-
摘要: 为了解铁路运营隧道检测技术研究与应用情况, 梳理了隧道病害特点与检测方法, 从表观状态、内部状态、几何形态、高精度地面移动检测机器人和数据信息化5个方面, 分析了国内外检测技术现状, 探讨了检测技术体系与发展方向。分析结果表明: 表观状态检测主要有相机摄像和激光扫描技术, 相机摄像系统适用于车载平台, 检测速度达80 km·h-1, 激光扫描系统结构精巧, 检测速度约为5 km·h-1; 图像处理、计算机视觉是表观病害识别的2种技术, 拓展设计病害特征、提高识别效率、降低非病害因素干扰是图像处理技术进一步发展方向, 计算机视觉推广关键在于构建行业级病害样本库; 地质雷达是开展内部状态检测的关键技术, 地耦型雷达速度约为10 km·h-1, 空耦型雷达速度达80 km·h-1, 空耦型雷达检测系统关键在于优化天线结构、信号增强、抑制电气化设施和机械系统振动干扰, 地质雷达、红外热成像、超声层析成像、激光缺陷检测法等检测技术在探测范围、精度、效率等方面具有互补性, 可构成多技术综合运用策略; 几何形态检测主要有激光扫描、激光摄像、惯性测量技术, 激光扫描测量精度高, 速度约为10 km·h-1, 激光摄像速度达60 km·h-1, 提高激光摄像测量精度关键在于系统标定与振动补偿, 可基于惯性测量深化研究开展仰拱上拱变形检测; 发展和推广高精度地面移动检测机器人、检测数据信息化是与隧道规模相适应、状态精准管理相匹配的保障措施; 检测技术体系建议由“车载式快速综合检测+原位与地面移动精确检测+数据信息化平台”3部分组成, 未来发展方向应集中在空耦型雷达快速检测、复合变形快速精确测量、高精度地面移动检测、病害智能识别及多源数据融合分析等方面。Abstract: To understand the research and application status of inspection technology for railway operation tunnels, the characteristics and inspection methods of tunnel damage were summarized. The current status of inspection technology in domestic and foreign was analyzed from five aspects: exterior state, internal state, geometric shape, high-precision ground mobile inspection robot, and data informatization. The inspection technology framework and development direction were discussed. Analysis result shows that the exterior state inspection mainly includes the camera shooting and laser scanning technology. The camera shooting system is suitable for the vehicle platform with an inspection speed of 80 km·h-1. The laser scanning system has a compact structure and inspection speed of approximately 5 km·h-1. The image processing and computer vision are technologies for the exterior damage recognition. Regarding the image processing technology, a potential development direction is to expand and design the damage characteristics, improve the recognition efficiency, and reduce the interference of nondamage factors. The key to the promotion of computer vision is to build an industry-level disease sample database. The ground-penetrating radar is the key technology for the internal state detection, in which the speed of ground-coupled radar is approximately 10 km·h-1, while that of the air-coupled radar is 80 km·h-1. The air-coupled radar detection system focuses on optimizing the antenna structure, signal enhancement, and suppression of interference from the mechanical system vibration and electrification facilities. Detection technologies such as the ground-penetrating radar, infrared thermal imaging, ultrasonic tomography, and laser defect detection are complementaries in the detection range, accuracy, and efficiency, which can constitute acomprehensive application strategy of multi-technology. The geometric shape detection mainly includes the laser scanning, laser photography, and inertial measurement technology. The measurement accuracy of laser scanning is high. Its speed is approximately 10 km·h-1, while the laser photography speed is up to 60 km·h-1. The system calibration and vibration compensation are crucial to improve the measurement accuracy of laser photography. In addition, based on an inertial measurement technology, the deformation detection of inverted arch uplift can be carried out. The development and promotion of a high-precision ground mobile inspection robot and the informatization of detection data are guarantee measures that adapt to the scale of tunnels and match the state accurate management.Resultssuggest that the inspection technology framework should be composed of three parts: the vehicle mounted rapid comprehensive detection, in-situ and ground mobile accurate detection, and data information platform.The development direction should focus on the rapid inspection with an air-coupled radar, fast and accurate measurement of compound deformation, high-precision ground movement inspection, intelligent damage identification, and multi-source data fusion analysis.
-
表 1 隧道缺陷病害检测方法
Table 1. Inspection methods of tunnel defects and diseases
部位 类别 检测项目 项目属性 原位检测 移动检测 拱墙衬砌 缺陷 厚度 内部状态 钻芯法、冲击回波法 地质雷达 背后空洞或不密实 敲击、冲击回波法 地质雷达 混凝土强度 钻芯法、回弹法 病害 变形或移动 几何形态 全站仪 激光扫描激光摄像 开裂 表观状态 目视、声波法 激光扫描线阵相机 渗漏水 目视 激光扫描线阵相机红外成像 压溃剥落 目视 激光扫描线阵相机 隧底结构 缺陷 隧底不密实或空洞 内部状态 瑞雷波法高密度电法 仰拱或填充层厚度 地质雷达 病害 道床裂损 表观状态 声波法 仰拱上拱 几何形态 水准仪 惯性测量 仰拱或铺底裂损 内部状态 瑞雷波法高密度电法 -
[1] 田四明, 巩江峰. 截至2019年底中国铁路隧道情况统计[J]. 隧道建设, 2020, 40(2): 292-297. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD202002026.htmTIAN Si-ming, GONG Jiang-feng. Statistics of railway tunnels in China as of end of 2019[J]. Tunnel Construction, 2020, 40(2): 292-297. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD202002026.htm [2] 卢春房. 高速铁路桥隧工程养修模式与关键技术[J]. 中国铁路, 2017(7): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201707001.htmLU Chun-fang. Maintenance and repair mode and technologies for high speed railway bridges and tunnels[J]. Chinese Railways, 2017(7): 1-8. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201707001.htm [3] 中国铁路总公司运输局. 铁路隧道现况[J]. 隧道建设, 2015(6): 534. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201506011.htmTransportation Bureau of China Railway Corporation. Current situation of railway tunnel[J]. Tunnel Construction, 2015(6): 534. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201506011.htm [4] 牛道安. 铁路基础设施全寿命检测技术与发展[J]. 铁道建筑, 2020, 60(4): 5-8, 16. doi: 10.3969/j.issn.1003-1995.2020.04.02NIU Dao-an. Technology and development of railway infrastructure lifetime inspection[J]. Railway Engineering, 2020, 60(4): 5-8, 16. (in Chinese). doi: 10.3969/j.issn.1003-1995.2020.04.02 [5] 马伟斌, 柴金飞. 运营铁路隧道病害检测、监测、评估及整治技术发展现状[J]. 隧道建设, 2019, 39(10): 1553-1562. doi: 10.3973/j.issn.2096-4498.2019.10.002MA Wei-bin, CHAI Jin-fei. Development status of disease detection, monitoring, evaluation and treatment technology of railway tunnels in operation[J]. Tunnel Construction, 2019, 39(10): 1553-1562. (in Chinese). doi: 10.3973/j.issn.2096-4498.2019.10.002 [6] 肖广智. 从当前铁路隧道衬砌典型病害谈设计施工改进措施[J]. 隧道建设, 2018, 38(9): 1416-1422. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201809005.htmXIAO Guang-zhi. Discussion on design and construction improvement measures based on current typical diseases of railway tunnel lining[J]. Tunnel Construction, 2018, 38(9): 1416-1422. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201809005.htm [7] SASAMA H, UKAI M, OHTA M, et al. Inspection system for railway facilities using a continuously scanned image[J]. Electrical Engineering in Japan, 1998, 125(2): 52-64. doi: 10.1002/(SICI)1520-6416(19981115)125:2<52::AID-EEJ7>3.0.CO;2-N [8] STENT S, GHERARDI R, STENGER B, et al. Visual change detection on tunnel linings[J]. Machine Vision and Applications, 2016, 27(3): 319-330. doi: 10.1007/s00138-014-0648-8 [9] 宮田信裕. 赤外線·CCD カメラを搭載したトンネル検査車と画像処理技術[J]. コンクリート工学, 2000, 38(1): 79-80.MIYATA N. Tunnel inspection vehicle equipped with infrared/CCD camera and image processing technology[J]. Concrete Engineering, 2000, 38(1): 79-80. (in Japanese). [10] MONTERO R, VICTORES J G, MARTINEZ S, et al. Past, present and future of robotic tunnel inspection[J]. Automation in Construction, 2015, 59: 99-112. doi: 10.1016/j.autcon.2015.02.003 [11] FUJINO Y, SIRINGORINGO D M. Recent research and development programs for infrastructures maintenance, renovation and management in Japan[J]. Structure and Infrastructure Engineering, 2020, 16(1): 3-25. doi: 10.1080/15732479.2019.1650077 [12] TABRIZI K, CELAYA M, MILLER B S, et al. Damage assessment of tunnel lining by mobile laser scanning: Pittsburgh, Pennsylvania, implementation phase of FHWA SHRP 2 R06G Project[J]. Transportation Research Record, 2017(2642): 166-179. [13] 李健超, 张翠兵, 柴雪松, 等. 基于图像识别技术的隧道衬砌裂缝检测系统研究[J]. 铁道建筑, 2018, 58(1): 20-24. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201801005.htmLI Jian-chao, ZHANG Chui-bing, CHAI Xue-song, et al. Research on crack detection system of tunnel lining based on image recognition technology[J]. Railway Engineering, 2018, 58(1): 20-24. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201801005.htm [14] HUANG Hong-wei, SUN Yan, XUE Ya-dong, et al. Inspection equipment study for subway tunnel defects by grey-scale image processing[J]. Advanced Engineering Informatics, 2017, 32: 188-201. doi: 10.1016/j.aei.2017.03.003 [15] 王平让, 黄宏伟, 薛亚东. 隧道衬砌裂缝自动检测性能影响因素模型试验研究[J]. 岩石力学与工程学报, 2012, 31(8): 1705-1714. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201208025.htmWANG Ping-rang, HUANG Hong-wei, XUE Ya-dong. Model test study of factors affecting automatic detection performance of cracks in tunnel lining[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(8): 1705-1714. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201208025.htm [16] 李庆桐, 黄宏伟, 薛亚东, 等. 隧道衬砌图像清晰度影响因素的模型试验研究[J]. 岩石力学与工程学报, 2017, 36(增2): 3915-3926. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2017S2024.htmLI Qing-tong, HUANG Hong-wei, XUE Ya-dong, et al. Model test study on factors affecting image sharpness of tunnel lining[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(S2): 3915-3926. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2017S2024.htm [17] 豆海涛, 黄宏伟, 薛亚东. 隧道渗漏水红外辐射特征模型试验及图像处理[J]. 岩石力学与工程学报, 2011, 30(增2): 3386-3391. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S2005.htmDOU Hai-tao, HUANG Hong-wei, XUE Ya-dong. Model test on infrared radiation feature of tunnel seepage and image processing[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(S2): 3386-3391. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S2005.htm [18] ATTARD L, DEBONO C J, VALENTINO G, et al. Tunnel inspection using photogrammetric techniques and image processing: areview[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 144: 180-188. doi: 10.1016/j.isprsjprs.2018.07.010 [19] UKAI M. Development of image processing technique for detection of tunnel wall deformation using continuously scanned image[J]. Quarterly Report of RTRI, 2000, 41(3): 120-126. doi: 10.2219/rtriqr.41.120 [20] 刘学增, 叶康. 隧道衬砌裂缝的远距离图像测量技术[J]. 同济大学学报(自然科学版), 2012, 40(6): 829-836. doi: 10.3969/j.issn.0253-374x.2012.06.005LIU Xue-zeng, YE Kang. A long-distance image measuring technique for crack on tunnel lining[J]. Journal of Tongji University (Natural Science), 2012, 40(6): 829-836. (in Chinese). doi: 10.3969/j.issn.0253-374x.2012.06.005 [21] 王睿, 漆泰岳, 胡燊, 等. 隧道衬砌裂缝检测中的背景处理和断点连接算法[J]. 应用基础与工程科学学报, 2017, 25(4): 742-750. https://www.cnki.com.cn/Article/CJFDTOTAL-YJGX201704009.htmWANG Rui, QI Tai-yue, HU Shen, et al. Background processing of tunnel lining crack detection and breakpoint connection algorithm[J]. Journal of Basic Science and Engineering, 2017, 25(4): 742-750. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YJGX201704009.htm [22] 王平让, 黄宏伟, 薛亚东. 基于图像局部网格特征的隧道衬砌裂缝自动识别[J]. 岩石力学与工程学报, 2012, 31(5): 991-999. doi: 10.3969/j.issn.1000-6915.2012.05.016WANG Ping-rang, HUANG Hong-wei, XUE Ya-dong. Automatic recognition of cracks in tunnel lining based on characteristics of local grids in images[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(5): 991-999. (in Chinese). doi: 10.3969/j.issn.1000-6915.2012.05.016 [23] 蒲炳荣, 漆泰岳, 黄晓东, 等. 隧道衬砌分岔裂缝特征提取研究[J]. 铁道标准设计, 2019, 63(10): 135-141. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201910026.htmPU Bing-rong, QI Tai-yue, HUANG Xiao-dong, et al. Study on characteristics extraction of bifurcated crack of tunnel lining[J]. Railway Standard Design, 2019, 63(10): 135-141. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201910026.htm [24] 黄宏伟, 孙龑, 薛亚东. 基于机器视觉的隧道衬砌表面病害检测技术研究进展[J]. 现代隧道技术, 2014, 51(增1): 19-31. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-OGTY201411003003.htmHUANG Hong-wei, SUN Yan, XUE Ya-dong. Research progress of machine vision based disease detecting techniques for the tunnel lining surface[J]. Modern Tunneling Technology, 2014, 51(S1): 19-31. (in Chinese). https://cpfd.cnki.com.cn/Article/CPFDTOTAL-OGTY201411003003.htm [25] MAKANTASIS K, PROTOPAPADAKIS E, DOULAMIS A, et al. Deep convolutional neural networks for efficient vision based tunnel inspection[C]//IEEE. 2015 IEEE International Conference on Intelligent Computer Communication and Processing (ICCP). New York: IEEE, 2015: 335-342. [26] CHA Y J, CHOI W, BÜYÜKÖZTÜRK O. Deep learning-based crack damage detection using convolutional neural networks[J]. Computer-Aided Civil and Infrastructure Engineering, 2017, 32(5): 361-378. doi: 10.1111/mice.12263 [27] 薛亚东, 李宜城. 基于深度学习的盾构隧道衬砌病害识别方法[J]. 湖南大学学报(自然科学版), 2018, 45(3): 100-109. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201803012.htmXUE Ya-dong, LI Yi-cheng. A method of disease recognition for shield tunnel lining based on deep learning[J]. Journal of Hunan University (Natural Sciences), 2018, 45(3): 100-109. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201803012.htm [28] 黄宏伟, 李庆桐. 基于深度学习的盾构隧道渗漏水病害图像识别[J]. 岩石力学与工程学报, 2017, 36(12): 2861-2871. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201712001.htmHUANG Hong-wei, LI Qing-tong. Water leakage image recognition of shield tunnel by deep learning[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(12): 2861-2871. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201712001.htm [29] HUANG Hong-wei, LI Qing-tong, ZHANG Dong-ming. Deep learning based image recognition for crack and leakage defects of metro shield tunnel[J]. Tunnelling and Underground Space Technology, 2018, 77: 166-176. doi: 10.1016/j.tust.2018.04.002 [30] 柴雪松, 朱兴永, 李健超, 等. 基于深度卷积神经网络的隧道衬砌裂缝识别算法[J]. 铁道建筑, 2018, 58(6): 60-65. doi: 10.3969/j.issn.1003-1995.2018.06.16CHAI Xue-song, ZHU Xing-yong, LI Jian-chao, et al. Tunnel lining crack identification algorithm based on deep convolutional neural network[J]. Railway Engineering, 2018, 58(6): 60-65. (in Chinese). doi: 10.3969/j.issn.1003-1995.2018.06.16 [31] WIMSATT A, WHITE J, LEUNG C, et al. Mapping voids, debonding, delamination, moisture, and other defects behind or within tunnel linings[R]. Washington DC: Transportation Research Board, 2013. [32] 松沼政明, 鈴木尊. 電磁波レーダを用いたトンネル覆工検査車の検証[J]. 建設の施工企画, 2011(736): 34-38.MATSUNUMA M, SUZUKI T. Verification of tunnel lining inspection car using electromagnetic radar[J]. Construction Project, 2011(736): 34-38. (in Japanese). [33] 齐法琳, 黎国清, 江波. 铁路隧道状态检查车的研制及应用[J]. 中国铁路, 2013(9): 75-77, 99. doi: 10.3969/j.issn.1001-683X.2013.09.021QI Fa-lin, LI Guo-qing, JIANG Bo. Development and application of railway tunnel state inspection vehicle[J]. Chinese Railways, 2013(9): 75-77, 99. (in Chinese). doi: 10.3969/j.issn.1001-683X.2013.09.021 [34] ZAN Yue-wen, LI Zhi-lin, SU Guo-feng, et al. An innovative vehicle-mounted GPR technique for fast and efficient monitoring of tunnel lining structural conditions[J]. Case Studies in Nondestructive Testing and Evaluation, 2016, 6: 63-69. doi: 10.1016/j.csndt.2016.10.001 [35] 昝月稳, 苏国锋, 魏文涛, 等. 高铁隧道车载探地雷达检测技术及其应用[J]. 现代隧道技术, 2018, 55(增2): 1288-1294. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD2018S2164.htmZAN Yue-wen, SU Guo-feng, WEI Wen-tao, et al. Detection technology of the vehicle-mounted GPR and its application in high-speed railway tunnels[J]. Modern Tunneling Technology, 2018, 55(S2): 1288-1294. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD2018S2164.htm [36] 杨艳青, 贺少辉, 江波, 等. 铁路隧道整体式衬砌地质雷达检测模拟试验研究[J]. 铁道学报, 2012, 34(9): 93-98. doi: 10.3969/j.issn.1001-8360.2012.09.016YANG Yan-qing, HE Shao-hui, JIANG Bo, et al. Simulation test of GPR detection of integral lining of railway tunnel[J]. Journal of the China Railway Society, 2012, 34(9): 93-98. (in Chinese). doi: 10.3969/j.issn.1001-8360.2012.09.016 [37] 徐俊. 地下工程结构多类型缺陷的雷达信号自动辨识方法与工程应用[D]. 北京: 北京科技大学, 2019.XU Jun. GPR signal automatic identification method and engineering application for multi-type defects in underground structures[D]. Beijing: University of Science and Technology Beijing, 2019. (in Chinese). [38] 徐辉. 基于深度学习的隧道衬砌病害GPR探测智能反演与识别方法[D]. 济南: 山东大学, 2019.XU Hui. Tunnel lining diseases GPR detection intelligent inversion and identification methods based on deep learning[D]. Jinan: Shandong University, 2019. (in Chinese). [39] LALAGÜE A, LEBENS M A, HOFF I, et al. Detection of rockfall on a tunnel concrete lining with ground-penetrating radar (GPR)[J]. Rock Mechanics and Rock Engineering, 2016, 49(7): 2811-2823. doi: 10.1007/s00603-016-0943-y [40] 安田亨, 山本秀樹, 北澤隆一. 時速50 km·h-1 でトンネル空洞探査: 高速走行型非接触レーダーによるトンネル覆工巻厚·空洞探査を実現: MIMM-R (ミーム-アール)[J]. 建設機械施工, 2014, 66(12): 51-56. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202106008.htmYASUDA T, YAMAMOTO H, KITAZAWA R. Tunnel cavity exploration at 50 km·h-1: realization of tunnel lining thickness and cavity exploration by high speed non-contact radar[J]. Construction Machine, 2014, 66(12): 51-56. (in Japanese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202106008.htm [41] XU Xian-lei, XIA Tian, VENKATACHALAM A S, et al. Development of high-speed ultrawideband ground-penetrating radar for rebar detection[J]. Journal of Engineering Mechanics, 2013, 139(3): 272-285. doi: 10.1061/(ASCE)EM.1943-7889.0000458 [42] 尹德, 叶盛波, 刘晋伟, 等. 一种用于高速公路探地雷达的新型时域超宽带TEM喇叭天线[J]. 雷达学报, 2017, 6(6): 611-618. https://www.cnki.com.cn/Article/CJFDTOTAL-LDAX201706006.htmYIN De, YE Sheng-bo, LIU Jin-wei, et al. Novel time-domain ultra-wide band tem horn antenna for highway GPR applications[J]. Journal of Radars, 2017, 6(6): 611-618. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LDAX201706006.htm [43] 苏国锋. 车载GPR检测高铁隧道的试验研究[D]. 成都: 西南交通大学, 2017.SU Guo-feng. Experimental study on vehicle-mounted GPR monitoring high-speed railway tunnel[D]. Chengdu: Southwest Jiaotong University, 2017. (in Chinese). [44] 熊洪强. 车载GPR数据合成孔径聚焦成像技术研究[D]. 成都: 西南交通大学, 2018.XIONG Hong-qiang. Research on synthetic aperture focusing imaging technique of the vehicle-mounted GPR data[D]. Chengdu: Southwest Jiaotong University, 2018. (in Chinese). [45] LEI Yang, TIAN Tian. The vibration characteristic and impact analysis of the tunnel lining detection device based on arc rotating multi-section mechanism[J]. Advances in Mechanical Engineering, 2020, 12(4): 1-18. [46] 川上幸一, 小西真治, 篠原秀明, 等. 赤外線熱計測による地下鉄覆工コンクリートの浮き検出方法の検討とその応用[J]. 土木学会論文集F1 (トンネル工学), 2018, 74(1): 25-39.KAWAKAMI K, KONISHI S, SHINOHARAH, et al. Infrared thermometry application to the detection of voidin the subway tunnel lining surface[J]. Journal of Japan Society of Civil Engineers F1 (Tunnel Engineering), 2018, 74(1): 25-39. (in Japanese). [47] KURAHASHI S, MIKAMI K, KITAMURA T, et al. Demonstration of 25 Hz inspection speed laser remote sensing for internal concrete defects[J]. Journal of Applied Remote Sensing, 2018, 12(1): 1-11. [48] 水口尚司, 大西有三, 徳田浩一郎, 等. 道路トンネル走行型計測車両におけるひび割れ精度検証の報告[J]. 土木学会論文集F2 (地下空間研究), 2017, 73(1): 1-10.MIZUGUCHI T, OHNISHI Y, TOKUDA K, et al. Inspection of the crack measurement of the road tunnel by mobile imaging technology[J]. Journal of Japan Society of Civil Engineers F2 (Underground Space Research), 2017, 73(1): 1-10. (in Japanese). [49] 水口尚司, 大西有三, 西山哲, 等. 道路トンネルにおける画像及びレーザデータを用いたマネジメント手法の研究[J]. 土木学会論文集F2 (地下空間研究), 2015, 71(1): 20-30.MIZUGUCHI T, OHNISHI Y, NISHIYAMA S, et al. Research of maintenance of road tunnel by MIMM[J]. Journal of Japan Society of Civil Engineers F2 (Underground Space Research), 2015, 71(1): 20-30. (in Japanese). [50] 段培勇, 薛峰, 谢锦妹, 等. 激光扫描技术在铁路限界检测中的应用研究[J]. 铁道建筑, 2013(8): 89-92. doi: 10.3969/j.issn.1003-1995.2013.08.28DUAN Pei-yong, XUE Feng, XIE Jin-mei, et al. Research on the application of laser scanning technology in railway gauge inspection[J]. Railway Engineering, 2013(8): 89-92. (in Chinese). doi: 10.3969/j.issn.1003-1995.2013.08.28 [51] 杜兆宇. 移动三维激光扫描系统在铁路限界测量中的应用研究[J]. 测绘通报, 2019(增2): 185-187. https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB2019S2046.htmDU Zhao-yu. Application research of mobile 3D laser scanning system in railway limit measurement[J]. Bulletin of Surveying and Mapping, 2019(S2): 185-187. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB2019S2046.htm [52] AI Qing, YUAN Yong, BI Xiang-li. Acquiring sectional profile of metro tunnels using charge-coupled device cameras[J]. Structure and Infrastructure Engineering, 2016, 12(9): 1065-1075. doi: 10.1080/15732479.2015.1076855 [53] ZHAN Dong, YU Long, XIAO Jian, et al. Multi-camera and structured-light vision system (MSVS) for dynamic high-accuracy 3D measurements of railway tunnels[J]. Sensors, 2015(15): 8664-8684. [54] 王雪梅, 倪文波. 铁路轨道几何参数捷联惯性测量基准的建立[J]. 西南交通大学学报, 2012, 47(3): 355-360. doi: 10.3969/j.issn.0258-2724.2012.03.001WANG Xue-mei, NI Wen-bo. Measurement foundation of railway track geometrical parameters based on strapdown inertial technique[J]. Journal of Southwest Jiaotong University, 2012, 47(3): 355-360. (in Chinese). doi: 10.3969/j.issn.0258-2724.2012.03.001 [55] 李盛, 胡文彬, 杨燕, 等. 基于光纤陀螺的大跨桥梁连续线形检测技术研究[J]. 桥梁建设, 2014, 44(5): 69-74. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201405015.htmLI Sheng, HU Wen-bin, YANG Yan, et al. Research of fog-based measurement technique for continuous curve modes of long span bridge[J]. Bridge Construction, 2014, 44(5): 69-74. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201405015.htm [56] GAN Wei-bing, HU Wen-bin, LIU Fang, et al. Bridge continuous deformation measurement technology based on fiber optic gyro[J]. Photonic Sensors, 2016, 6(1): 71-77. doi: 10.1007/s13320-015-0276-6 [57] 高橋英二, 迫田尚和, 朝日賢一, 等. 高精細高速画像処理カメラによるトンネル形状自動計測装置[J]. 計測自動制御学会論文集, 2012, 48(12): 863-871.EIJI T, NAOKAZU S, KENICHI A, et al. Three dimensional profile measurement system for tunnel surface using 1.3 mega-pixels high speed image processing camera[J]. Journal of Control, Measurement, and System Integration, 2012, 48(12): 863-871. (in Japanese). [58] MENENDEZ E, VICTORES J G, MONTERO R, et al. Tunnel structural inspection and assessment using an autonomous robotic system[J]. Automation in Construction, 2018, 87: 117-126. doi: 10.1016/j.autcon.2017.12.001