Characteristics and vulnerability of rail transit network besed on perspective of passenger flow characteristics
-
摘要: 为提高城市轨道交通网络脆弱性评估的客观性, 将乘客需求特性集成到网络脆弱性的计算中; 在城市轨道交通网络Space L空间下静态拓扑结构的基础上, 以客流为权重建立了轨道交通加权网络; 基于客流指标提出了车站连接强度和加权节点介数, 用于反映动态网络结构特征, 度量节点间相互作用强度; 针对城市轨道交通网络客流的时空特性, 结合网络客流需求特性, 基于出行消耗最大容限阈值, 构建了站点故障条件下的乘客有效路径子图和网络客流的OD损失率, 进而评估城市轨道交通网络的脆弱性; 以西安城市轨道交通网络为例, 从网络客流视角分析了城市轨道交通网络特征及其脆弱性。研究结果表明: 西安市轨道交通网络具有小世界网络特性, 平均路径长度为10.7, 其中小寨站和北大街站为网络关键节点, 其车站连接强度分别为166 795、149 059, 加权节点介数分别为0.365、0.369, 这两个站点的中断对西安市轨道交通网络效率的影响分别为40.1%、39.4%;乘客出行容限阈值极大地影响着网络中站点的重要性排序, 网络脆弱性随着乘客出行容限阈值的增大而逐渐降低; 脆弱性与介数的相关性强于脆弱性与度和强度的相关性, 随着出行容限阈值的增大, 加权介数与其脆弱性的关联性逐渐降低。可见, 提出的计算指标和方法突出了客流特征与乘客需求对轨道交通网络脆弱性的影响, 能够很好地体现轨道交通网络的功能特性。Abstract: In order to improve the objectivity of vulnerability assessment of urban rail transit network, passenger demand characteristics were integrated into the calculation of network vulnerability. Based on the static topological structure of urban rail transit network established by using the Space L method, the weighted network of rail transit was established with passenger flow as the weight. Based on the passenger flow index, the station connection strength and weighted node betweenness were proposed to reflect the dynamic network structure characteristics and measure the interaction strength between nodes. Aiming at the spatial-temporal characteristics of passenger flow in urban rail transit network, combined with the demand characteristics of network passenger flow, the passenger effective path subgraph and OD loss rate of network passenger flow under the condition of station failure were defined by using the maximum travel consumption tolerance threshold to evaluate the vulnerability of urban rail transit network. Taking Xi'an urban rail transit network as an example, the features and vulnerability of urban rail transit network were interpreted from the perspective of passenger flow characteristics. Research result shows that the current rail transit network in Xi'an has the characteristic of small world network and its average path length is 10.7. Xiaozhai Station and Beidajie Station are the key nodes of the network, their connection strengths are 166 795 and 149 059, respectively, and their weighted node betweennesses are 0.365 and 0.369, respectively. The interruption of the two stations will result in 40.1% and 39.4% reduction in network efficiency. The passenger travel tolerance threshold greatly affects the importance ranking of the stations in the network. With the increase of passenger travel tolerance threshold, the network vulnerability gradually decreases. The correlation between vulnerability and betweenness is stronger than those with degree and intensity. With the increase of travel tolerance threshold, the correlation between weighted betweenness and vulnerability gradually decreases. Therefore, the calculation indicators and methods proposed in this paper highlight the impact of passenger flow characteristics and passenger demand on the vulnerability of rail transit network, which can well reflect the functional characteristics of rail transit network.
-
Key words:
- urban rail transit /
- topology /
- Space L method /
- passenger flow characteristics /
- passenger demand /
- vulnerability
-
表 1 西安市轨道交通网络特征指标与取值
Table 1. Characteristic indexes and values of Xi'an rail transit network
特征指标 取值 节点数 88 边数 90 平均度 2.05 平均介数 0.11 网络直径 27 平均路径长度 10.7 平均聚类系数 0 表 2 指标排名前十的车站
Table 2. Top ten stations based on indexes
站点编号 D′i 站点编号 B′i 33 166 795 10 0.369 10 149 059 33 0.365 46 104 232 28 0.225 14 102 959 14 0.219 11 95 552 29 0.206 45 89 909 30 0.204 29 85 849 46 0.204 28 85 506 31 0.196 30 82 854 27 0.194 31 80 615 32 0.193 表 3 站点脆弱性与各指标的Pearson相关系数
Table 3. Pearson correlation coefficients between vulnerabilities and indicators of stations
计算情形 指标 Di Bi D′i B′i 客流非均匀分布(实际情形) S(1.0) 0.59 0.75 0.97 0.99 S(1.5) 0.61 0.60 0.85 0.82 S(2.0) 0.56 0.47 0.76 0.72 S(2.5) 0.53 0.42 0.71 0.68 S(3.0) 0.50 0.39 0.69 0.65 客流均匀分布(假设情形) S(1.0) 0.73 0.98 0.74 0.76 S(1.5) 0.68 0.70 0.46 0.44 S(2.0) 0.60 0.56 0.36 0.35 S(2.5) 0.57 0.52 0.33 0.33 S(3.0) 0.55 0.50 0.31 0.31 表 4 各站点脆弱性对比
Table 4. Comparison of vulnerabilities among stations
R=1 R=2 站点排名变化 站点编号 站点名称 实际OD客流分布下网络平均损失率 OD客流均匀分布下网络平均损失率 站点编号 站点名称 实际OD客流分布下网络平均损失率 OD客流均匀分布下网络平均损失率 33 小寨站 0.401 0.283 33 小寨站 0.397 0.271 0 10 北大街站 0.394 0.449 10 北大街站 0.248 0.236 0 28 安远门 0.248 0.260 14 通化门 0.233 0.351 1 14 通化门 0.245 0.378 45 吉祥村 0.220 0.130 3 27 龙首原 0.240 0.245 44 太白南路 0.202 0.109 5 46 大雁塔 0.222 0.315 34 纬一街 0.188 0.130 9 45 吉祥村 0.220 0.130 35 会展中心 0.176 0.109 10 29 钟楼 0.214 0.145 43 科技路 0.171 0.089 10 26 大明宫西 0.210 0.230 9 洒金桥 0.140 0.188 15 44 太白南路 0.202 0.109 23 行政中心 0.139 0.193 12 -
[1] GARRISON W L, MARBLE D F. Factor analytic study of the connectivity of transportation network[J]. Papers in Regional Science, 1964, 12(1): 231-238. doi: 10.1007/BF01941256 [2] 马嘉琪, 白雁, 韩宝明. 城市轨道交通线网基本单元与复杂网络性能分析[J]. 交通运输工程学报, 2010, 10(4): 65-70, 102. doi: 10.3969/j.issn.1671-1637.2010.04.011MA Jia-qi, BAI Yan, HAN Bao-ming. Characteristic analysis of basic unit and complex network for urban rail transit[J]. Journal of Traffic and Transportation Engineering, 2010, 10(4): 65-70, 102. (in Chinese). doi: 10.3969/j.issn.1671-1637.2010.04.011 [3] 李英, 周伟, 郭世进. 上海公共交通网络复杂性分析[J]. 系统工程, 2007, 25(1): 38-41. https://www.cnki.com.cn/Article/CJFDTOTAL-GCXT200701006.htmLI Ying, ZHOU Wei, GUO Shi-jin. An analysis of complexity of public transportation network in Shanghai[J]. Systems Engineering, 2007, 25(1): 38-41. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCXT200701006.htm [4] DERRIBLE S, KENNEDY C. The complexity and robustness of metro networks[J]. Physica A: Statistical Mechanics and its Applications, 2010, 389(17): 3678-3691. doi: 10.1016/j.physa.2010.04.008 [5] ZHANG X, MILLER-HOOKS E, DENNY K. Assessing the role of network topology intransportation network resilience[J]. Journal of Transport Geography, 2015, 46: 35-45. doi: 10.1016/j.jtrangeo.2015.05.006 [6] DIMITROV S D, CEDER A. A method of examining the structure and topological properties of public-transport networks[J]. Physica A: Statistical Mechanics and its Applications, 2016, 451: 373-387. doi: 10.1016/j.physa.2016.01.060 [7] LÓPEZ F A, PÁEZ A, CARRASCO J A, et al. Vulnerability of nodes under controlled network topology and flow autocorrelation conditions[J]. Journal of Transport Geography, 2017, 59: 77-87. doi: 10.1016/j.jtrangeo.2017.02.002 [8] 杜斐, 黄宏伟, 张东明, 等. 上海轨道交通网络的复杂网络特性及鲁棒性研究[J]. 武汉大学学报(工学版), 2016, 49(5): 701-707. https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD201605010.htmDU Fei, HUANG Hong-wei, ZHANG Dong-ming, et al. Research of characteristics of complex network and robustness in Shanghai metro network[J]. Engineering Journal of Wuhan University, 2016, 49(5): 701-707. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD201605010.htm [9] 叶营仓. 有向加权下城市轨道交通车站重要度排名研究[J]. 齐齐哈尔大学学报(自然科学版), 2017, 33(4): 35-39. doi: 10.3969/j.issn.1007-984X.2017.04.008YE Ying-cang. Study on importance rank of stations under the directed weighting urban rail transit network[J]. Journal of Qiqihar University (Natural Science Edition), 2017, 33(4): 35-39. (in Chinese). doi: 10.3969/j.issn.1007-984X.2017.04.008 [10] MISHRA S, WELCH T F, JHA M K. Performance indicators for public transit connectivity in multi-modal transportation networks[J]. Transportation Research Part A: Policy and Practice, 2012, 46(7): 1066-1085. doi: 10.1016/j.tra.2012.04.006 [11] JENELIUS E, PETERSEN T, MATTSSON L G. Importance and exposure in road network vulnerability analysis[J]. Transportation Research Part A: Policy and Practice, 2006, 40(7): 537-560. doi: 10.1016/j.tra.2005.11.003 [12] 陈峰, 胡映月, 李小红, 等. 城市轨道交通有权网络相继故障可靠性研究[J]. 交通运输系统工程与信息, 2016, 16(2): 139-145. doi: 10.3969/j.issn.1009-6744.2016.02.023CHEN Feng, HU Ying-yue, LI Xiao-hong, et al. Cascading failures in weighted network of urban rail transit[J]. Journal of Transportation Systems Engineering and Information Technology, 2016, 16(2): 139-145. (in Chinese). doi: 10.3969/j.issn.1009-6744.2016.02.023 [13] CHU Y. Implementation of a new network equilibrium model of travel choices[J]. Journal of Traffic and Transportation Engineering (English Edition), 2018, 5(2): 105-115. doi: 10.1016/j.jtte.2017.05.014 [14] JENELIUS E, CATS O. The value of new public transport links for network robustness and redundancy[J]. Transportmetrica A: Transport Science, 2015, 11(9): 819-835. doi: 10.1080/23249935.2015.1087232 [15] XIAO Xue-mei, JIA Li-min, WANG Yan-hui. Correlation between heterogeneity and vulnerability of subway networks based on passenger flow[J]. Journal of Rail Transport Planning and Management, 2018, 8(2): 145-157. doi: 10.1016/j.jrtpm.2018.03.004 [16] GLAZEBROOK G, RICKWOOD P. Options for reducing transport fuel consumption and greenhouse emissions for Sydney[J]. Built Environment, 2008, 34(3): 349-363. doi: 10.2148/benv.34.3.349 [17] JIA Shun-ping, MAO Bao-hua, LIU Shuang, et al. Calculation and analysis of transportation energy consumption level in China[J]. Journal of Transportation Systems Engineering and Information Technology, 2010, 10(1): 22-27. doi: 10.1016/S1570-6672(09)60020-9 [18] MA L L, JIANG X, ZHANG Z L, et al. A new kind of node centrality in directed weighted networks based on the demands of network clients[J]. Physica Scripta, 2011, 84(2): 025801-1-9. [19] 刘杰, 彭其渊, 陈锦渠, 等. 考虑乘客出行容忍度的城市轨道交通网络的连通可靠性分析[J]. 交通运输工程与信息学报, 2019, 17(4): 134-140. https://www.cnki.com.cn/Article/CJFDTOTAL-JTGC201904018.htmLIU Jie, PENG Qi-yuan, CHEN Jin-qu, et al. Analysis of connectivity reliability of urban rail transit network considering passengers' travel tolerance[J]. Journal of Transportation Engineering and Information, 2019, 17(4): 134-140. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JTGC201904018.htm [20] 袁振洲, 魏来, 吴玥琳, 等. 基于差异化换乘感知的轨道交通末班车衔接优化[J]. 北京交通大学学报, 2020, 44(1): 12-19. doi: 10.11860/j.issn.1673-0291.20190055YUAN Zhen-zhou, WEI Lai, WU Yue-lin, et al. Connecting optimization of last train in rail transit based on differential transfer perception[J]. Journal of Beijing Jiaotong University, 2020, 44(1): 12-19. (in Chinese). doi: 10.11860/j.issn.1673-0291.20190055 [21] 彭其渊, 刘杰. 城市轨道交通规划网络与城市规划的综合协调性量化分析[J]. 交通运输工程学报, 2019, 19(3): 134-144. http://transport.chd.edu.cn/article/id/201903014PENG Qi-yuan, LIU Jie. Comprehensive coordination quantitative analysis of urban rail transit planning network and urban planning[J]. Journal of Traffic and Transportation Engineering, 2019, 19(3): 134-144. (in Chinese). http://transport.chd.edu.cn/article/id/201903014 [22] FREEMAN L C. Centrality in social networks' conceptual clarification[J]. Social Networks, 1978-1979, 1(3): 215-239. [23] FREEMAN L C, BORGATTI S P, WHITE D R. Centrality in valued graphs: a measure of betweenness based on network flow[J]. Social Networks, 1991, 13(2): 141-154. doi: 10.1016/0378-8733(91)90017-N [24] 胡映月, 陈峰, 陈培文, 等. 基于网络客流传播的轨道交通关键站点识别[J]. 西南交通大学学报, 2017, 52(6): 1193-1200, 1215. doi: 10.3969/j.issn.0258-2724.2017.06.021HU Ying-yue, CHEN Feng, CHEN Pei-wen, et al. Critical station identification based on passenger propagation in urban mass transit network[J]. Journal of Southwest Jiaotong University, 2017, 52(6): 1193-1200, 1215. (in Chinese). doi: 10.3969/j.issn.0258-2724.2017.06.021 [25] ZHANG Jian-hua, XU Xiao-ming, HONG Liu, et al. Networked analysis of the Shanghai subway network, in China[J]. Physica A: Statistical Mechanics and its Applications, 2011, 390(23/24): 4562-4570. [26] 叶青. 基于复杂网络理论的轨道交通网络脆弱性分析[J]. 中国安全科学学报, 2012, 22(2): 122-126. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201202021.htmYE Qing. Vulnerability analysis of rail transit based on complex network theory[J]. China Safety Science Journal, 2012, 22(2): 122-126. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201202021.htm [27] 王志如, 李启明, 梁作论. 城市地铁网络拓扑结构脆弱性评价[J]. 中国安全科学学报, 2013, 23(8): 114-119. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201308020.htmWANG Zhi-ru, LI Qi-ming, LIANG Zuo-lun. Evaluation of urban metro network topological structure vulnerability[J]. China Safety Science Journal, 2013, 23(8): 114-119. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201308020.htm [28] 李成兵, 魏磊, 李奉孝, 等. 基于攻击策略的城市群复合交通网络脆弱性研究[J]. 公路交通科技, 2017, 34(3): 101-109. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201703015.htmLI Cheng-bing, WEI Lei, LI Feng-xiao, et al. Study on vulnerability of city agglomeration compound traffic network based on attack strategy[J]. Journal of Highway and Transportation Research and Development, 2017, 34(3): 101-109. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201703015.htm [29] DENG Yong-liang, LI Qi-ming, LU Ying, et al. Topology vulnerability analysis and measure of urban metro network: the case of Nanjing[J]. Journal of Networks, 2013, 8(6): 1350-1356. [30] KIM D H, NOH J D, JEONG H. Scale-free trees: the skeletons of complex networks[J]. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2004, 70(42): 046126-1-5.