深入, 重点研究合理匹配的UCFST; 核心UHSC自收缩大, 可能导致其与钢管脱粘, 应开展钢与UHSC法向黏结强度、UCFST构件收缩的研究; 应考虑核心UHSC材料的工作环境、施工条件及其对UCFST组合性能的影响, 核心UHSC材料以超高强度要求为主, 且具有低收缩(或微膨胀)、高流动性的特性, 不必强调耐久性; 制备核心UHSC材料时采用常温养护, 可少掺或不掺纤维。Abstract: To understand the research status of the ultra-high strength concrete filled steel tube(UCFST), the strength development processes in steel tubes and core concrete in concrete filled steel tube(CFST) were analyzed. A set of concise CFST classification and abbreviation methods were put forward according to the combination of different strength grades of these two materials. The basic mechanical, shrinkage and interfacial bond properties of UCFST, and the main influencing factors were summarized. The technical requirements of core ultra-high strength concrete(UHSC) were discussed, and future research directions were proposed. Analysis result shows that UCFST can be fabricated and researched in two ways: UHSC and ultra-high strength steel(UHSS). The former is the main material used in China, while the latter lags behind in its practical application is less. Although the basic mechanical properties of the UCFST have been tested, the research is incomplete and research at the structural level is rarely conducted. Research on UCFST mainly focuses on the component level, but the amount of testing is relatively small, and analysis focuses on axially loaded stub columns. There is no research on UCFST components under shear, torsion, and residual composite forces. In terms of material combinations, research attention is mostly placed on UCFST within UHSC as core concrete, followed by UCFST within both UHSC and UHSS, with only a few studies addressing other combinations. The researche on strength matching between steel tubes and core concrete has just begun, and additional studies should be proposed, focusing on the UCFST with reasonable matching. Debonding occurs between the core UHSC and steel tube because of the high autogenous shrinkage of the former. Hence, additional experimental research on the shrinkage properties and normal interfacial bond strength of the UCFST should be conducted to understand the true interfacial state. The working environment, construction conditions, and influence on the UCFST composite performance of core UHSC materials should be considered. The core UHSC materials are mainly required for ultra-high strength, low shrinkage(or micro expansion), and high fluidity, but the durability not has to be emphasized. The UHSC mix may have fibers of low volume content or even no fibers.
-
表 1 基于组成材料强度的CFST分类
Table 1. Classification of CFSTs according to material strength
类别 混凝土 钢管 普通钢管混凝土(NCFST) CFST 普通 普通 高强钢管混凝土(HCFST) ChFST 高强 普通 CFShT 普通 高强 ChFShT 高强 高强 超高强钢管混凝土(UCFST) CuFST 超高强 普通 CuFShT 超高强 高强 CFSuT 普通 超高强 ChFSuT 高强 超高强 CuFSuT 超高强 超高强 表 2 圆形UCFST基本力学性能试验统计数据
Table 2. Test statistic data of circular UCFST's mechanical properties
受力状态 构件总数量 CuFST CuFShT CFSuT ChFSuT CuFSuT 文献来源 短柱轴压 393 316 0 24 3 50 [4]~[7]、[15]~[17]、[54]、[57]~[58]、[61]~[62]、[66]~[68]、[77]~[94] 短柱偏压 30 14 0 0 0 16 [62]、[95]~[96] 中长柱轴压 88 80 3 0 0 5 [62]、[68]、[91]~[101] 中长柱偏压 47 33 5 0 0 9 [62]、[91]、[99]~[101] 纯弯 8 3 0 0 0 5 [62]、[102] 受拉 74 74 0 0 0 0 [103]~[105] 总计 640 520 8 24 3 85 -
[1] 陈宝春. 钢管混凝土拱桥发展综述[J]. 桥梁建设, 1997(2): 8-13, 24. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201606010.htmCHEN Bao-chun. A summarized account of developments in concrete-filled steel tube arch bridge[J]. Bridge Construction, 1997(2): 8-13, 24. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201606010.htm [2] 韩林海. 钢管混凝土结构的特点及发展[J]. 工业建筑, 1998, 28(10): 1-5, 29. doi: 10.3321/j.issn:1000-8993.1998.10.001HAN Lin-hai. Characters and development of concrete filled steel tubes[J]. Industrial Construction, 1998, 28(10): 1-5, 29. (in Chinese). doi: 10.3321/j.issn:1000-8993.1998.10.001 [3] 蒲心诚, 王勇威, 蒲怀京, 等. 千米承压材料与制取途径[J]. 土木工程学报, 2004, 37(7): 35-40, 58. doi: 10.3321/j.issn:1000-131X.2004.07.007PU Xin-cheng, WANG Yong-wei, PU Huai-jing, et al. Kilometer compressed material and its preparing method[J]. China Civil Engineering Journal, 2004, 37(7): 35-40, 58. (in Chinese). doi: 10.3321/j.issn:1000-131X.2004.07.007 [4] 王勇威. 千米承压材料的制取与力学性态研究[D]. 重庆: 重庆大学, 2004.WANG Yong-wei. Research on preparation and mechanical performances of kilometer load-bearing material[D]. Chongqing: Chongqing University, 2004. (in Chinese). [5] LIEW J Y R, XIONG Ming-xiang, XIONG De-xin. Design of concrete filled tubular beam-columns with high strength steel and concrete[J]. Structures, 2016, 8: 213-226. doi: 10.1016/j.istruc.2016.05.005 [6] LIEW J Y R, XIONG D X. Ultra-high strength concrete filled composite columns for multi-storey building construction[J]. Advances in Structural Engineering, 2012, 15(9): 1487-1503. doi: 10.1260/1369-4332.15.9.1487 [7] XIONG De-xin. Structural behaviour of concrete filled steel tube with high strength materials[D]. Singapore: National University of Singapore, 2012. [8] TUE N V, KÜCHLER M, SCHENCK G, et al. Application of UHPC filled tubes in buildings and bridges[C]//Kassel University. International Symposium on Ultra-high Performance Concrete. Kassel: Kassel University, 2004: 807-817. [9] KAMO T, ANDO R, SASAKI M, et al. Ultra high strength steel for sustainable build structure[J]. Nippon Steel and Sumitomo Metal, 2015, 110: 65-69. [10] MATSUMOTO S, HOSOZAWA O, NARIHARA H, et al. Structural design of an ultra high-rise building using concrete filled tubular column with 780 N·mm-2 class high-strength steel and Fc150 N·mm-2 high-strength concrete[J]. International Journal of High-Rise Buildings, 2014, 3(1): 73-79. [11] 陈宝春, 韦建刚, 周俊, 等. 我国钢管混凝土拱桥应用现状与展望[J]. 土木工程学报, 2017, 50(6): 50-61. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201706006.htmCHEN Bao-chun, WEI Jian-gang, ZHOU Jun, et al. Application of concrete-filled steel tube arch bridges in China: current status and prospects[J]. China Civil Engineering Journal, 2017, 50(6): 50-61. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201706006.htm [12] 陈宝春, 刘君平. 世界拱桥建设与技术发展综述[J]. 交通运输工程学报, 2020, 20(1): 27-41. doi: 10.19818/j.cnki.1671-1637.2020.01.002CHEN Bao-chun, LIU Jun-ping. Review of arch bridge construction and technology development in the world[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 27-41. (in Chinese). doi: 10.19818/j.cnki.1671-1637.2020.01.002 [13] RICHARD P, CHEYREZY M. Composition of reactive powder concretes[J]. Cement and Concrete Research, 1995, 25(7): 1501-1511. doi: 10.1016/0008-8846(95)00144-2 [14] 蒲心诚, 严吴南, 王冲, 等. 高流态超高强混凝土研制[J]. 混凝土, 1997(2): 3-11. https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF199702000.htmPU Xin-cheng, YAN Wu-nan, WANG Chong, et al. Research of ultra-high strength concrete with high fluidity[J]. Concrete, 1997(2): 3-11. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF199702000.htm [15] 谭克锋, 蒲心诚, 蔡绍怀. 钢管超高强混凝土的性能与极限承载能力的研究[J]. 建筑结构学报, 1999, 20(1): 10-15. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB199901001.htmTAN Ke-feng, PU Xin-cheng, CAI Shao-huai. Study on the mechanical properties of steel extra-high strength concrete encased in steel tubes[J]. Journal of Building Structures, 1999, 20(1): 10-15. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB199901001.htm [16] 吴炎海, 林震宇. 钢管活性粉末混凝土轴压短柱受力性能试验研究[J]. 中国公路学报, 2005, 18(1): 61-66. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200501013.htmWU Yan-hai, LIN Zhen-yu. Experimental study of behavior on RPC filled steel tubular stub columns under axial compression[J]. China Journal of Highway and Transport, 2005, 18(1): 61-66. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200501013.htm [17] 林震宇, 吴炎海, 沈祖炎. 圆钢管活性粉末混凝土轴压力学性能研究[J]. 建筑结构学报, 2005, 26(4): 52-57. doi: 10.3321/j.issn:1000-6869.2005.04.008LIN Zhen-yu, WU Yan-hai, SHEN Zu-yan. Research on behavior of RPC filled circular steel tube column to axial compression[J]. Journal of Building Structures, 2005, 26(4): 52-57. (in Chinese). doi: 10.3321/j.issn:1000-6869.2005.04.008 [18] 张静, 吴炎海. 钢管活性粉末混凝土的特性和应用前景[J]. 福建建材, 2002(4): 12-14. https://www.cnki.com.cn/Article/CJFDTOTAL-FJJC200204007.htmZHANG Jing, WU Yan-hai. Characteristics and application prospect of reactive powder concrete filled steel tube[J]. Fujian Building Materials, 2002(4): 12-14. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FJJC200204007.htm [19] 孟世强, 陈广智, 覃维祖. 钢管活性粉末混凝土初步研究[J]. 混凝土与水泥制品, 2003(1): 5-8. doi: 10.3969/j.issn.1000-4637.2003.01.002MENG Shi-qiang, CHEN Guang-zhi, TAN Wei-zu. Preliminary research on reactive powder concrete filled steel tube[J]. China Concrete and Cement Products, 2003(1): 5-8. (in Chinese). doi: 10.3969/j.issn.1000-4637.2003.01.002 [20] BLAIS P Y, COUTURE M. Precast, prestressed pedestrian bridge-world's first reactive powder concrete structure[J]. PCI Journal, 1999, 44(5): 60-71. doi: 10.15554/pcij.09011999.60.71 [21] RANDALL V, FOOT K. High-strength concrete for pacific first center[J]. Concrete International, 1989, 11(4): 14-16. [22] RALSTON M, KORMAN R. Composite system stiffened with 19 000-psi mix[J]. EngineeringNews Record, 1989, 222(7): 44-53. [23] 高育欣, 吴业蛟, 王明月. 超高强高性能混凝土在我国的研究与应用[J]. 商品混凝土, 2009(12): 30-31, 47.GAO Yu-xin, WU Ye-jiao, WANG Ming-yue. Research and application of ultra-high strengthand high performance concrete in China[J]. Ready-mixed concrete, 2009(12): 30-31, 47. (in Chinese). [24] 周源, 王戈. 强劲骨架在钢管混凝土劲性骨架拱桥中的应用[J]. 山西交通科技, 2019(3): 65-69, 83. https://www.cnki.com.cn/Article/CJFDTOTAL-SXJT201903022.htmZHOU Yuan, WANG Ge. The application of stiff skeleton in concrete-filled steel tube rigid skeleton arch Bridge[J]. Shanxi Science and Technology of Communications, 2019(3): 65-69, 83. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SXJT201903022.htm [25] LARRARD F D, SEDRAN T. Optimization of ultra-high-performance concrete by the use of a packing model[J]. Cement and Concrete Research, 1994, 24(6): 997-1009. doi: 10.1016/0008-8846(94)90022-1 [26] 陈宝春, 季韬, 黄卿维, 等. 超高性能混凝土研究综述[J]. 建筑科学与工程学报, 2014, 31(3): 1-24. doi: 10.3969/j.issn.1673-2049.2014.03.002CHEN Bao-chun, JI Tao, HUANG Qing-wei, et al. Review of research on ultra-high performance concrete[J]. Journal of Architecture and Civil Engineering, 2014, 31(3): 1-24. (in Chinese). doi: 10.3969/j.issn.1673-2049.2014.03.002 [27] 陈宝春, 韦建刚, 苏家战, 等. 超高性能混凝土应用进展[J]. 建筑科学与工程学报, 2019, 36(2): 10-20. doi: 10.3969/j.issn.1673-2049.2019.02.003CHEN Bao-chun, WEI Jian-gang, SU Jia-zhan, et al. State-of-the-art progress on application of ultra-high performance concrete[J]. Journal of Architecture and Civil Engineering, 2019, 36(2): 10-20. (in Chinese). doi: 10.3969/j.issn.1673-2049.2019.02.003 [28] HOANG A L, FEHLING E. A review and analysis of circular UHPC filled steel tube columns under axial loading[J]. Structural Engineering and Mechanics, 2017, 62(4): 417-430. doi: 10.12989/sem.2017.62.4.417 [29] WANG Wei-qiang, WU Cheng-qing, LI Jun, et al. Behavior of ultra-high performance fiber-reinforced concrete (UHPFRC) filled steel tubular members under lateral impact loading[J]. International Journal of Impact Engineering, 2019, 132: 103314-1-24. [30] WU H, REN G M, FANG Q, et al. Response of ultra-high performance cementitious composites filled steel tube (UHPCC-FST) subjected to low-velocity impact[J]. Thin-Walled Structures, 2019, 144: 106341-1-14. [31] PODDAR D, GHOSH C, BHATTACHARYA B, et al. Development of high ductile ultra high strength structural steel through stabilization of retained austenite and stacking fault[J]. Materials Science and Engineering A—Structural Materials Properties Microstructure and Processing, 2019, 762: 138079-1-10. [32] JAVIDAN F, HEIDARPOUR A, ZHAO Xiao-ling, et al. Fundamental behaviour of high strength and ultra-high strength steel subjected to low cycle structural damage[J]. Engineering Structures, 2017, 143: 427-440. doi: 10.1016/j.engstruct.2017.04.041 [33] 班慧勇, 施刚, 石永久, 等. 建筑结构用高强度钢材力学性能研究进展[J]. 建筑结构, 2013, 43(2): 88-94, 67. https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG201302022.htmBAN Hui-yong, SHI Gang, SHI Yong-jiu, et al. Research advances on mechanical properties of high strength structural steels[J]. Building Structure, 2013, 43(2): 88-94, 67. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG201302022.htm [34] 施刚, 朱希. 高强度结构钢材单调荷载作用下的本构模型研究[J]. 工程力学, 2017, 34(2): 50-59. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201702008.htmSHI Gang, ZHU Xi. Study on constitutive model of high-strength structural steel under monotonic loading[J]. Engineering Mechanics, 2017, 34(2): 50-59. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201702008.htm [35] GB 50017—2017, 钢结构设计标准[S]. GB 50017—2017, code for design of steel structures[S]. (in Chinese). [36] 蔺喜强, 霍亮, 张涛, 等. 超高层建筑中高性能结构材料的应用进展[J]. 建筑科学, 2015, 31(7): 103-108. https://www.cnki.com.cn/Article/CJFDTOTAL-JZKX201507019.htmLIN Xi-qiang, HUO Liang, ZHANG Tao, et al. Progress of high-performance structural materials in high-rise buildings[J]. Building Science, 2015, 31(7): 103-108. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JZKX201507019.htm [37] VARMA A H, RICLES J M, SAUSE R, et al. Experimental behavior of high strength square concrete-filled steel tube beam-columns[J]. Journal of Structural Engineering, 2002, 128(3): 309-318. doi: 10.1061/(ASCE)0733-9445(2002)128:3(309) [38] UY B. Strength of short concrete filled high strength steel box columns[J]. Journal of Constructional Steel Research, 2001, 57(2): 113-134. doi: 10.1016/S0143-974X(00)00014-6 [39] UY B. Ductility, strength and stability of concrete-filled fabricated steel box columns for tall buildings[J]. The Structural Design of Tall Buildings, 1998, 7(2): 113-133. doi: 10.1002/(SICI)1099-1794(199806)7:2<113::AID-TAL94>3.0.CO;2-I [40] SAKINO K, NAKAHARA H, MORINO S, et al. Behavior of centrally loaded concrete-filled steel-tube short columns[J]. Journal of Structural Engineering 2004, 130(2): 180-188. [41] SKALOMENOS K A, HAYASHI K, NISHI R, et al. Experimental behavior of concrete-filled steel tube columns using ultrahigh-strength steel[J]. Journal of structural engineering, 2016, 142(9): 04016057. doi: 10.1061/(ASCE)ST.1943-541X.0001513 [42] HAYASHI K, HACHIMORI W, KANEDA S. Seismicper formance of concrete filled steel tube column building using ultra high strength steel H-SA700[J]. International Journal of Structural and Civil Engineering Research, 2018, 7(2): 92-98. [43] (in Japanese). [44] ENDO F, YAMANAKA M, WATNABE T, et al. Advanced technologies applied at the new "Techno Station" building in Tokyo, Japan[J]. Structural Engineering International, 2011, 21(4): 508-513. doi: 10.2749/101686611X13049248220609 [45] 黄维, 高真凤, 张志勤. 日本建筑结构用钢板发展现状[J]. 建筑钢结构进展, 2015, 17(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJZ201501001.htmHUANG Wei, GAO Zhen-feng, ZHANG Zhi-qin. Development status of steel plate for building structures in Japan[J]. Progress in Steel Building Structures, 2015, 17(1): 1-6. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JZJZ201501001.htm [46] SHI Gang, HU Fang-xin, SHI Yong-jiu. Recent research advances of high strength steel structures and codification of design specification in China[J]. International Journal of Steel Structures, 2014, 14(4): 873-887. doi: 10.1007/s13296-014-1218-7 [47] ISO-4950-3: 1995/Amd. 1: 2003, high yield strength flat steel products, Part3: products supplied in the heat-treated (quenched+tempered) condition, Amendment 1[S]. [48] GB/T 1591—2018, 低合金高强度结构钢[S]. GB/T 1591—2018, high strength low alloy structural steels[S]. (in Chinese). [49] JGJ/T 281—2012, 高强混凝土应用技术规程[S]. JGJ/T 281—2012, technical specification for application of high strength concrete[S]. (in Chinese). [50] GB/T 31387—2015, 活性粉末混凝土[S]. GB/T 31387—2015, reactive powder concrete[S]. (in Chinese). [51] 陈宝春, 杨简, 黄卿维, 等. 超高性能混凝土形状与尺寸效应分析[J]. 福州大学学报(自然科学版), 2019, 47(3): 391-397. https://www.cnki.com.cn/Article/CJFDTOTAL-FZDZ201903018.htmCHEN Bao-chun, YANG Jian, HUANG Qing-wei, et al. Analysis of shape and size effect of ultra-high performance concrete[J]. Journal of Fuzhou University (Natural Science Edition), 2019, 47(3): 391-397. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FZDZ201903018.htm [52] 郭晓宇, 亢景付, 朱劲松. 超高性能混凝土单轴受压本构关系[J]. 东南大学学报(自然科学版), 2017, 47(2): 369-376. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201702028.htmGUO Xiao-yu, KANG Jing-fu, ZHU Jin-song. Constitutive relationship of ultra-high performance under uni-axial compression[J]. Journal of Southeast University (Natural Science Edition), 2017, 47(2): 369-376. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201702028.htm [53] 刘数华, 阎培渝, 冯建文. 超高强混凝土RPC强度的尺寸效应[J]. 公路, 2011(3): 123-127. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201103032.htmLIU Shu-hua, YAN Pei-yu, FENG Jian-wen. Size effect on strength of ultra-high strength concrete RPC[J]. Highway, 2011(3): 123-127. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201103032.htm [54] 陈国灿. 钢管聚丙烯纤维超高强石渣混凝土短柱的静力特性[J]. 武汉大学学报(工学版), 2010, 43(5): 617-622. https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD201005020.htmCHEN Guo-can. Experimental studies of behaviors of PFRGSHSCUS-filled steel tubes short columns subjected to axial load[J]. Engineering Journal of Wuhan University, 2010, 43(5): 617-622. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD201005020.htm [55] SON T, HUU-TAI T, UY B, et al. Concrete-filled steel tubular columns: test database, design and calibration[J]. Journal of Constructional Steel Research, 2019, 157: 161-181. doi: 10.1016/j.jcsr.2019.02.024 [56] GOODE C D. Composite columns-1819 tests on concrete-filled steel tube columns compared with Eurocode 4[J]. The Structural Engineer, 2008, 86(16): 33-38. [57] 申培亮. 微膨胀钢管超高性能混凝土设计及短柱力学性能研究[D]. 武汉: 武汉理工大学, 2018.SHEN Pei-liang. Investigation on design of expansive UHPC filled steel tube and its mechanical behavior of short column[D]. Wuhan: Wuhan University of Technology, 2018. (in Chinese). [58] 苗强. C100超高强自密实微膨胀钢管混凝土的研究[D]. 武汉: 武汉理工大学, 2014.MIAO Qiang. Research on the C100 ultra high strength self-compacting expansive concrete filled steel tube[D]. Wuhan: Wuhan University of Technology, 2014. (in Chinese). [59] 颜燕祥, 徐礼华, 蔡恒, 等. 高强方钢管超高性能混凝土短柱轴压承载力计算方法研究[J]. 建筑结构学报, 2019, 40(12): 128-137. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201912016.htmYAN Yan-xiang, XU Li-hua, CAI Heng, et al. Calculation methods of axial bearing capacity of short square UHPC filled high strength steel tubular columns[J]. Journal of Building Structures, 2019, 40(12): 128-137. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201912016.htm [60] YAN Yan-xiang, XU Li-hua, LI Biao, et al. Axial behavior of ultra-high performance concrete (UHPC) filled stocky steel tubes with square sections[J]. Journal of Constructional Steel Research, 2019, 158: 417-428. doi: 10.1016/j.jcsr.2019.03.018 [61] ZHOU Shi-ming, SUN Qing, WU Xiao-hong. Impact of D/t ratio on circular concrete-filled high-strength steel tubular stub columns under axial compression[J]. Thin-Walled Structures, 2018, 132: 461-474. doi: 10.1016/j.tws.2018.08.029 [62] 罗霞. 高强钢管超高强混凝土构件受力性能研究[D]. 福州: 福州大学, 2020.LUO Xia. Study on the mechanical performance of ultra-high performance concrete filled high strength steel tube members[D]. Fuzhou: Fuzhou University, 2020. (in Chinese). [63] LAI Zhi-chao, VARMA A H. High-strength rectangular CFT members: database, modeling, and design of short columns[J]. Journal of Structural Engineering, 2018, 144(5): 04018036-1-18. doi: 10.1061/(ASCE)ST.1943-541X.0002026 [64] CEDERWALL K, ENGSTROM B, GRAUERS M. High-strength concrete used in composite columns[J]. Special Publication, 1990, 121: 195-214. [65] TUE N V, SCHNEIDER H, SIMSCH G, et al. Bearing capacity of stub columns made of NSC, HSC and UHPC confined by a steel tube[C]//University of Kassel. International Symposium on Ultra-high Performance Concrete. Kassel: University of Kassel, 2004: 339-350. [66] XIONG Ming-xiang, XIONG De-xin, LIEW J Y R. Axial performance of short concrete filled steel tubes with high and ultra-high-strength materials[J]. Engineering Structures, 2017, 136: 494-510. doi: 10.1016/j.engstruct.2017.01.037 [67] AN L H, FEHLING E. Analysis of circular steel tube confined UHPC stub columns[J]. Steel and Composite Structures, 2017, 23(6): 669-682. [68] AN L H, FEHLING E, LAI Bing-lin, et al. Experimental study on structural performance of UHPC and UHPFRC columns confined with steel tube[J]. Engineering Structures, 2019, 187: 457-477. doi: 10.1016/j.engstruct.2019.02.063 [69] VARMA A H, RICIES J M, SAUSE R, et al. Seismic behavior, analysis, and design of high-strength square concrete-filled steel tube columns[J]. Journal of Structural Engineering, 2004, 130(2): 169-179. doi: 10.1061/(ASCE)0733-9445(2004)130:2(169) [70] LIU Da-lin. Tests on high-strength rectangular concrete-filled steel hollow section stub columns[J]. Journal of Constructional Steel Research, 2005, 61(7): 902-911. doi: 10.1016/j.jcsr.2005.01.001 [71] 钱稼茹, 张扬, 张微敬. 双钢管高强混凝土短柱偏心受压性能试验[J]. 清华大学学报(自然科学版), 2015, 55(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB201501001.htmQIAN Jia-ru, ZHANG Yang, ZHANG Wei-jing. Eccentric compressive behavior of high strength concrete filled double-tube short columns[J]. Journal of Tsinghua University (Science and Technology), 2015, 55(1): 1-7. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB201501001.htm [72] WANG Wei-qiang, WU Cheng-qing, LIU Zhong-xian. Compressive behavior of hybrid double-skin tubular columns with ultra-high performance fiber-reinforced concrete (UHPFRC)[J]. Engineering Structures, 2019, 180: 419-441. doi: 10.1016/j.engstruct.2018.11.048 [73] 万城勇, 查晓雄. 配筋钢管混凝土轴压短柱受力性能试验研究[J]. 建筑结构学报, 2013, 34(增1): 259-266. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB2013S1039.htmWAN Cheng-yong, ZHA Xiao-xiong. Experiment study of reinforced concrete filled steel tubular columns subjected to axial compression[J]. Journal of Building Structures, 2013, 34(S1): 259-266. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB2013S1039.htm [74] 吴晓莉, 韩金生, 程文瀼. 配筋钢管混凝土柱抗火性能试验研究[J]. 东南大学学报(自然科学版), 2009, 39(增2): 174-178. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX2009S2032.htmWU Xiao-li, HAN Jin-sheng, CHENG Wen-rang. Test research on fire resistance performance of bar-reinforced concrete filled steel tubular columns[J]. Journal of Southeast University (Natural Science Edition), 2009, 39(S2): 174-178. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX2009S2032.htm [75] 毛文婧, 史艳莉, 王文达. 内配型钢圆钢管混凝土轴压短柱在不同含钢率下承载力分析[J]. 工程力学, 2017, 34(增1): 63-70. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX2017S1013.htmMAO Wen-jing, SHI Yan-li, WANG Wen-da. Analysis on axial compressive bearing capacity of circular concrete-filled steel tubular stub columns with internal profiled steel under different steel ratio[J]. Engineering Mechanics, 2017, 34(S1): 63-70. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX2017S1013.htm [76] 查晓雄, 陈德劲, 王维肖, 等. 内配加劲件钢管混凝土构件受弯性能理论与试验研究[J]. 建筑结构学报, 2017, 38(增1): 471-477. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB2017S1068.htmZHA Xiao-xiong, CHEN De-jin, WANG Wei-xiao, et al. Theoretical and experimental research on flexural behavior of concrete-filled steel tubes with inner stiffening[J]. Journal of Building Structures, 2017, 38(S1): 471-477. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB2017S1068.htm [77] SONER G, COPUR A, AYDOGAN M. Axial capacity and ductility of circular UHPC-filled steel tube columns[J]. Magazine of Concrete Research, 2013, 65(15): 898-905. doi: 10.1680/macr.12.00211 [78] 田志敏, 张想柏, 冯建文, 等. 钢管超高性能RPC短柱的轴压特性研究[J]. 地震工程与工程振动, 2008, 28(1): 99-107. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200801014.htmTIAN Zhi-min, ZHANG Xiang-bai, FENG Jian-wen, et al. Characteristics of RPC-filled steel tubular puncheons with ultra high performance subjected to axial compressive loading[J]. Journal of Earthquake Engineering and Engineering Vibration, 2008, 28(1): 99-107. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200801014.htm [79] 冯建文. 钢管活性粉末混凝土柱的力学性能研究[D]. 北京: 清华大学, 2008.FENG Jian-wen. Study on mechanical behavior of reactive powder concrete filled steel tubular columns[D]. Beijing: Tsinghua University, 2008. (in Chinese). [80] 杨吴生. 钢管活性粉末混凝土力学性能及其极限承载力研究[D]. 长沙: 湖南大学, 2003.YANG Wu-sheng. Research on mechanical properties and ultimate bearing capacity of reactive powder concrete filled steel tubes[D]. Changsha: Hunan University, 2003. (in Chinese). [81] WANG Qiu-wei, SHI Qing-xuan, XU Zhao-dong, et al. Axial capacity of reactive powder concrete filled steel tube columns with two load conditions[J]. Steel and Composite Structures, 2019, 31(1): 13-25. [82] 王杨. 钢管约束活性粉末混凝土短柱轴压性能及承载力计算研究[D]. 西安: 西安建筑科技大学, 2018.WANG Yang. Research on axial mechanics behavior and bearing capacity calculation of steel tube confined RPC short columns[D]. Xi'an: Xi'an University of Architecture and Technology, 2018. (in Chinese). [83] CHEN Shi-ming, ZHANG Rui, JIA Liang-jiu, et al. Structural behavior of UHPC filled steel tube columns under axial loading[J]. Thin-Walled Structures, 2018, 130: 550-563. doi: 10.1016/j.tws.2018.06.016 [84] XU Li-hua, LU Qiu-ru, CHI Yin, et al. Axial compressive performance of UHPC filled steel tube stub columns containing steel-polypropylene hybrid fiber[J]. Construction and Building Materials, 2019, 204: 754-767. doi: 10.1016/j.conbuildmat.2019.01.202 [85] 陈国灿, 徐志胜, 杨智硕, 等. 钢管超高强石渣混凝土轴压短柱静力性能试验研究[J]. 建筑结构学报, 2011, 32(3): 82-89. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201103014.htmCHEN Guo-can, XU Zhi-sheng, YANG Zhi-shuo, et al. Experimental study on behavior of short steel tubular columns filled with ultra-high strength concrete mixed with stone-chip subjected to axial load[J]. Journal of Building Structures, 2011, 32(3): 82-89. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201103014.htm [86] SCHNEIDER H.Zum tragverhalten kurzer,umschnü rter, kreisförmiger druckglieder aus ungefasertem UHFB[D]. Saxony:University of Leipzig,2006.(in German). [87] 戎芹, 曾宇声, 侯晓萌, 等. 圆钢管钢纤维活性粉末混凝土短柱轴压性能试验研究[J]. 建筑结构学报, 2019, 40(3): 247-253. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201903026.htmRONG Qin, ZENG Yu-sheng, HOU Xiao-meng, et al. Experimental study on mechanical behavior of RPC-filled circular steel tube columns under axial compression[J]. Journal of Building Structures, 2019, 40(3): 247-253. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201903026.htm [88] 马杰. 超高强钢管混凝土的研究与工程应用[D]. 武汉: 武汉理工大学, 2009.MA Jie. Research and engineering application of ultra-high strength concrete filled steel tube[D]. Wuhan: Wuhan University of Technology, 2009. (in Chinese). [89] 许志海. 钢管RPC短柱轴压性能和推出试验研究[D]. 长沙: 湖南大学, 2016.XU Zhi-hai. Experimental study and analysis of RPC-filled steel tube under axial compression and push out test[D]. Changsha: Hunan University, 2016. (in Chinese). [90] ZHOU Xiao-jun, MOU Ting-min, TANG Hong-yuan, et al. Experimental study on ultra-high strength concrete filled steel tube short columns under axial load[J]. Advances in Materials Science and Engineering, 2017, 2017: 8410895-1-9. [91] YU Qing, TAO Zhong, WU Ying-xing. Experimental behaviour of high performance concrete-filled steel tubular columns[J]. Thin-Walled Structures, 2008, 46(4): 362-370. doi: 10.1016/j.tws.2007.10.001 [92] EKMEKYAPAR T, AL-ELIWI B J M. Experimental behaviour of circular concrete filled steel tube columns and design specifications[J]. Thin-Walled Structures, 2016, 105: 220-230. doi: 10.1016/j.tws.2016.04.004 [93] ANDRADE DE OLIVEIRA W L, DE NARDIN S, DE CRESCE EI DEBS A L H, et al. Influence of concrete strength and length/diameter on the axial capacity of CFT columns[J]. Journal of Constructional Steel Research, 2009, 65(12): 2103-2110. doi: 10.1016/j.jcsr.2009.07.004 [94] HOSSAIN K M A, CHU K. Confinement of six different concretes in CFST columns having different shapes and slenderness[J]. International Journal of Advanced Structural Engineering, 2019, 11(2): 255-270. doi: 10.1007/s40091-019-0228-2 [95] 姚良云. 圆钢管RPC短柱偏压及长柱轴压受力性能研究[D]. 福州: 福州大学, 2005.YAO Liang-yun. Researches on behavior of eccentrically loaded stub column and axially compressed slender column with RPC-filled circular steel tube[D]. Fuzhou: Fuzhou University, 2005. (in Chinese). [96] 谭克锋, 蒲心诚. 钢管超高强混凝土长柱及偏压柱的性能与极限承载能力的研究[J]. 建筑结构学报, 2000, 21(2): 12-19. doi: 10.3321/j.issn:1000-6869.2000.02.002TAN Ke-feng, PU Xin-cheng. Study on behavior and load bearing capacities of slender steel tubular columns and eccentrically loaded steel tubular columns filled with extra high strength concrete[J]. Journal of Building Structures, 2000, 21(2): 12-19. (in Chinese). doi: 10.3321/j.issn:1000-6869.2000.02.002 [97] 罗华. 钢管活性粉末混凝土柱受压性能试验与理论研究[D]. 北京: 北京交通大学, 2015.LUO Hua. Experimental and theoretical study of reactive powder concrete filled steel tube column under compression[D]. Beijing: Beijing Jiaotong University, 2015. (in Chinese). [98] 陈国灿, 肖立强, 施志芳, 等. 低碳超高强混凝土与钢管组合柱的轴压性能探析[J]. 莆田学院学报, 2018, 25(2): 71-75. doi: 10.3969/j.issn.1672-4143.2018.02.016CHEN Guo-can, XIAO Li-qiang, SHI Zhi-fang, et al. Study experimental studies on the mechanical properties of steel tubular columns confined the low cement concrete with super high strength under axial compression[J]. Journal of Putian University, 2018, 25(2): 71-75. (in Chinese). doi: 10.3969/j.issn.1672-4143.2018.02.016 [99] PORTOLES J M, SERRA E, ROMERO M L. Influence of ultra-high strength infill in slender concrete-filled steel tubular columns[J]. Journal of Constructional Steel Research, 2013, 86: 107-114. doi: 10.1016/j.jcsr.2013.03.016 [100] XIONG Ming-xiang, XIONG De-xin, LIEW J Y R. Behaviour of steel tubular members infilled with ultra high strength concrete[J]. Journal of Constructional Steel Research, 2017, 138: 168-183. doi: 10.1016/j.jcsr.2017.07.001 [101] 曾建仙. 圆钢管RPC偏压长柱的受力性能研究[D]. 福州: 福州大学, 2006.ZENG Jian-xian. Researches on behavior of eccentrically loaded slender column of circular steel tube RPC[D]. Fuzhou: Fuzhou University, 2006. (in Chinese). [102] XIONG Ming-xiang, XIONG De-xin, LIEW J Y R. Flexural performance of concrete filled tubes with high tensile steel and ultra-high strength concrete[J]. Journal of Constructional Steel Research, 2017, 132: 191-202. doi: 10.1016/j.jcsr.2017.01.017 [103] 应铮. 钢管活性粉末混凝土直接轴拉性能试验研究[D]. 福州: 福建农林大学, 2016.YING Zheng. Experimental study on mechanical properties of RPC-FST under direct tension load[D]. Fuzhou: Fujian Agriculture and Forestry University, 2016. (in Chinese). [104] 李靖. 考虑壁厚影响的钢管RPC轴拉性能试验研究[D]. 福州: 福建农林大学, 2017.LI Jing. Experimental study on axial tensile of RPC-FST influenced by wall thickness[D]. Fuzhou: Fujian Agriculture and Forestry University, 2017. (in Chinese). [105] 姚鹏宇. 钢管-RPC偏拉性能试验研究[D]. 福州: 福建农林大学, 2018.YAO Peng-yu. Experimental study on the mechanical properties of reactive powder concrete-filled steel tube under eccentric tension load[D]. Fuzhou: Fujian Agriculture and Forestry University, 2018. (in Chinese). [106] 闫志刚, 罗华, 安明喆. 钢管活性粉末混凝土拱桥计算分析[J]. 中国科技论文在线, 2010, 5(7): 543-548. doi: 10.3969/j.issn.2095-2783.2010.07.010YAN Zhi-gang, LUO Hua, AN Ming-zhe. Analysis of RPC-filled steel tube arch bridge[J]. Sciencepaper Online, 2010, 5(7): 543-548. (in Chinese). doi: 10.3969/j.issn.2095-2783.2010.07.010 [107] XIONG Ming-xiang, LIEW J Y R. Mechanical behaviour of ultra-high strength concrete at elevated temperatures and fire resistance of ultra-high strength concrete filled steel tubes[J]. Materials and Design, 2016, 104: 414-427. doi: 10.1016/j.matdes.2016.05.050 [108] 田志敏, 吴平安, 杜修力. 钢管RPC短柱的抗轴向冲击性能[J]. 北京工业大学学报, 2010, 36(4): 482-489. https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD201004010.htmTIAN Zhi-min, WU Ping-an, DU Xiu-li. Dynamic response of RPC-filled steel tubular columns under axial impact loading[J]. Journal of Beijing University of Technology, 2010, 36(4): 482-489. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD201004010.htm [109] 郭志昆, 陈万祥, 姜猛, 等. 高温后钢管RPC的SHPB试验研究[J]. 振动与冲击, 2017, 36(10): 134-139. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201710022.htmGUO Zhi-kun, CHEN Wan-xiang, JIANG Meng, et al. SHPB test on reactive powder concrete-filled steel tubes after exposure to high temperature[J]. Journal of Vibration and Shock, 2017, 36(10): 134-139. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201710022.htm [110] 邹慧辉, 陈万祥, 郭志昆, 等. 火灾后钢管RPC柱抗爆性能试验研究[J]. 振动与冲击, 2016, 35(13): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201613001.htmZOU Hui-hui, CHEN Wan-xiang, GUO Zhi-kun, et al. Tests for blast-resistant capacities of RPC filled steel tubular columns after exposure to fire[J]. Journal of Vibration and Shock, 2016, 35(13): 1-7. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201613001.htm [111] XU Shen-chun, WU Cheng-qing, LIU Zhong-xian, et al. Experimental investigation on the cyclic behaviors of ultra-high-performance steel fiber reinforced concrete filled thin-walled steel tubular columns[J]. Thin-Walled Structures, 2019, 140: 1-20. doi: 10.1016/j.tws.2019.03.008 [112] 游经团, 韩林海. 钢管高性能混凝土压弯构件滞回性能试验研究[J]. 地震工程与工程振动, 2005, 25(3): 98-103. doi: 10.3969/j.issn.1000-1301.2005.03.017YOU Jing-tuan, HAN Lin-hai. Experimental study on high-performance concrete filled steel tubular column subjected to cyclic loading[J]. Earthquake Engineering and Engineering Vibration, 2005, 25(3): 98-103. (in Chinese). doi: 10.3969/j.issn.1000-1301.2005.03.017 [113] 王元丰, 梁亚平. 高性能混凝土的弹性模量与泊松比[J]. 北方交通大学学报, 2004, 28(1): 5-7, 16. https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT200401002.htmWANG Yuan-feng, LIANG Ya-ping. Study onmodulus of elasticity and poisson ratio of high performance concrete[J]. Journal of Northern Jiaotong University, 2004, 28(1): 5-7, 16. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT200401002.htm [114] 王秋维, 王杨, 张春尧, 等. 基于ABAQUS的钢管活性粉末混凝土短柱轴压受力性能研究[J]. 防灾减灾工程学报, 2019, 39(3): 421-429. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201903007.htmWANG Qiu-wei, WANG Yang, ZHANG Chun-yao, et al. Numerical simulation analysis on mechanical behavior of axially loaded reactive powder concrete filled steel tube short columns[J]. Journal of Disaster Prevention and Mitigation, 2019, 39(3): 421-429. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201903007.htm [115] 陈宝春, 林毅焌, 杨简, 等. 超高性能纤维增强混凝土中纤维作用综述[J]. 福州大学学报(自然科学版), 2020, 48(1): 58-68. https://www.cnki.com.cn/Article/CJFDTOTAL-FZDZ202001010.htmCHEN Bao-chun, LIN Yi-jun, YANG Jian, et al. Review on fiber function in ultra-high performance fiber reinforced concrete[J]. Journal of Fuzhou University (Natural Science Edition), 2020, 48(1): 58-68. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FZDZ202001010.htm [116] 孙鹏, 侯晓萌. 混凝土结构抗火研究综述与建议[J]. 长安大学学报(自然科学版), 2018, 38(6): 20-30, 39. doi: 10.3969/j.issn.1671-8879.2018.06.003SUN Peng, HOU Xiao-meng. Review and suggestion on fire resistance research of reinforced concrete structures[J]. Journal of Chang'an University (Natural Science Edition), 2018, 38(6): 20-30, 39. (in Chinese). doi: 10.3969/j.issn.1671-8879.2018.06.003 [117] HOANG A L, FEHLING E. Influence of steel fiber content and aspect on the uniaxial tensile and compressive behavior of ultra high performance concrete[J]. Construction and Building Materials, 2017, 153: 790-806. doi: 10.1016/j.conbuildmat.2017.07.130 [118] 杨简, 陈宝春, 苏家战. 钢纤维对超高性能混凝土弹性模量的影响[J]. 硅酸盐学报, 2020, 48(5): 652-658. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB202005007.htmYANG Jian, CHEN Bao-chun, SU Jia-zhan. Effect of steel fiber on elasticity modulus of ultra-high performance concrete[J]. Journal of the Chinese Ceramic Society, 2020, 48(5): 652-658. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB202005007.htm [119] 卢亦焱, 陈娟, 李杉. 钢管钢纤维高强混凝土短柱轴心受压试验研究[J]. 建筑结构学报, 2011, 32(10): 166-172. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201110022.htmLU Yi-yan, CHEN Juan, LI Shan. Experimental research on steel fiber reinforced high strength concrete filled steel tubular short columns subjected to axial compression load[J]. Journal of Building Structures, 2011, 32(10): 166-172. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201110022.htm [120] HOANG A L, FEHLING E. Effect of steel fiber on the behavior of circular steel tube confined UHPC columns under axial loading[C]∥Springer. 4th International RILEM Conference on Strain-Hardening Cement-Based Composites (SHCC). Berlin: Springer, 2017: 482-491. [121] 陈宝春, 黄福云. 加载方式对钢管混凝土轴压短柱受力性能影响的试验研究[J]. 铁道学报, 2009, 31(3): 82-88. doi: 10.3969/j.issn.1001-8360.2009.03.015CHEN Bao-chun, HUANG Fu-yun. Experimental research on influence of loading methods to behavior of concrete filled steel tubular stub columns under axial loads[J]. Journal of the China Railway Society, 2009, 31(3): 82-88. (in Chinese). doi: 10.3969/j.issn.1001-8360.2009.03.015 [122] HUANG Fu-yun, YU Xin-meng, CHEN Bao-chun. The structural performance of axially loaded CFST columns under various loading conditions[J]. Steeland Composite Structures, 2012, 13(5): 451-471. doi: 10.12989/scs.2012.13.5.451 [123] 罗华, 季文玉, 闫志刚, 等. 加载方式对钢管活性粉末混凝土短柱抗压性能影响的研究[J]. 铁道学报, 2014, 36(9): 105-110. doi: 10.3969/j.issn.1001-8360.2014.09.20LUO Hua, JI Wen-yu, YAN Zhi-gang, et al. Research on influence of loading methods on compressive behavior of reactive powder concrete filled steel tube stub columns under axial loads[J]. Journal of the China Railway Society, 2014, 36(9): 105-110. (in Chinese). doi: 10.3969/j.issn.1001-8360.2014.09.20 [124] 蔡绍怀, 焦占拴. 钢管混凝土短柱的基本性能和强度计算[J]. 建筑结构学报, 1984, 5(6): 13-29. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB198406001.htmCAI Shao-huai, JIAO Zhan-shuan. Behavior and ultimate strength of short concrete-filled steel tubular columns[J]. Journal of Building Structures, 1984, 5(6): 13-29. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB198406001.htm [125] Eurocode 4 (EC4), design of composite steel and concrete structures, Part 1-1: general rules and rules for buildings[S]. [126] AISC—2016, specification forstructural steel buildings[S]. [127] GB50936—2014, 钢管混凝土结构技术规范[S]. GB50936—2014, technical code for concrete filled steel tubular structures[S]. (in Chinese). [128] 蔡绍怀, 邸小坛. 钢管混凝土偏压柱的性能和强度计算[J]. 建筑结构学报, 1985(4): 32-42. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB198504003.htmCAI Shao-huai, DI Xiao-tan. Behaviour and ultimate strength of concrete-filled steel tubular columns under eccentric loading[J]. Journal of Building Structures, 1985(4): 32-42. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB198504003.htm [129] GB 50010—2010, 混凝土结构设计规范[S]. GB 50010—2010, code for design of concrete structures[S]. (in Chinese). [130] AFG C. Ultra high performance fiber-reinforced concrete-interim recommendations[S]. [131] AALETI S, PETERSEN B, SRITHARAN S. Design guide for precast UHPC waffle deck panel system, including connections (No. FHWA-HIF-13-032)[R]. Washangton DC: Federal Highway Administration (FHWA), 2013. [132] SIA 2052, recommendation: ultra-high performance fibre reinforced cement-based composites (UHPFRC) construction material, dimensioning undapplication[S]. [133] HUANG Yu-fan, BRISEGHELLA B, ZORDAN T, et al. Shaking table tests for the evaluation of the seismic performance of an innovative lightweight bridge with CFST composite truss girder and lattice pier[J]. Engineering Structures, 2014, 75: 73-86. doi: 10.1016/j.engstruct.2014.05.039 [134] NAKAMURA S. New structural forms for steel/concrete composite bridges[J]. Structural Engineering International, 2000, 10(1): 45-50. doi: 10.2749/101686600780620955 [135] 姚鹏宇, 黄文金, 应铮, 等. 钢管-RPC轴拉承载力试验研究[J]. 河北工程大学学报(自然科学版), 2018, 35(2): 25-30. doi: 10.3969/j.issn.1673-9469.2018.02.006YAO Peng-yu, HUANG Wen-jin, YING Zheng, et al. Experimental investigation on axial tensile resistant of reactive powder concrete-filled steel tube[J]. Journal of Hebei University of Engineering (Natural Science Edition), 2018, 35(2): 25-30. (in Chinese). doi: 10.3969/j.issn.1673-9469.2018.02.006 [136] 陈宝春, 黄文金. 圆管截面桁梁极限承载力试验研究[J]. 建筑结构学报, 2007, 28(3): 31-36. doi: 10.3321/j.issn:1000-6869.2007.03.005CHEN Bao-chun, HUANG Wen-jin. Experimental research on ultimate load carrying capacity of truss girders made with circular tubes[J]. Journal of Building Structures, 2007, 28(3): 31-36. (in Chinese). doi: 10.3321/j.issn:1000-6869.2007.03.005 [137] HUANG Wen-jin, LAI Zhi-chao, CHEN Bao-chun, et al. Concrete-filled steel tube (CFT) truss girders: experimental tests, analysis, and design[J]. Engineering Structures, 2018, 156: 118-129. doi: 10.1016/j.engstruct.2017.11.026 [138] 丁发兴, 余志武. 圆钢管自密实混凝土纯弯力学性能[J]. 交通运输工程学报, 2006, 6(1): 63-68, 79. doi: 10.3321/j.issn:1671-1637.2006.01.013DING Fa-xing, YU Zhi-wu. Pure bending properties of self-compacting concrete filled circular steel tube[J]. Journal of Traffic and Transportation Engineering, 2006, 6(1): 63-68, 79. (in Chinese). doi: 10.3321/j.issn:1671-1637.2006.01.013 [139] CHUNG K S, KIM J H, YOO J H. Experimental and analytical investigation of high-strength concrete-filled steel tube square columns subjected to flexural loading[J]. Steel and Composite Structures, 2013, 14(2): 133-153. doi: 10.12989/scs.2013.14.2.133 [140] GULER S, COPUR A, AYDOGAN M. Flexural behaviour of square UHPC-filled hollow steel section beams[J]. Structural Engineering and Mechanics, 2012, 43(2): 225-237. doi: 10.12989/sem.2012.43.2.225 [141] JAVED M F, SULONG N H R, MEMON S A, et al. FE modelling of the flexural behaviour of square and rectangular steel tubes filled with normal and high strength concrete[J]. Thin-Walled Structures, 2017, 119: 470-481. doi: 10.1016/j.tws.2017.06.025 [142] CHITAWADAGI M V, NARASIMHAN M C. Strength deformation behaviour of circular concrete filled steel tubes subjected to pure bending[J]. Journal of Constructional Steel Research, 2009, 65(8-9): 1836-1845. doi: 10.1016/j.jcsr.2009.04.006 [143] 马熙伦, 陈宝春, 黄卿维, 等. 钢纤维掺量对R-UHPC梁受弯性能影响的研究[J]. 宁夏大学学报: 自然科学版, 2019, 40(2): 130-136. doi: 10.3969/j.issn.0253-2328.2019.02.007MA Xi-lun, CHEN Bao-chun, HUANG Qing-wei, et al. Study of steel fiber content influence on flexural behavior of R-UHPC beam[J]. Journal of Ningxia University (Natural Science Edition), 2019, 40(2): 130-136. (in Chinese). doi: 10.3969/j.issn.0253-2328.2019.02.007 [144] 梁兴文, 汪萍, 徐明雪, 等. 配筋超高性能混凝土梁受弯性能及承载力研究[J]. 工程力学, 2019, 36(5): 110-119. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201905011.htmLIANG Xing-wen, WANG Ping, XU Ming-xue, et al. Investigation on flexural capacity of reinforced ultra high performance concrete beams[J]. Engineering Mechanics, 2019, 36(5): 110-119. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201905011.htm [145] 陈宝春, 李聪, 黄伟, 等. 超高性能混凝土收缩综述[J]. 交通运输工程学报, 2018, 18(1): 13-28. doi: 10.3969/j.issn.1671-1637.2018.01.002CHEN Bao-chun, LI Cong, HUANG Wei, et al. Review of ultra-high performance concrete shrinkage[J]. Journal of Traffic and Transportation Engineering, 2018, 18(1): 13-28. (in Chinese). doi: 10.3969/j.issn.1671-1637.2018.01.002 [146] 陈宝春, 赖秀英. 钢管混凝土收缩变形与钢管混凝土拱收缩应力[J]. 铁道学报, 2016, 38(2): 112-123. doi: 10.3969/j.issn.1001-8360.2016.02.015CHEN Bao-chun, LAI Xiu-ying. Shrinkage deformation of concrete filled steel tube and shrinkage stress of concrete filled steel tubular arch[J]. Journal of the China Railway Society, 2016, 38(2): 112-123. (in Chinese). doi: 10.3969/j.issn.1001-8360.2016.02.015 [147] HAN Lin-hai, ZHAO Xiao-ling, TAO Zhong. Tests and mechanics model for concrete-filled SHS stub columns, columns and beam-columns[J]. Steel and Composite Structures, an International Journal, 2001, 1(1): 51-74. doi: 10.12989/scs.2001.1.1.051 [148] SHRESTHA K M. The creep effect on CFST and encased CFST arch bridges[D]. Fuzhou: Fuzhou University, 2013. [149] XIE T, FANG C, ALI M S, et al. Characterizations of autogenous and drying shrinkage of ultra-high performance concrete (UHPC): an experimental study[J]. Cement and Concrete Composites, 2018, 91: 156-173. doi: 10.1016/j.cemconcomp.2018.05.009 [150] 李聪, 陈宝春, 韦建刚. 粗集料UHPC收缩与力学性能[J]. 交通运输工程学报, 2019, 19(5): 11-20. doi: 10.3969/j.issn.1671-1637.2019.05.003LI Cong, CHEN Bao-chun, WEI Jian-gang. Shrinkage and mechanical property of UHPC with coarse aggregate[J]. Journal of Traffic and Transportation Engineering, 2019, 19(5): 11-20. (in Chinese). doi: 10.3969/j.issn.1671-1637.2019.05.003 [151] 付泽东. 钢管活性粉末混凝土的制备与力学行为研究[D]. 武汉: 武汉理工大学, 2018.FU Ze-dong. Study on preparation and mechanical behavior of reactive powder concrete filled steel tube[D]. Wuhan: Wuhan University of Technology, 2018. (in Chinese). [152] 黄文金, 盛叶, 张正宾, 等. 钢管-钢纤维活性粉末混凝土界面黏结强度试验研究[J]. 建筑结构学报, 2017, 38(增1): 502-507, 514. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB2017S1072.htmHUANG Wen-jin, SHENG Ye, ZHANG Zheng-bin, et al. Experimental study on bond strength of interface between steel fiber reinforced reactive powder concrete and steel tube[J]. Journal of Building Structures, 2017, 38(S1): 502-507, 514. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB2017S1072.htm [153] 王秋维, 刘乐, 史庆轩, 等. 钢管活性粉末混凝土界面粘结强度计算方法研究[J]. 工程力学, 2020, 37(4): 41-50. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202004006.htmWANG Qiu-wei, LIU Le, SHI Qing-xuan, et al. A calculation method of the interface bond strength of reactive powder concrete filled steel tubes[J]. Engineering Mechanics, 2020, 37(4): 41-50. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202004006.htm [154] QU Xiu-shu, CHEN Zhi-hua, NETHERCOT D A, et al. Load-reversed push-out tests on rectangular CFST columns[J]. Journal of Constructional Steel Research, 2013, 81: 35-43. doi: 10.1016/j.jcsr.2012.11.003 [155] 康希良, 程耀芳, 张丽, 等. 钢管混凝土粘结-滑移本构关系理论分析[J]. 工程力学, 2009, 26(10): 74-78. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200910013.htmKANG Xi-liang, CHENG Yao-fang, ZHANG Li, et al. Theoretical analysis of bond-slip constitutive relationship for CFST[J]. Engineering Mechanics, 2009, 26(10): 74-78. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200910013.htm [156] ROEDER C W, CAMERON B, BROWN C B. Composite action in concrete filled tubes[J]. Journal of Structural Engineering, 1999, 125(5): 477-484. doi: 10.1061/(ASCE)0733-9445(1999)125:5(477) [157] 刘振宇, 陈宝春. 钢管混凝土界面法向粘结强度试验研究[J]. 广西大学学报(自然科学版), 2012, 37(4): 698-705. doi: 10.3969/j.issn.1001-7445.2012.04.014LIU Zhen-yu, CHEN Bao-chun. An experimental study on interfacial bond strength of concrete filled steel tube[J]. Journal of Guangxi University (Natural Science Edition), 2012, 37(4): 698-705. (in Chinese). doi: 10.3969/j.issn.1001-7445.2012.04.014 [158] 余新盟, 陈文杰, 陈宝春. 钢-混界面法向粘结强度测定及统计分析[J]. 东莞理工学院学报, 2016, 23(5): 83-90. doi: 10.3969/j.issn.1009-0312.2016.05.015YU Xin-meng, CHEN Wen-jie, CHEN Bao-chun. Measurement and statistical analysis of normal bonding strength between steel and concrete[J]. Journal of Dongguan University of Technology, 2016, 23(5): 83-90. (in Chinese). doi: 10.3969/j.issn.1009-0312.2016.05.015 [159] SHEN Pei-liang, LU Lin-nu, HE Yong-jia, et al. Experimental investigation on the autogenous shrinkage of steam cured ultra-high performance concrete[J]. Construction and Building Materials, 2018, 162: 512-522. doi: 10.1016/j.conbuildmat.2017.11.172 [160] 曹世勇. 超高性能水泥基复合材料自收缩特性及其机理研究[J]. 硅酸盐通报, 2015, 34(3): 813-818, 823. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201503048.htmCAO Shi-yong. Study on autogenous shrinkage characteristic and mechanism of ultra-high performance cementitous composite[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(3): 813-818, 823. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201503048.htm [161] 罗霞, 韦建刚, 李聪, 等. 密闭条件下UHPC的收缩性能试验研究[J]. 应用基础与工程科学学报, 2018, 26(4): 830-842. https://www.cnki.com.cn/Article/CJFDTOTAL-YJGX201804013.htmLUO Xia, WEI Jian-gang, LI Cong, et al. Experimental investigations of the shrinkage behavior of sealed UHPC[J]. Journal of Basic Science and Engineering, 2018, 26(4): 830-842. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YJGX201804013.htm [162] 李聪, 陈宝春, 黄卿维. 超高性能混凝土圆环约束收缩试验研究[J]. 工程力学, 2019, 36(8): 49-58. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201908005.htmLI Cong, CHEN Bao-chun, HUANG Qing-wei. Experimental research on shrinkage of ultra-high performance concrete under restrained rings[J]. Engineering Mechanics, 2019, 36(8): 49-58. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201908005.htm [163] 魏科丰, 贾善坡, 高源. 钢管RPC界面粘结强度试验研究[J]. 建筑结构, 2019, 49(22): 101-107. https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG201922018.htmWEI Ke-feng, JIA Shan-po, GAO Yuan. Experimental study on interfacial bond strength of reactive powder concrete-filled steel tube[J]. Building Structure, 2019, 49(22): 101-107. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG201922018.htm [164] 王冲, 蒲心诚, 刘芳, 等. 150-200MPa超高性能混凝土的配制[J]. 工业建筑, 2005, 35(1): 18-20. doi: 10.3321/j.issn:1000-8993.2005.01.006WANG Chong, PU Xin-cheng, LIU Fang, et al. The preparation of 150-200 MPa super high strength and high performance concrete[J]. Industrial Construction, 2005, 35(1): 18-20. (in Chinese). doi: 10.3321/j.issn:1000-8993.2005.01.006 [165] 阎培渝. 超高性能混凝土(UHPC)的发展与现状[J]. 混凝土世界, 2010(9): 36-41. doi: 10.3969/j.issn.1674-7011.2010.09.009YAN Pei-yu. Development and status of Ultra-High Strength Concrete (UHPC)[J]. China Concrete, 2010(9): 36-41. (in Chinese). doi: 10.3969/j.issn.1674-7011.2010.09.009 [166] WANG Yan, SHAO Xu-dong, CAO Jun-hui. Experimental study on basic performances of reinforced UHPC bridge deck with coarse aggregates[J]. Journal of Bridge Engineering, 2019, 24(12): 04019119-1-11. doi: 10.1061/(ASCE)BE.1943-5592.0001492 [167] MA Jian-xin, ORGASS M, DEHN F, et al. Comparative investigations on ultra-high performance concrete with and without coarse aggregates[C]//Kassel University. International Symposium on Ultra-high Performance Concrete (UHPC). Kassel: Kassel University, 2004: 205-212. [168] ZENG Xian-zhi, DENG Kai-lai, LIANG Huan-wei, et al. Uniaxial behavior and constitutive model of reinforcement confined coarse aggregate UHPC[J]. Engineering Structures, 2020, 207: 110261-1-11. doi: 10.1016/j.engstruct.2020.110261 [169] 张丽辉, 刘加平, 周华新, 等. 粗骨料与钢纤维对超高性能混凝土单轴拉伸性能的影响[J]. 材料导报, 2017, 31(23): 109-114. doi: 10.11896/j.issn.1005-023X.2017.023.015ZHANG Li-hui, LIU Jia-ping, ZHOU Hua-xin, et al. Effects of coarse aggregate and steel fiber on uniaxial tensile property of ultra-high performance concrete[J]. Materials Reports, 2017, 31(23): 109-114. (in Chinese). doi: 10.11896/j.issn.1005-023X.2017.023.015 [170] LI P P, YU Q L, BROUWERS H J H. Effect of coarse basalt aggregates on the properties of ultra-high performance concrete (UHPC)[J]. Construction and Building Materials, 2018, 170: 649-659. doi: 10.1016/j.conbuildmat.2018.03.109 [171] 彭园, 高育欣, 吴雄, 等. 骨料对140 MPa强度等级混凝土性能的影响研究[J]. 混凝土与水泥制品, 2015(1): 15-18. doi: 10.3969/j.issn.1000-4637.2015.01.004PENG Yuan, GAO Yu-xin, WU Xiong, et al. Study on the influence of aggregate on the performance of 140 MPa strength grade concrete[J]. China Concrete and Cement Products, 2015(1): 15-18. (in Chinese). doi: 10.3969/j.issn.1000-4637.2015.01.004 [172] 蒲心诚, 严吴南, 王冲, 等. 100-150 MPa超高强高性能混凝土的配制技术[J]. 混凝土与水泥制品, 1998(6): 3-7. https://www.cnki.com.cn/Article/CJFDTOTAL-HNTW806.000.htmPU Xin-cheng, YAN Wu-nan, WANG Chong, et al. Preparation technology of 100-150 MPa ultra-high strength and high performance concrete[J]. China Concrete and Cement Products, 1998(6): 3-7. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HNTW806.000.htm [173] SOBUZ H R, VISINTIN P, MOHAMED ALI M S M, et al. Manufacturing ultra-high performance concrete utilising conventional materials and production methods[J]. Construction and Building materials, 2016, 111: 251-261. doi: 10.1016/j.conbuildmat.2016.02.102 [174] 黄政宇, 李仕根. 含粗骨料超高性能混凝土力学性能研究[J]. 湖南大学学报(自然科学版), 2018, 45(3): 47-54. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201803006.htmHUANG Zheng-yu, LI Shi-gen. Study on mechanical properties of ultra high performance concrete with coarse aggregate[J]. Journal of Hunan University (Natural Sciences), 2018, 45(3): 47-54. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201803006.htm [175] 朋改非, 杨娟, 高育欣, 等. 含粗骨料的超高性能混凝土抗压强度的影响因素[J]. 华北水利水电学院学报, 2012, 33(6): 5-9. https://www.cnki.com.cn/Article/CJFDTOTAL-HBSL201206001.htmPENG Gai-fei, YANG Juan, GAO Yu-xin, et al. Factors influencing compressive strength of Ultra-High Performance Concrete with coarse aggregate[J]. Journal of North China Institute of Water Conservancy and Hydroelectric Power, 2012, 33(6): 5-9. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HBSL201206001.htm [176] TAO Zhong, SONG Tian-yi, UY B, et al. Bond behavior in concrete-filled steel tubes[J]. Journal of Constructional Steel Research, 2016, 120: 81-93. doi: 10.1016/j.jcsr.2015.12.030 [177] 黄政宇, 刘永强, 李操旺. 掺HCSA膨胀剂超高性能混凝土性能的研究[J]. 材料导报, 2015, 29(4): 116-121. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201504029.htmHUANG Zheng-yu, LIU Yong-qiang, LI Cao-wang. Performance research of ultra high performance concrete incorporating HCSA expansion agent[J]. Materials Reports, 2015, 29(4): 116-121. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201504029.htm [178] SHEN Pei-liang, LU Lin-nu, HE Yong-jia, et al. Investigation on expansion effect of the expansive agents in ultra-high performance concrete[J]. Cement and Concrete Composites, 2020, 105: 103425-1-13. doi: 10.1016/j.cemconcomp.2019.103425 [179] PARK J J, YOO D Y, KIM S W, et al. Combined Influence of expansive and shrinkage reducing admixtures on the shrinkage behavior of Ultra-High Performance Concrete[J]. Key Engineering Materials, 2012, 488/489: 242-245. [180] PARK J J, YOO D Y, KIM S W, et al. Autogenous shrinkage of ultra high performance concrete considering early age coefficient of thermal expansion[J]. Structural Engineering and Mechanics, 2014, 49(6): 763-773. doi: 10.12989/sem.2014.49.6.763 [181] MEDDAH M S, SUZUKI M, SATO R. Influence of a combination of expansive and shrinkage-reducing admixture on autogenous deformation and self-stress of silica fume high-performance concrete[J]. Construction and Building Materials, 2011, 25(1): 239-250. doi: 10.1016/j.conbuildmat.2010.06.033 [182] HASHOLT M T, JENSEN O M, KOVLER K, et al. Can superabsorent polymers mitigate autogenous shrinkage of internally cured concrete without compromising the strength?[J]. Construction and Building Materials, 2012, 31: 226-230. doi: 10.1016/j.conbuildmat.2011.12.062 [183] LIU Jian-hui, SHI Cai-jun, FARZADNIA N, et al. Effects of pretreated fine lightweight aggregate on shrinkage and pore structure of ultra-high strength concrete[J]. Construction and Building Materials, 2019, 204: 276-287. doi: 10.1016/j.conbuildmat.2019.01.205 [184] NGUYEN V T, YE G, YAN B K, et al. Hydration and microstructure of ultra high performance concrete incorporating rice husk ash[J]. Cement and Concrete Research, 2011, 41(11): 1104-1111. doi: 10.1016/j.cemconres.2011.06.009 [185] SHI Cai-jun, WU Ze-mei, XIAO Jian-fan, et al. A review on ultra high performance concrete: Part Ⅰ: raw materials and mixture design[J]. Construction and Building Materials, 2015, 101: 741-751. doi: 10.1016/j.conbuildmat.2015.10.088 [186] XUE Jun-qing, BRISEGHELLA B, HUANG Fu-yun, et al. Review of ultra-high performance concrete and its application in bridge engineering[J]. Construction and Building Materials, 2020, 260: 119844-1-12. doi: 10.1016/j.conbuildmat.2020.119844 [187] 闫志刚, 安明喆, 吴捧捧, 等. 钢管活性粉末混凝土界面粘结强度试验研究[J]. 中国铁道科学, 2009, 30(6): 7-11. doi: 10.3321/j.issn:1001-4632.2009.06.002YAN Zhi-gang, AN Ming-zhe, WU Peng-peng, et al. Experimental study of the bond strength at the interface of reactive powder concrete-filled steel tube columns[J]. China Railway Science, 2009, 30(6): 7-11. (in Chinese). doi: 10.3321/j.issn:1001-4632.2009.06.002