留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

智能网联汽车协同生态驾驶策略综述

杨澜 赵祥模 吴国垣 徐志刚 MATTHEWBarth 惠飞 郝鹏 韩梦杰 赵周桥 房山 景首才

杨澜, 赵祥模, 吴国垣, 徐志刚, MATTHEWBarth, 惠飞, 郝鹏, 韩梦杰, 赵周桥, 房山, 景首才. 智能网联汽车协同生态驾驶策略综述[J]. 交通运输工程学报, 2020, 20(5): 58-72. doi: 10.19818/j.cnki.1671-1637.2020.05.004
引用本文: 杨澜, 赵祥模, 吴国垣, 徐志刚, MATTHEWBarth, 惠飞, 郝鹏, 韩梦杰, 赵周桥, 房山, 景首才. 智能网联汽车协同生态驾驶策略综述[J]. 交通运输工程学报, 2020, 20(5): 58-72. doi: 10.19818/j.cnki.1671-1637.2020.05.004
YANG Lan, ZHAO Xiang-mo, WU Guo-yuan, XU Zhi-gang, MATTHEW Barth, HUI Fei, HAO Peng, HAN Meng-jie, ZHAO Zhou-qiao, FANG Shan, JING Shou-cai. Review on connected and automated vehicles based cooperative eco-driving strategies[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5): 58-72. doi: 10.19818/j.cnki.1671-1637.2020.05.004
Citation: YANG Lan, ZHAO Xiang-mo, WU Guo-yuan, XU Zhi-gang, MATTHEW Barth, HUI Fei, HAO Peng, HAN Meng-jie, ZHAO Zhou-qiao, FANG Shan, JING Shou-cai. Review on connected and automated vehicles based cooperative eco-driving strategies[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5): 58-72. doi: 10.19818/j.cnki.1671-1637.2020.05.004

智能网联汽车协同生态驾驶策略综述

doi: 10.19818/j.cnki.1671-1637.2020.05.004
基金项目: 

国家重点研发计划项目 2018YFB1600604

国家自然科学基金项目 61703053

国家自然科学基金项目 61973045

中国博士后科学基金项目 2017M623091

陕西省重点研发计划项目 2018ZDCXLGY-05-01

陕西省博士后科研项目 2018BSHYDZZ64

陕西省自然科学基础研究计划项目 2018JQ6035

中央高校基本科研业务费专项资金项目 300102240203

详细信息
    作者简介:

    杨澜(1985-), 女, 陕西咸阳人, 长安大学高级工程师, 工学博士, 从事车联网及其应用技术研究

    通讯作者:

    吴国垣(1979-), 男, 河南南阳人, 加利福尼亚大学河滨分校副研究员, 工学博士

  • 中图分类号: U491

Review on connected and automated vehicles based cooperative eco-driving strategies

Funds: 

National Key Research and Development Program of China 2018YFB1600604

National Natural Science Foundation of China 61703053

National Natural Science Foundation of China 61973045

China Postdoctoral Science Foundation 2017M623091

Shaanxi Province Key Research and Development Program 2018ZDCXLGY-05-01

Shaanxi Province Postdoctoral Science Foundation 2018BSHYDZZ64

Natural Science Foundation of Shaanxi Province 2018JQ6035

Fundamental Research Funds for the Central Universities 300102240203

More Information
  • 摘要: 为了跟踪近年来智能网联汽车(CAV)协同生态驾驶策略的研究进展, 分析了车辆、驾驶行为、交通网络和社会这4类因素对CAV能耗的影响程度, 以车辆、基础设施和旅行者为对象对目前CAV生态研究进行分类, 重点分析了信号交叉口生态驶入与离开、生态协同自适应巡航控制、匝道合流区生态协同驾驶、生态协同换道轨迹规划和生态路由5种典型车辆协同生态驾驶应用场景的研究现状。分析结果表明: 相比人类驾驶方式, 在任何交通流量CAV 100%渗透率的条件下和低交通流量CAV部分渗透率的条件下, CAV油耗节省效果显著, 最高可达63%, 而具有部分智能化和网联化等级的CAV油耗可至少节省7%;现有研究较少考虑人机共驾情况下, 驾驶人反应延迟和自动控制器传输延迟导致的轨迹跟踪偏离; 现有研究将车车通信/车路通信假定为理想数据交互过程, 未考虑通信拓扑、传输时延、通信失效与基站切换等因素对CAV生态协同驾驶策略的影响; 现有研究较少探讨多车道、交叉口转向-直行共用车道和U型车道等交通场景, 以及不同智能网联等级CAV与人类驾驶汽车、行人、自行车等共存的混合交通条件下的生态驾驶策略; 受限于自动驾驶技术和基础设施尚未成熟和完善, 真实交通场景下的测试验证工作尚未开展; 车辆控制、车车通信、多车协同、混合交通流场景、半实物仿真测试和真实交通场景测试等方面将是CAV协同生态驾驶策略的进一步发展方向。

     

  • 图  1  CAV能源消耗的影响因素

    Figure  1.  Factors influencing energy consumption of CAV

    图  2  CAV感知与通信设备配置

    Figure  2.  CAV configuration equipment for sensing and communication

    图  3  不同CAV机制的节能程度[32]

    Figure  3.  Energy savings of different CAV mechanisms

    图  4  CAV生态研究分类

    Figure  4.  Classification of CAV ecological research

    图  5  单信号交叉口EAD策略

    Figure  5.  EAD method at single signalized intersection

    图  6  重型卡车Eco-CACC

    Figure  6.  Eco-CACC for heavy trucks

    图  7  单匝道合流区CAV合流

    Figure  7.  Eco-ramp merging in single ramp

    图  8  CAV车辆生态协同换道轨迹规划

    Figure  8.  Eco-cooperative lane-changing trajectory planning

    表  1  道路类别

    Table  1.   Road categories

    道路类别 公路 城市道路
    1 平原、微丘地形的高速公路与一、二级公路
    2 平原、微丘地形的三、四级公路, 山岭、重丘地形的高速公路 平原、微丘地形的一~四级道路
    3 山岭、重丘地形的一~三级公路 重丘地形的一~四级道路
    4 平原、微丘地形的级外公路 级外道路
    5 山岭、重丘地形的四级公路
    6 山岭、重丘地形的级外公路
    下载: 导出CSV

    表  2  生态路由研究的部分案例

    Table  2.   Some cases of eco-routing research

    研究者 模型聚合级别 模型应用规模 一次优化目标
    交通模型 油耗/排放模型
    Rakha等[92] 微观交通模型 微观排放模型 2个小型案例 油耗或排放
    Sun等[93] 微观交通模型 微观排放模型 20个信号交叉口小案例 时间或效率
    Bandeira等[94] 微观交通模型 微观排放模型 葡萄牙某77 700人口城市 排放
    Tzeng等[95] 宏观交通模型 宏观交通模型 台北市城市道路 油耗和排放
    Luo等[96] 宏观交通模型 微观排放模型 8条链路的交通网络 时间或者油耗和排放
    Long等[97] 中观交通模型 宏观排放模型 24条链路的大型案例 时间和排放
    Azizh等[98] 中观交通模型 宏观平均速度排放模型 2个小型案例 时间和排放
    Guo等[99] 微观模型、宏观模型 宏观排放模型 尼亚加拉地区 油耗和排放
    下载: 导出CSV
  • [1] 郑昕, FRIDLEY D, 周南, 等. 国际石油消费趋势与政策回顾[R]. 旧金山: 劳伦斯伯克利国家实验室, 2019. ZHENG Xin, FRIDLEY D, ZHOU Nan, et al. Review of international oil consumption trends and policies[R]. San Francisco: Lawrence Berkeley National Laboratory, 2019. (in Chinese).
    [2] ERSAL T, KOLMANOVSKY I, MASOUD N, et al. Connected and automated road vehicles: state of the art and future challenges[J]. Vehicle System Dynamics, 2020, 58(5): 672-704. doi: 10.1080/00423114.2020.1741652
    [3] GARCIA-CASTRO A, MONZON A, VALDES C, et al. Modeling different penetration rates of eco-driving in urban areas: impacts on traffic flow and emissions[J]. International Journal of Sustainable Transportation, 2017, 11(4): 282-294. doi: 10.1080/15568318.2016.1252972
    [4] XU Zhi-gang, WEI Tao, EASA S, et al. Modelling relationship between truck fuel consumption and driving behavior using data from internet of vehicles[J]. Computer-Aid Civil and Infrastructure Engineering, 2018, 33: 209-219. doi: 10.1111/mice.12344
    [5] 付锐, 张雅丽, 袁伟. 生态驾驶研究现状及展望[J]. 中国公路学报, 2019, 32(3): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201903002.htm

    FU Rui, ZHANG Ya-li, YUAN Wei. Progress and prospect in research on eco-driving[J]. China Journal of Highway Transport, 2019, 32(3): 1-12. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201903002.htm
    [6] BROOKHUIS K, DE WAARD D. Limiting speed, towards an intelligent speed adapter (ISA)[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 1999, 2(2): 81-90. doi: 10.1016/S1369-8478(99)00008-X
    [7] CHEN Yu-zhong, FENG Yong-qin, YIN Yan, et al. Improvement in design and manufacture of automobile based on ergonomics theory[J]. Applied Mechanics and Materials, 2014, 505-506: 292-296. doi: 10.4028/www.scientific.net/AMM.505-506.292
    [8] BARKENBUS J N. Eco-driving: an overlooked climate change initiative[J]. Energy Policy, 2010, 38(2): 762-769. doi: 10.1016/j.enpol.2009.10.021
    [9] BARTH M, BORIBOONSOMISN K. Energy and emissions impacts of a freeway-based dynamic eco-driving system[J]. Transportation Research Part D: Transport and Environment, 2009, 14(6): 400-410. doi: 10.1016/j.trd.2009.01.004
    [10] TAIEBAT M, BROWN A L, SAFFORD H R, et al. A review on energy, environmental, and sustainability implications of connected and automated vehicles[J]. Environmental Science and Technology, 2018, 52: 11449-11465.
    [11] 李克强, 戴一凡, 李升波, 等. 智能网联汽车(ICV)技术的发展现状及趋势[J]. 汽车安全与节能学报, 2017, 8(1): 1-14. doi: 10.3969/j.issn.1674-8484.2017.01.001

    LI Ke-qiang, DAI Yi-fan, LI Sheng-bo, et al. State-of-the-art and technical trends of intelligent and connected vehicles[J]. Journal Automotive Safety and Energy, 2017, 8(1): 1-14. (in Chinese). doi: 10.3969/j.issn.1674-8484.2017.01.001
    [12] PANDAZIS J. eCoMove: cooperative ITS for green mobility[C]//IEEE. 18th European Wireless Conference. New York: IEEE, 2012: 1-5.
    [13] PACHECO-TORGAL F. Eco-efficient construction and building materials research under the EU framework programme horizon 2020[J]. Construction and Building Materials, 2014, 51: 151-162. doi: 10.1016/j.conbuildmat.2013.10.058
    [14] MILLER K, DRUMWRIGHT L G, KOSTREBA A, et al. Applications for the environment: real-time information synthesis (AERIS)[R]. Washington DC: U. S. Department of Transportation, 2011.
    [15] LIU Xian-bing, YAMAMOTO R, SUK S. A survey of company's awareness and approval of market-based instruments for energy saving in Japan[J]. Journal of Cleaner Production. 2014, 78: 35-47. doi: 10.1016/j.jclepro.2014.05.005
    [16] XIA Hai-tao, BORIBOONSOMSIN K, SCHWEIZER F, et al. Field operational testing of eco-approach technology at a fixed-time signalized intersection[C]//IEEE. 15th International IEEE Conference on Intelligent Transportation Systems. New York: IEEE, 2012: 188-193.
    [17] 郭嘉文. 国家"十三五"交通领域科技创新专项规划发布[J]. 广东交通, 2017, 3: 33-34. doi: 10.3969/j.issn.1671-8496.2017.03.008

    GUO Jia-wen. Release of specialfund for traffic scientific and technological innovation of the "national 13th five-year plan"[J]. Guangdong Transportation, 2017, 3: 33-34. (in Chinese). doi: 10.3969/j.issn.1671-8496.2017.03.008
    [18] 黎丽, 谢伟, 魏书传, 等. 中国制造2025[J]. 金融经济, 2015(13): 10-15. https://www.cnki.com.cn/Article/CJFDTOTAL-JRJJ201513004.htm

    LI Li, XIE Wei, WEI Shu-chuan, et al. Made in China 2025 strategy[J]. Financial Economy, 2015(13): 10-15. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JRJJ201513004.htm
    [19] HOEKMAN S K, BROCH A, LIU Xiao-wei. Environmental implications of higher ethanol production and use in the U. S. : a literature review. Part Ⅰ—impacts on water, soil, and air quality[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 3159-3177. doi: 10.1016/j.rser.2017.05.052
    [20] 毛保华, 贾顺平, 孙启鹏, 等. 不同交通方式能耗与排放因子及其可比性研究[R]. 北京: 中国综合交通研究中心, 2009. MAO Bao-hua. JIA Shun-ping, SUN Qi-peng. Energy consumption, emissions and their comparison among different transport modes[R]. Beijing: Integrated Transport Research Center of China, 2009. (in Chinese).
    [21] CHEN Yu-che, MEIER A. Fuel consumption impacts of auto roof racks[J]. Energy Policy, 2016, 92, 325-333. doi: 10.1016/j.enpol.2016.02.031
    [22] WU Guo-yuan, BORIBOONSOMSIN K, XIA Hai-tao, et al. Supplementary benefits from partial vehicle automation in an ecoapproach and departure application at signalized intersections[J]. Transportation Research Record. 2014(2424): 66-75.
    [23] MUSLIM N H, KEYVANFAR A, SHAFAGHAT A, et al. Green driver: travel behaviors revisited on fuel saving and less emission[J]. Sustainability, 2018, 10: 1-30. doi: 10.3390/su10020001
    [24] DEVLIEGER I, DE KEUKELEERE D, KRETZSCHMAR J G. Environmental effects of driving behavior and congestion related to passenger cars[J]. Atmospheric Environment, 2000, 34(27): 4649-4655. doi: 10.1016/S1352-2310(00)00217-X
    [25] ZORROFI S, FILIZADEH S, ZANETEL P. A simulation study of the impact of driving patterns and driver behavior on fuel economy of hybrid transit buses[C]//IEEE. Proceedings of the Vehicle Power and Propulsion Conference. New Yrok: IEEE, 2009: 572-577.
    [26] JEFFREY G, MATTHEW E, WITT S. Analyzing vehicle fuel saving opportunities through intelligent driver feedback[J]. SAE International Journal of Passenger Cars, 2012, 5(2): 450-461.
    [27] SHANKAR R, MARCO J. Method for estimating the energy consumption of electric vehicles and plug-in hybrid electric vehicles under real-world driving conditions[J]. IET Intelligent Transport Systems, 2013, 7(1): 138-150. doi: 10.1049/iet-its.2012.0114
    [28] FAGNANT D J, KOCKELMAN K. Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations[J]. Transportation Research Part A: Policy and Practice, 2015, 77: 167-181. doi: 10.1016/j.tra.2015.04.003
    [29] TU Ran, ALFASEEH L, DJAVADIAN S, et al. Quantifying the impacts of dynamic control in connected and automated vehicles on greenhouse gas emissions and urban NO2 concentrations[J]. Transportation Research Part D: Transport and Environment, 2019, 73: 142-151. doi: 10.1016/j.trd.2019.06.008
    [30] RIOS-TORRES J, MALIKOPOULOS A A. Impact of partial penetrations of connected and automated vehicles on fuel consumption and traffic flow[J]. IEEE Transactions on Intelligent Vehicles, 2018: 3(4): 453-462. doi: 10.1109/TIV.2018.2873899
    [31] SCHITO P, BRAGHIN F. Numerical and experimental investigation on vehicles in platoon[J]. SAE International Journal of Commercial Vehicles, 2012, 5(1): 63-71. doi: 10.4271/2012-01-0175
    [32] WADUD Z, MACKENZIE D, LEIBY P. Help or hindrance?The travel, energy and carbon impacts of highly automated vehicles[J]. Transportation Research Part A: Policy and Practice, 2016, 86: 1-18. doi: 10.1016/j.tra.2015.12.001
    [33] TIAN Dan-yang, WU Guo-yuan, BORIBOONSOMSIN K, et al. Performance measurement evaluation framework and co-benefit/tradeoff analysis for connected and automated vehicles (CAV) applications: a survey[J]. IEEE Intelligent Transportation Systems Magazine, 2018, 10(3): 110-122. doi: 10.1109/MITS.2018.2842020
    [34] ASADI B, VAHIDI A. Predictive cruise control: utilizing upcoming traffic signal information for improving fuel economy and reducing trip time[J]. IEEE Transactions on Control Systems Technology, 2011, 19(3): 707-714. doi: 10.1109/TCST.2010.2047860
    [35] HOMCHAUDHURI B, VAHIDI A, PISU P, et al. Fast model predictive control-based fuel efficient control strategy for a group of connected vehicles in urban road conditions[J]. IEEE Transactions on Control Systems Technology, 2017, 25(2): 760-767. doi: 10.1109/TCST.2016.2572603
    [36] HOMCHAUDHURI B, VAHIDI A, PISU P. A fuel economic model predictive control strategy for a group of connected vehicles in urban roads[C]∥IEEE. Proceedings of the American Control Conference. New York: IEEE, 2015: 2741-2746.
    [37] RAKHA H, KAMALANATHSHARMA R K. Eco-driving at signalized intersections using V2I communication[C]//IEEE. 14th International IEEE Conference on Intelligent Transportation Systems (ITSC). New York: IEEE, 2011: 341-346.
    [38] ALA M V, YANG Hao, RAKHA H. Modeling evaluation of eco-cooperative adaptive cruise control in vicinity of signalized intersections[J]. Transportation Research Record, 2016(2559): 108-119.
    [39] YANG Hao, RAKHA H, ALA M V. Eco-cooperative adaptive cruise control at signalized intersections considering queue effects[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(6): 1575-1585.
    [40] BARTH M, MANDAVA S, BORIBOONSOMSIN K, et al. Dynamic eco-driving for arterial corridors[C]//IEEE. 2011 IEEE Forum on Integrated and Sustainable Transportation Systems. New York: IEEE, 2011: 182-188.
    [41] YE Fei, HAO Peng, QI Xue-wei, et al. Prediction-based eco-approach and departure at signalized intersections with speed forecasting on preceding vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(4): 1378-1389. doi: 10.1109/TITS.2018.2856809
    [42] ALTAN O D, WU Guo-yuan, BARTH M J, et al. Glide path: eco-friendly automated approach and departure at signalized intersections[J]. IEEE Transactions on Intelligent Vehicles, 2017, 2(4): 266-277. doi: 10.1109/TIV.2017.2767289
    [43] 王建强, 王海鹏, 刘佳熙, 等. 基于车路一体化的交叉口车辆驾驶辅助系统[J]. 中国公路学报, 2013, 26(4): 169-175, 183. doi: 10.3969/j.issn.1001-7372.2013.04.023

    WANG Jian-qiang, WANG Hai-peng, LIU Jia-xi, et al. Intersection vehicle driving assistance system based on vehicle-to-infrastructure communication[J]. China Journal of Highway and Transport. 2013, 26(4): 169-175, 183. (in Chinese). doi: 10.3969/j.issn.1001-7372.2013.04.023
    [44] XU Biao, ZHANG Fang, WANG Jian-qiang, et al. B & amp; amp; B algorithm-based green light optimal speed advisory applied to contiguous intersections[C]//COTA. International Conference of Transportation Professional. Beijing: COTA, 2015: 363-375.
    [45] 徐彪, 张放, 王建强. 连续交叉路口通行辅助系统[J]. 汽车工程, 2016, 38(11): 1344-1350. doi: 10.3969/j.issn.1000-680X.2016.11.011

    XU Biao, ZHANG Fang, WANG Jian-qiang. An assistance system for crossing successive intersections[J]. Automotive Engineering, 2016, 38(11): 1344-1350. (in Chinese). doi: 10.3969/j.issn.1000-680X.2016.11.011
    [46] 赵贺锋. 车路协作式交叉口车速引导技术研究[D]. 北京: 北京工业大学, 2017.

    ZHAO He-feng. Research on speed guidance technology of cooperative vehicle infrastructure system intersection[D]. Beijing: Beijing University of Technology, 2017. (in Chinese).
    [47] 靳秋思, 宋国华, 叶蒙蒙, 等. 车辆通过交叉口的生态驾驶轨迹优化研究[J]. 安全与环境工程, 2015, 22(3): 75-82. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201503015.htm

    JIN Qiu-si, SONG Guo-hua, YE Meng-meng, et al. Optimization of eco-driving trajectories at intersections for energy saving and emission reduction[J]. Safety and Environmental Engineering, 2015, 22(3): 75-82. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201503015.htm
    [48] FANG Shan, YANG Lan, WANG Tian-qi, et al. Trajectory planning method for mixed vehicles considering traffic stability and fuel consumption at the signalized intersection[J]. Journal of Advanced Transportation, 2020, 11: 1-10.
    [49] SEREDYNSKI M, MAZURCZYK W, KHADRAOUI D. Multi-segment green light optimal speed advisory[C]//IEEE. IEEE 27th International Symposium on Parallel and Distributed Processing Workshops and PhD Forum. New York: IEEE, 2013: 459-465.
    [50] MAHLER G, VAHIDI A. An optimal velocity-planning scheme for vehicle energy efficiency through probabilistic prediction of traffic-signal timing[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(6): 2516-2523. doi: 10.1109/TITS.2014.2319306
    [51] ALSABAAN M, NAIK K, KHALIFA T. Optimization of fuel cost and emissions using V2V communication[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(3): 1449-1461. doi: 10.1109/TITS.2013.2262175
    [52] LI Jin-jian, DRIDI M, EL-MOUDNI A. Multi-vehicles green light optimal speed advisory based on the augmented lagrangian genetic algorithm[C]//IEEE. 17th International IEEE Conference on Intelligent Transportation Systems. New York: IEEE, 2014: 2434-2439.
    [53] HE Xiao-zheng, LIU H X, LIU Xiao-bo. Optimal vehicle speed trajectory on a signalized arterial with consideration of queue[J]. Transportation Research Part C: Emerging Technologies, 2015, 61: 106-120. doi: 10.1016/j.trc.2015.11.001
    [54] WAN Nian-feng, VAHIDI A, LUCKOW A. Optimal speed advisory for connected vehicles in arterial roads and the impact on mixed traffic[J]. Transportation Research Part C: Emerging Technologies, 2016, 69: 548-563. doi: 10.1016/j.trc.2016.01.011
    [55] 廖若桦. 车路协同环境下信号交叉口车队生态驾驶研究[D]. 北京: 北京交通大学, 2018.

    LIAO Ruo-hua. Eco-driving of vehicle platoons in cooperative vehicle-infrastructure system at signalized intersections[D]. Beijing: Beijing Jiaotong University, 2018. (in Chinese).
    [56] XIA H, BORIBOONSOMSIN K, BARTH M. Dynamic eco-driving for signalized arterial corridors and its indirect network-wide energy/emissions benefits[J]. Journal of Intelligent Transportation Systems, 2013, 17(1): 31-41. doi: 10.1080/15472450.2012.712494
    [57] TONG Yue, ZHAO Lei, LI Li, et al. Stochastic programming model for oversaturated intersection signal timing[J]. Transportation Research Part C: Emerging Technologies, 2015, 58: 474-486. doi: 10.1016/j.trc.2015.01.019
    [58] YU Chun-hui, FENG Yi-heng, LIU H X, et al. Integrated optimization of traffic signals and vehicle trajectories at isolated urban intersections[J]. Transportation Research Part B: Methodological, 2018, 112: 89-112. doi: 10.1016/j.trb.2018.04.007
    [59] TSUGAWA S, JESCHKE S, SHLADOVER S E. A review of truck platooning projects for energy savings[J]. IEEE Transactions on Intelligent Vehicles, 2016, 1(1): 68-77. doi: 10.1109/TIV.2016.2577499
    [60] VAN DEHOEF S, JOHANSSON K H, DIMAROGONAS D V. Fuel efficient en route formation of truck platoons[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(1): 102-112. doi: 10.1109/TITS.2017.2700021
    [61] WANG Zi-ran, WU Guo-yuan, BARTH M J. Cooperative eco-driving at signalized intersections in a partially connected and automated vehicle environment[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(5): 2029-2038. doi: 10.1109/TITS.2019.2911607
    [62] HAO Peng, WANG Zi-ran, WU Guo-yuan, et al. Intra-platoon vehicle sequence optimization for eco-cooperative adaptive cruise control[C]//IEEE. IEEE 20th International Conference on Intelligent Transportation Systems (ITSC). New York: IEEE, 2017: 1-6.
    [63] TURRI V, BESSELINK B, JOHANSSON K H. Cooperative look-ahead control for fuel-efficient and safe heavy-duty vehicle platooning[J]. IEEE Transactions on Control Systems Technology, 2017, 25(1): 12-28. doi: 10.1109/TCST.2016.2542044
    [64] VAJEDI M, AZAD N L. Ecological adaptive cruise controller for plug-in hybrid electric vehicles using nonlinear model predictive control[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(1): 113-122. doi: 10.1109/TITS.2015.2462843
    [65] ALMUTAIRI F, YANG Hao, RAKHA H. Eco-cooperative adaptive cruise control at multiple signalized intersections: network-wide evaluation and sensitivity analysis[C]//IEEE. 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS). New York: IEEE, 2017: 520-525.
    [66] YANG Hao, ALMUTAIRI F, ALA M V. Eco-cooperative adaptive cruise control at multiple signalized intersections[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(6): 1575-1585.
    [67] SCHMIDT G K, POSCH B. A two-layer control scheme for merging of automated vehicles[C]//IEEE. The 22nd IEEE Conference on Decision and Control. New Yrok: IEEE, 1983: 495-500.
    [68] RIOS-TORRES J, MALIKOPOULOS A A, PISU P. Online optimal control of connected vehicles for efficient traffic flow at merging roads[C]∥IEEE. IEEE 18th International Conference on Intelligent Transportation Systems. New York: IEEE, 2015: 2432-2437.
    [69] RIOS-TORRES J, MALIKOPOULOS A A. Automated and cooperative vehicle merging at highway on-ramps[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(4): 780-789. doi: 10.1109/TITS.2016.2587582
    [70] AWAL T, KULIK L, RAMAMOHANRAO K. Optimal traffic merging strategy for communication- and sensor-enabled vehicles[C]//IEEE. 16th International IEEE Conference on Intelligent Transportation Systems. New York: IEEE, 2013: 1468-1474.
    [71] JING Shou-cai, HUI Fei, ZHAO Xiang-mo, et al. Cooperative game approach to optimal merging sequence and on-ramp merging control of connected and automated vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(11): 4234-4244. doi: 10.1109/TITS.2019.2925871
    [72] XIE Yuan-chang, ZHANG Hui-xing, GARTNER N H, et al. Collaborative merging strategy for freeway ramp operations in a connected and autonomous vehicles environment[J]. Journal of Intelligent Transportation Systems, 2017, 21(2): 136-147. doi: 10.1080/15472450.2016.1248288
    [73] 王东柱, 陈艳艳, 马建明. 车联网环境下的高速公路合流区协调控制方法及效果评价[J]. 公路交通科技, 2016, 33(9): 99-105. doi: 10.3969/j.issn.1002-0268.2016.09.016

    WANG Dong-zhu, CHEN Yan-yan, MA Jian-ming. A method for coordinated controlling vehicles in expressway merge area in connected vehicles environment and evaluation[J]. Journal of Highway and Transportation Research and Development, 2016, 33(9): 99-105. (in Chinese). doi: 10.3969/j.issn.1002-0268.2016.09.016
    [74] UNO A, SAKAGUCHI T, TSUGAWA S. A merging control algorithm based on inter-vehicle communication[C]//IEEE. Proceedings of IEEE/IEEJ/JSAI International Conference on Intelligent Transportation Systems. New York: IEEE, 1999: 783-787.
    [75] LU Xiao-yun, HEDRICK K J. Longitudinal control algorithm for automated vehicle merging[C]//IEEE. Proceedings of the 39th IEEE Conference on Decision and Control. New York: IEEE, 2000: 450-455.
    [76] ZHOU Yu, CHOLETTE M E, BHASKAR A, et al. Optimal vehicle trajectory planning with control constraints and recursive implementation for automated on-ramp merging[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 20(9): 1-12.
    [77] WANG Zi-ran, WU Guo-yuan, BORIBOONSOMSIN K, et al. Cooperative ramp merging system: agent-based modeling and simulation using game engine[J]. SAE International Journal of Connected and Automated Vehicles, 2019, 2(2): 115-128.
    [78] 张存保, 李劲松, 黄传明, 等. 基于车路协同的高速公路入口匝道车辆汇入引导方法[J]. 武汉理工大学学报(交通科学与工程版), 2017, 41(4): 537-542. doi: 10.3963/j.issn.2095-3844.2017.04.001

    ZHANG Cun-bao, LI Jin-song, HUANG Chuan-ming, et al. The method of vehicle merging guidance at freeway on-ramp based on cooperative vehicle infrastructure system[J]. Journal of Wuhan University of Technology (Transportation Science and Engineering), 2017, 41(4): 537-542. (in Chinese). doi: 10.3963/j.issn.2095-3844.2017.04.001
    [79] LAN Xiao-dong, CAIRANO S D. Continuous curvature path planning for semi-autonomous vehicle maneuvers using RRT[C]//IEEE. 2015 European Control Conference (ECC). New York: IEEE, 2015: 2360-2365.
    [80] YANG I, KIM H J, JEON W H, et al. Development of realistic shortest path algorithm considering lane changes[J]. Journal of Advanced Transportation, 2016, 50(4): 541-551. doi: 10.1002/atr.1359
    [81] ZIEGLER J, STILLER C. Spatiotemporal state lattices for fast trajectory planning in dynamic on-road driving scenarios[J]. Intelligent Robots and Systems, 2009, 5: 1879-1884.
    [82] LUO Yu-gong, XIANG Yong, CAO Kun, et al. A dynamic automated lane change maneuver based on vehicle-to-vehicle communication[J]. Transportation Research Part C: Emerging Technologies, 2016, 62: 87-102. doi: 10.1016/j.trc.2015.11.011
    [83] LI Bai, ZHANG You-min, FENG Yi-heng, et al. Balancing computation speed and quality: a decentralized motion planning method for cooperative lane changes of connected and automated vehicles[J]. IEEE Transactions on Intelligent Vehicles, 2018, 3 (3), 340-350. doi: 10.1109/TIV.2018.2843159
    [84] LI Bai, JIA Ning, LI Pu, et al. Incrementally constrained dynamic optimization: a computational framework for lane change motion planning of connected and automated vehicles[J]. Journal of Intelligent Transportation Systems, 2019, 23(6): 1-12.
    [85] HUANG Zi-chao, WU Qing-qing, MA Jie, et al. An APF and MPC combined collaborative driving controller using vehicular communication technologies[J]. Chaos Solitons and Fractals, 2016, 89: 232-242. doi: 10.1016/j.chaos.2015.11.009
    [86] XU Guo-qing, LIU Li, OU Yong-sheng, et al. Dynamic modeling of driver control strategy of lane-change behavior and trajectory planning for collision prediction[J]. IEEE Transactions on Intelligent Transportation System, 2012, 13(3): 1138-1155. doi: 10.1109/TITS.2012.2187447
    [87] HOEL C J, WOL K, LAINE L. Automated speed and lane change decision making using deep reinforcement learning[C]//IEEE. IEEE 21th International Conference on Intelligent Transportation Systems (ITSC). New York: IEEE, 2018: 2148-2155.
    [88] WANG Pin, CHAN C Y, DE LA FORTELLE A. A reinforcement learning based approach for automated lane change maneuvers[C]//IEEE. 2018 IEEE Intelligent Vehicles Symposium. New York: IEEE, 2018: 1379-1384.
    [89] LIU Mei, SHI Jing. A cellular automata traffic flow model combined with a BP neural network based microscopic lane changing decision model[J]. Journal of Intelligent Transportation Systems, 2019, 23(4): 309-318. doi: 10.1080/15472450.2018.1462176
    [90] AHN K, RAKHA H A. Network-wide impacts of eco-routing strategies: a large-scale case study[J]. Transportation Research Part D: Transport and Environment, 2013, 25: 119-130. doi: 10.1016/j.trd.2013.09.006
    [91] ALFASEEH L, FAROOQ B. Multi-factor taxonomy of eco-routing models and future outlook[J]. Journal of Sensors, 2020, 3: 1-10.
    [92] RAKHA H A, AHN K, MORAN K. Integration framework for modeling eco-routing strategies: logic and preliminary results[J]. International Journal of Transportation Science and Technology, 2012, 1(3): 259-274. doi: 10.1260/2046-0430.1.3.259
    [93] SUN Jie, LIU H X. Stochastic eco-routing in a signalized traffic network[J]. Transportation Research Procedia, 2015, 7: 110-128. doi: 10.1016/j.trpro.2015.06.007
    [94] BANDEIRA J M, FERNANDES P, FONTES T, et al. Exploring multiple eco-routing guidance strategies in a commuting corridor[J]. International Journal of Sustainable Transportation, 2018, 12(1): 53-65. doi: 10.1080/15568318.2017.1328545
    [95] TZENG G H, CHEN C H. Multi objective decision making for traffic assignment[J]. IEEE Transactions on Engineering Management, 1993, 40(2): 180-187. doi: 10.1109/17.277411
    [96] LUO Li-hua, GE Ying-en, ZHANG Fang-wei, et al. Real-time route diversion control in a model predictive control framework with multiple objectives: traffic efficiency, emission reduction and fuel economy[J]. Transportation Research Part D: Transport and Environment, 2016, 48: 332-356. doi: 10.1016/j.trd.2016.08.013
    [97] LONG Jian-cheng, CHEN Jia-xu, SZETO W Y, et al. Link-based system optimum dynamic traffic assignment problems with environmental objectives[J]. Transportation Research Part D: Transport and Environment, 2018, 60: 56-75. doi: 10.1016/j.trd.2016.06.003
    [98] AZIZH M A, UKKUSURI S V. Integration of environmental objectives in a system optimal dynamic traffic assignment model[J]. Computer-Aided Civil and Infrastructure Engineering, 2012, 27(7): 494-511. doi: 10.1111/j.1467-8667.2012.00756.x
    [99] GUO Li-ya, HUANG Shan, SADEK A W. an evaluation of environmental benefits of time-dependent green routing in the greater Buffalo-Niagara region[J]. Journal of Intelligent Transportation Systems, 2013, 17(1): 18-30. doi: 10.1080/15472450.2012.704336
    [100] ELBERY A, RAKHA H, EL-NAINAY M, et al. Eco-routing using V2I communication: system evaluation[C]//IEEE. IEEE 18th International Conference on Intelligent Transportation Systems. New York: IEEE, 2015: 71-76.
    [101] HOUSHMAND A, WOLLENSTEIN-BETECH S, CASSANDRAS C G. The penetration rate effect of connected and automated vehicles in mixed traffic routing[C]//IEEE. 2019 IEEE Intelligent Transportation Systems Conference (ITSC). New York: IEEE: 1755-1760.
    [102] BORIBOONSOMSIN K, BARTH M J, ZHU Wei-hua, et al. Eco-routing navigation system based on multisource historical and real-time traffic information[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(4): 1694-1704. doi: 10.1109/TITS.2012.2204051
    [103] ALFASEEH L, DJAVADIAN S, FAROOQ B. Impact of distributed routing of intelligent vehicles on urban traffic[C]//IEEE. 2018 IEEE International Smart Cities Conference (ISC2). New York: IEEE, 2018: 1-7.
    [104] DJAVADIAN S, FAROOQ B. Distributed dynamic routing using network of intelligent intersections[C]//IEEE. ITS Canada ACGM. New York: IEEE, 2018: 56-63.
    [105] WANG Zi-ran, LIAO Xi-shun, WANG Chao, et al. Driver behavior modeling using game engine and real vehicle: a learning-based approach[J]. IEEE Transactions on Intelligent Vehicles, 2020, 1: 1-12.
    [106] FENG Yi-heng, YU Chun-hui, XU Shao-bing, et al. An augmented reality environment for connected and automated vehicle testing and evaluation[C]//IEEE. IEEE Intelligent Vehicles Symposium. New York: IEEE, 2018: 1549-1554.
    [107] WU Guo-yuan, BROWN D, ZHAO Zhuo-qiao, et al, Dyno-in-the-loop: an innovative hardware-in-the-loop development and testing platform for emerging mobility technologies[J]. SAE Technical Paper, 2020, 1: 1-10.
    [108] 赵祥模, 承靖钧, 徐志刚, 等. 基于整车在环仿真的自动驾驶汽车室内快速测试平台[J]. 中国公路学报, 2019, 32(6): 124-136. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201906014.htm

    ZHAO Xiang-mo, CHENG Jing-jun, XU Zhi-gang, et al. An indoor rapid-testing platform for autonomous vehicle based on vehicle-in-the-loop simulation[J]. China Journal of Highway and Transport, 2019, 32(6): 124-136. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201906014.htm
    [109] 徐志刚, 李金龙, 赵祥模, 等. 智能公路发展现状与关键技术[J]. 中国公路学报, 2019, 32(8): 1-24. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201908002.htm

    XU Zhi-gang, LI Jin-long, ZHAO Xiang-mo, et al. A review on intelligent road and its related key technologies[J]. China Journal of Highway Transport, 2019, 32(8): 1-24. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201908002.htm
    [110] 吴兵, 王文璇, 李林波, 等. 多前车影响的智能网联车辆纵向控制模型[J]. 交通运输工程学报, 2020, 20(2): 184-194. doi: 10.19818/j.cnki.1671-1637.2020.02.015

    WU Bing, WANG Wen-xuan, LI Lin-bo, et al. Longitudinal control model for connected autonomous vehicles influenced by multiple preceding vehicles[J]. Journal of Traffic and Transportation Engineering, 2020, 20(2): 184-194. (in Chinese). doi: 10.19818/j.cnki.1671-1637.2020.02.015
    [111] ELLIOTT D, KEEN W, MIAO Lei. Recent advances in connected and automated vehicles[J]. Journal of Traffic and Transportation Engineering (English Edition), 2019, 6(2): 109-131. doi: 10.1016/j.jtte.2018.09.005
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  3178
  • HTML全文浏览量:  865
  • PDF下载量:  1053
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-23
  • 刊出日期:  2020-10-25

目录

    /

    返回文章
    返回