-
摘要: 从磁悬浮轨道交通的基本原理、磁悬浮列车的技术特点等角度出发,简述了世界各国高速磁悬浮轨道交通的发展概况,对比了常导电磁悬浮、永磁电动磁悬浮、低温超导电动磁悬浮和高温超导磁悬浮等4种磁悬浮方式的研究历史、悬浮特点、悬浮间隙、悬浮能耗、控制系统、技术成熟度与应用情况;采用文献调研、比对、分析、提炼等方法,综述了国内外高校、研究机构和企业对于高速磁悬浮的研究进展;比较了各类磁悬浮轨道交通的原理、技术优势和劣势,分析了高速磁悬浮轨道交通在应用方面的可行性与不足,探讨了4种磁悬浮方式的技术经济性和应用前景与场景;提出了当前发展高速及超高速真空管道磁悬浮轨道交通亟待解决的牵引制动控制、动力和热力学、安全救援、管道密封性能与抽真空效率、无线通信、车内环境控制等6个关键科学问题,并介绍了中国原创高温超导磁悬浮的基础研究及关键技术研发进展与研发计划。研究结果表明:在400~600 km·h-1速度范围可采用常导电磁悬浮或超导磁悬浮技术;在600~1 000 km·h-1速度范围可采用超导磁悬浮技术;1 000 km·h-1及以上的速度可采用高温超导磁悬浮与真空管道或电动磁悬浮与真空管道的磁悬浮技术;作为一种前瞻性研究,高温超导与真空管道磁悬浮关键技术的突破和验证对推动中国乃至世界轨道交通快速发展具有重大而深远的意义。Abstract: The development of high-speed maglev rail transit across the world was summarized based on the basic operating principles and technical characteristics of maglev trains. The electromagnetic suspension (EMS), permanent magnet electrodynamic suspension (PMEDS), low-temperature superconductor electrodynamic suspension (LTSEDS), and high-temperature superconducting magnetic levitation (HTS maglev) were compared in terms of their research histories, suspension characteristics, suspension gaps, suspension energy-consumption levels, control systems, technical maturity, and state of use. The progress of research on high-speed maglev in domestic and foreign universities, research institutions, and enterprises was summarized based on the literature research, comparison, analysis and refinement. The principles, technical strengths and weaknesses of various maglev rail transits were compared to analyze the viability and inadequacies of high-speed maglev rail transit in practical applications. The technical economy, application prospects and scenarios of four maglev modes were discussed. Six key scientific problems for the development of high-speed and ultra-high-speed vacuum-tube maglev rail transit were identified. These include the traction/braking control, kinetics and thermodynamics, safety and rescue protocol, sealing performance and vacuum pumping efficiency of tube, wireless communication, and interior environment control. The progress and plan of research and development in basic research and key technologies for HTS maglev originated in China were also described. Research results shows that the EMS or superconducting maglev technology is suitable for speeds between 400 km·h-1 and 600 km·h-1. The superconducting maglev technology can be used for speeds between 600 km·h-1 and 1 000 km·h-1. Speeds of 1 000 km·h-1 or greater require the maglev technologies of HTS maglev or EDS with vacuum-tube. As a prospective study, the technological breakthrough and validation in HTS with vacuum-tube maglev have profound and far-reaching implications on the rapid development of rail transit in China and even the world. 2 tabs, 15 figs, 72 refs.
-
图 3 LTSEDS原理示意
Figure 3. Schematic of principle for LTSEDS[8]
表 1 不同磁悬浮方式的情况对比
Table 1. Comparison of different maglev modes
悬浮类型 常导电磁悬浮 永磁电动磁悬浮 低温超导电动磁悬浮 高温超导磁悬浮 开始时间 1934年专利 20世纪40年代 1966年专利 20世纪90年代开始,2001年中国专利 导轨类型 T型导轨 弧形导体板轨道 U型导轨 平板式导轨 车载磁体 线圈 永磁体 超导线圈 超导块材 路轨铺设 硅钢片 铝感应板 “8”字线圈 永磁导轨 悬浮间隙/mm 8~12 20~30 80~150 10~30 推进方式 直线电机 直线电机 直线电机 直线电机 控制系统 需主动控制,控制复杂,要求高 导向需主动控制 较复杂 简单 悬浮能耗 较高 较低 较高 较低 悬浮特点 电磁吸力,需能耗,静止可悬浮,悬浮气隙较小 电动斥力,悬浮不耗能,高速时悬浮,临界稳定,高速需引入阻尼以保证稳定 电动斥力,静止和低速时需轮子支撑,悬浮气隙大,高速需引入阻尼以保证稳定 磁通钉扎力,不通电、静止可悬浮,无源自悬浮,自稳定,自导向 试验速度/(km·h-1) 550 463 603 ≥1 000 研究技术的主要国家 德国、日本、中国、韩国 美国 日本 中国 技术成熟度 已商业运营 试验研究 准商业运营 试验研究 应用情况 中国上海浦东磁悬浮示范线、日本HSST型低速磁悬浮列车、美国Grummam方案、美国AMT磁悬浮系统 美国Hyperloop、美国Inductrack磁悬浮系统、美国Magplane 日本MLU系列 西南交通大学Super-Maglev试验线、德国SupraTrans系列试验车、巴西Maglev Cobra悬浮试验线、意大利拉奎拉大学V型轨道 表 2 磁悬浮轨道交通与其他交通方式综合比较
Table 2. Comprehensive comparison between maglev rail trancit and other modes of transportations
交通方式 运营时速/(km·h-1) 安全性 运量 投资成本 振动噪声 能耗 气候影响运营 全天候运营 运载工具大修周期 技术难度、建设工期 工程拆迁难度 维管人员 磁悬浮 80~430 更高 较大 高 低 较高 基本不影响 易 无 大、较长 小 少 轮轨 80~350 高 大 高 较高 较高 影响较大 较易 有 大、较长 大 多 航空 800~2 000 高 小 高 高 最高 影响大 难 有 大、较长 较小 多 公路 80~200 高 小 较低 较高 高 影响较大 较难 有 小、短 较小 多 水运 80~100 高 大 低 低 最低 影响大 难 有 小、短 小 少 -
[1] 李永善, 徐安. 磁悬浮技术在德国的发展[J]. 城市轨道交通研究, 2001(2): 64-68. doi: 10.3969/j.issn.1007-869X.2001.02.017LI Yong-shan, XU An. Magnetic levitation technology development in Germany[J]. Urban Mass Transit, 2001(2): 64-68. (in Chinese) doi: 10.3969/j.issn.1007-869X.2001.02.017 [2] 邓自刚, 张卫华. 高温超导磁悬浮或将引发交通运输的大变革[J]. 金融经济, 2016(11): 42-43. https://www.cnki.com.cn/Article/CJFDTOTAL-JRJJ201611020.htmDENG Zi-gang, ZHANG Wei-hua. High temperature superconducting maglev or will cause a revolution in transport [J]. Finance Economy, 2016(11): 42-43. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JRJJ201611020.htm [3] THORNTON R D. Efficient and affordable maglev opportunities in the United States[J]. Proceedings of the IEEE, 2009, 97(11): 1901-1921. doi: 10.1109/JPROC.2009.2030251 [4] 王理达. 中低速磁悬浮轨道梁关键参数研究[D]. 成都: 西南交通大学, 2014.WANG Li-da. Key parameters of low-speed maglev rail beam[D]. Chengdu: Southwest jiaotong university, 2014. (in Chinese) [5] 王君香. 浅谈磁悬浮列车的原理及应用[J]. 科学技术创新, 2019(15): 38-39. doi: 10.3969/j.issn.1673-1328.2019.15.023WANG Jun-xiang. Introduction to the principle and application of maglev train[J]. Scientific and Technological Innovation, 2019(15): 38-39. (in Chinese) doi: 10.3969/j.issn.1673-1328.2019.15.023 [6] SAWADA K. Outlook of the superconducting maglev[J]. Proceeding of the IEEE, 2009, 97(11): 1881-1885. doi: 10.1109/JPROC.2009.2030246 [7] FUJIWARA S, FUJIMOTO T. Characteristics of the combined levitation and guidance system using ground coils on the side wall of the guideway[C]//National Technical Information Service. Proceeding of the 11th International Conference on Magnetically Levitated Systems and Linear Drives. Washington DC: National Technical Information Service, 1989: 241-244. [8] 邓自刚, 李海涛. 高温超导磁悬浮车研究进展[J]. 中国材料进展, 2017, 36(5): 329-334. https://www.cnki.com.cn/Article/CJFDTOTAL-XJKB201705003.htmDENG Zi-gang, LI Hai-tao. Recent development of high-temperature superconducting maglev[J]. Materials China, 2017, 36(5): 329-334. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XJKB201705003.htm [9] ABRIKOSOV A A. On the magnetic properties of superconductors of the second group[J]. Soviet Physics JETP, 1957, 5(6): 1174-1182. http://archive.numdam.org/numdam-bin/item?id=AIHPC_2004__21_2_187_0 [10] ESSMANN U, TRAUBLE H. The direct observation of individual flux lines in type Ⅱ superconductors[J]. Physics Letters, 1967, 24(10): 526-527. doi: 10.1016/0375-9601(67)90819-5 [11] GAMMEL P L, BISHOP D J, DOLAN G J, et al. Observation of hexagonally correlated flux quanta in YBa2Cu3O7[J]. Physical Review Letters, 1987, 59(22): 2592-2595. doi: 10.1103/PhysRevLett.59.2592 [12] 张杨, 吴超. 磁悬浮列车技术发展路线研究[J]. 技术与市场, 2017, 24(6): 101-104. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYS201706036.htmZHANG Yang, WU Chao. The maglev technology development route[J]. Technology and Market, 2017, 24(6): 101-104. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSYS201706036.htm [13] 徐飞, 罗世辉, 邓自刚. 磁悬浮轨道交通关键技术及全速度域应用研究[J]. 铁道学报, 2019, 41(3): 40-49. doi: 10.3969/j.issn.1001-8360.2019.03.006XU Fei, LUO Shi-hui, DENG Zi-gang. Study on key technologies and whole speed range application of maglev rail transport[J]. Journal of the China Railway Society, 2019, 41(3): 40-49. (in Chinese) doi: 10.3969/j.issn.1001-8360.2019.03.006 [14] WANG Jia-su, WANG Su-yu, ZENG You-wen, et al. The first man-loading high temperature superconducting maglev test vehicle in the world[J]. Physica C: Super Conductivity and Its Applications, 2002, 378(1): 809-814. http://www.sciencedirect.com/science/article/pii/S0921453402015484 [15] 王家素, 王素玉. 高温超导磁悬浮列车研究综述[J]. 电气工程学报, 2015, 10(11): 2-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DQZH201511001.htmWANG Jia-su, WANG Su-yu. High temperature superconducting maglev train[J]. Journal of Electrical Engineering, 2015, 10(11): 2-12. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQZH201511001.htm [16] 叶新羽. 高温超导磁悬浮在轨道交通中的研究和应用[J]. 电工材料, 2018(4): 27-31. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHJ201804007.htmYE Xin-yu. Research and application of high temperature superconductors maglev transportation system[J]. Electrical Engineering Materials, 2018(4): 27-31. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGHJ201804007.htm [17] 孙宝融. 超高速地面运输在萌芽中停滞不前[J]. 铁道科技动态, 1976(13): 13-17. https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG197613005.htmSUN Bao-rong. Ultra-high-speed ground transportation stagnated in the bud[J]. Railway Technology Trends, 1976(13): 13-17. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG197613005.htm [18] 胡思继, 徐源泉. TR磁悬浮高速铁路系统的技术经济分析[J]. 北方交通大学学报, 1993(3): 233-237. https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT199303000.htmHU Si-ji, XU Yuan-quan. Technical and economic analysis of TR maglev high speed railway system[J]. Journal of Northern Jiaotong University, 1993(3): 233-237. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT199303000.htm [19] Northeast Maglev. Green transportation[EB/OL]. (2018-07-22)[2020-09-15]. https://northeastmaglev.com/green-transportation/. [20] Baltimore-Washington SC Maglev Project. Environmental study[EB/OL]. (2018-10-15)[2020-09-15]. https://www.bwmaglev.info/index.php. [21] Washington SC Maglev Project. Purpose and need[EB/OL]. (2017-10-12)[2018-09-15]. http://www.bwmaglev.info/images/document_library/reports/purpose_and_need_2017_10_12.pdf. [22] JAYAWANT B V, SINHA P K, WHEELER A R, et al. Proceedings of the institution of electrical engineers[J]. Digital Library, 1976, 123(9): 941-948. [23] SINHA P K. Magnetic suspension for low-speed vehicles[J]. Journal of Dynamic Systems, Measurement, and Control, 1978, 100(4): 333-342. http://www.researchgate.net/publication/275422919_Magnetic_Suspension_for_Low-Speed_Vehicles [24] 张延昭. 德国磁悬浮列车研究概况[J]. 全球科技经济瞭望, 1993(4): 9-12. https://www.cnki.com.cn/Article/CJFDTOTAL-QQKL199304003.htmZHANG Yan-zhao. German maglev train[J]. Global Science, Technology and Economy Outlook, 1993(4): 9-12. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QQKL199304003.htm [25] DICKMAN S. Germans debate maglev train[J]. Nature, 1989, 340(6235): 584-584. doi: 10.1038/340584a0 [26] SANCHEZ H. Maglev train technology debate: American vs. German[J]. Bond Buyer, 2000, 333(30982): 1-9. http://gateway.proquest.com/openurl?res_dat=xri:pqm&ctx_ver=Z39.88-2004&rfr_id=info:xri/sid:baidu&rft_val_fmt=info:ofi/fmt:kev:mtx:article&genre=article&jtitle=Bond%20Buyer&atitle=Maglev%20Train%20Technology%20Debate%3A%20American%20vs.%20German. [27] 冯仲伟, 方兴, 李红梅, 等. 低真空管道高速磁悬浮系统技术发展研究[J]. 中国工程科学, 2018(6): 105-111. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX201806018.htmFENG Zhong-wei, FANG Xing, LI Hong-mei, et al. Technological development of high speed maglev system based on low vacuum pipeline[J]. Strategic Study of CAE, 2018(6): 105-111. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX201806018.htm [28] SCHULTZ, HAAS O D, VERGES P, et al. Superconductively levitated transport system: the SupraTrans project[J]. IEEE Transactions on Applied Superconductivity, 2005, 15(2): 2301-2305. http://ieeexplore.ieee.org/document/1440126/ [29] BEYER C, HAAS O D, VERGES P, et al. Guideway and turnout switch for the SupraTrans project [J]. Journal of Physics: Conference Series, 2006(43): 991-994. http://adsabs.harvard.edu/abs/2006JPhCS..43..991B [30] KUEHN L, HAAS O D, BERGER D, et al. SupraTrans 2: test drive facility for a superconductor-based maglev train[J]. Elektrische Bahnen, 2012(110): 461-469. http://www.researchgate.net/publication/291753956_Supratrans_II_-_Test_drive_facility_for_a_superconductor-based_Maglev_train [31] SAIJO T, KOIKE S, TADAKUMA S. Characteristics of linear synchronous motor drive cycloconverter for maglev vehicle ML-500 at Miyazaki Test Track[J]. IEEE Transactions on Industry Applications, 1981, 17(5): 533-543. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4503994 [32] KYOTANI Y. Recent progress by JNR on maglev[J]. IEEE Transactions on Magnetics, 1988, 24(2): 804-807. http://ieeexplore.ieee.org/document/11346 [33] 商福昆. 宫崎实验线新磁浮实验车MLU-002N[J]. 铁道机车车辆, 1995(1): 58-60. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC199501013.htmSHANG Fu-kun. Miyazaki experiment line new maglev car MLU-002N[J]. Railway Locomotive and Car, 1995(1): 58-60. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC199501013.htm [34] YOSHIOKA H, SUZUKI E, SEINO H, et al. Characteristics of the dynamics of the MLX01 Yamanashi Maglev Test Line vehicles[J]. Railway Technical Research Institute Quarterly Reports, 1998, 39(2): 62-67. http://ci.nii.ac.jp/naid/10025282086 [35] TAKIZAWA H, TAKAMI H, Yoshioka H, et al. Characteristics of vehicle dynamics of MLX01 for two trains passing each other and for a five-car train set[J]. Quarterly Report of RTRI, 2000, 41(2): 68-73. http://ci.nii.ac.jp/naid/110002494488 [36] KUSADA S, IGARASHI M, NEMOTO K, et al. The project overview of the HTS magnet for superconducting maglev[J]. IEEE Transactions on Applied Superconductivity, 2007, 17(2): 2111-2116. http://ieeexplore.ieee.org/document/4277536 [37] KOEI T. Central Japan Railway Company[EB/OL].(2016-03-30)[2020-09-15]. http://English.Jr-central.Co.jp/compa-ny/ir/investor-meeting/_pdf/im_2016_03.Pdf. [38] OKANO M, IWAMOTO T, FURUSE M, et al. Running performance of a pinning-type superconducting magnetic levitation guide [J]. Journal of Physics: Conference Series, 2006(43): 999-1002. http://adsabs.harvard.edu/abs/2006JPhCS..43..999O [39] 邓自刚, 张勇, 王博, 等. 真空管道运输系统发展现状及展望[J]. 西南交通大学学报, 2019, 54(5): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201905022.htmDENG Zi-gang, ZHANG Yong, WANG Bo, et al. Present situation and prospect of evacuated tube transportation system[J]. Chinese Journal of Southwest Jiaotong University, 2019, 54(5): 1-11. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201905022.htm [40] ELON M. SpaceX[EB/OL]. (2020-05-01)[2020-09-15]. http://www.spacex.com/sites/spacex/files/hyperloop_alpha.pdf. [41] 苏靖棋. 超级高铁(Hyperloop)可行性分析[J]. 现代城市轨道交通, 2020(5): 114-118. https://www.cnki.com.cn/Article/CJFDTOTAL-XDGD202005027.htmSU Jing-qi. Feasibility analysis of Hyperloop[J]. Modern Urban Transit, 2020(5): 114-118. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDGD202005027.htm [42] SOTELO G G, DE OLIVEIRA R A H, COSTA F S, et al. A full scale superconducting magnetic levitation(maglev) vehicle operational line [J]. IEEE Transactions on Applied Superconductivity, 2015, 25(3): 3601005. http://ieeexplore.ieee.org/document/6957564 [43] 刘文旭, 李文龙, 方进. 高温超导磁悬浮技术研究论述[J]. 低温与超导, 2020, 48(2): 44-49. https://www.cnki.com.cn/Article/CJFDTOTAL-DWYC202002009.htmLIU Wen-xu, LI Wen-long, FANG Jin. Review of research on high temperature maglev[J]. Cryogenics and Superconductivity, 2020, 48(2): 44-49. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DWYC202002009.htm [44] D'OVIDIO G, CRISI F, LANZARA G. A "V" shaped superconducting levitation module for lift and guidance of a magnetic transportation system[J]. Physica C, 2008, 468(14): 1036-1040. http://www.sciencedirect.com/science/article/pii/S0921453408001780 [45] ANTELEFF W, BARNARD G, KURTZ C, et al. Shanghai maglev high-speed rail[J]. Science and Technology of West China, 2005(6): 54-56. [46] 沈志云. 关于我国发展真空管道高速交通的思考[J]. 西南交通大学学报, 2005, 40(2): 133-137. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT200502000.htmSHEN Zhi-yun. On developing high-speed evacuated tube transportation in China[J]. Journal of Southwest Jiaotong University, 2005, 40(2): 133-137. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT200502000.htm [47] DENG Zi-gang, WANG Jia-su, ZHENG Jun, et al. High-efficiency and low-cost permanent magnet guideway consideration for high-Tc, superconducting maglev vehicle practical application[J]. Superconductor Science and Technology, 2008, 21(11): 1-6. doi: 10.1088/0953-2048/21/11/115018 [48] DENG Zi-gang, WANG Jia-su, ZHENG Jun, et al. An efficient and economical way to enhance the performance of present HTS maglev systems by utilizing the anisotropy property of bulk superconductors[J]. Superconductor Science and Technology, 2013, 26(2): 1-5. [49] DENG Zi-gang, ZHANG Wei-hua, ZHENG Jun, et al. A high temperature superconducting maglev ring test line developed in Chengdu, China[J]. IEEE Transactions on Applied Superconductivity, 2016, 26(6): 3602408. http://ieeexplore.ieee.org/document/7456207 [50] 李家志, 索红莉, 王毅, 等. 超导材料在磁悬浮列车上的应用进展(上)[J]. 铁道技术监督, 2020, 48(3): 38-44. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJJ202003016.htmLI Jia-zhi, SUO Hong-li, WANG Yi, et al. Progress in the application of superconducting materials on maglev trains(Part 1 of 2) [J]. Railway Quality Control, 2020, 48(3): 38-44. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJJ202003016.htm [51] 李家志, 索红莉, 王毅, 等. 超导材料在磁悬浮列车上的应用进展(下)[J]. 铁道技术监督, 2020, 48(4): 51-57. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJJ202004015.htmLI Jia-zhi, SUO Hong-li WANG Yi, et al. Progress in the application of superconducting materials on maglev trains(Part 2 of 2) [J]. Railway Quality Control, 2020, 48(4): 51-57. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJJ202004015.htm [52] 王博. 真空管道高温超导磁悬浮车气动特性研究[D]. 成都: 西南交通大学, 2017.WANG Bo. Study on aerodynamic characteristics of evacuated tube transport-high temperature superconducting maglev[D]. Chengdu: Southwest Jiaotong University, 2017. (in Chinese) [53] 刘加利, 张继业, 张卫华. 真空管道高速列车气动特性分析[J]. 机械工程学报, 2013, 49(22): 137-143. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201322022.htmLIU Jia-li, ZHANG Ji-ye, ZHANG Wei-hua. Analysis of aerodynamic characteristics of high-speed trains in the evacuated tube[J]. Journal of Mechanical Engineering, 2013, 49(22): 137-143. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201322022.htm [54] 贾文广. 真空管道交通系统热动力学特性研究[D]. 青岛: 青岛科技大学, 2013.JIA Wen-guang. The characteristic investigation of evacuated tube transport system on the rmodynamics[D]. Qingdao: Qingdao University of Science and Technology, 2013. (in Chinese) [55] 黄兆国. 超高速磁悬浮列车空气动力学问题研究[D]. 成都: 西南交通大学, 2018.HUANG Zhao-guo. Study on aerodynamics of super high speed maglev tran[D]. Chengdu: Southwest Jiaotong University, 2018. (in Chinese) [56] 林一平. 我国磁悬浮列车研制取得重大进展[J]. 交通与运输, 2017(3): 50-53. https://www.cnki.com.cn/Article/CJFDTOTAL-YSJT201703020.htmLIN Yi-ping. Major progress was made in maglev train development in our country[J]. Traffic and Transportation, 2017(3): 50-53. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSJT201703020.htm [57] 徐飞. 中国建设交通强国的综合基础与战略意义[J]. 学术前沿, 2018(11): 70-79. https://www.cnki.com.cn/Article/CJFDTOTAL-RMXS201811009.htmXU Fei. The foundation and strategic signficance of building a great transportation for China[J]. Frontiers, 2018(11): 70-79. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RMXS201811009.htm [58] 简炼. 磁悬浮交通是真正的智能交通[EB/OL].(2019-06-14)[2020-09-15].https://mp.weixin.qq.com/s/SuZidKY26r5jTyydsEVx1A.JIAN Lian. Maglev traffic is a real intelligent transportation[EB/OL].(2019-06-14)[2020-09-15]. https://mp.weixin.qq.com/s/SuZidKY26r5jTyydsEVx1A. (in Chinese) [59] 金鑫. 磁悬浮交通技术的发展及应用现状简述[J]. 四川建筑, 2018, 38(5): 73-75.JIN Xin. The development and application status of outlining the maglev transportation technology[J]. Sichuan Architecture, 2018, 38(5): 73-75. (in Chinese) [60] 耿杰. 中低速磁浮简支轨道梁关键设计参数的理论与试验研究[D]. 成都: 西南交通大学, 2018.GENG Jie. Theory and experimental research of key parameters design on simpliy-supported track girders of low to medium speed malev line[D]. Chengdu: Southwest Jiaotong University, 2018. (in Chinese) [61] 严陆光. 高速磁悬浮列车的战略进展与我国的发展战略[J]. 电工电能新技术, 2002, 21(4): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DGDN200204000.htmYAN Lu-guang. Strategic progress of high-speed maglev and the development strategy in China[J]. Advanced Technology of Electrical Engineering and Energy, 2002, 21(4): 1-12. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGDN200204000.htm [62] 沈志云. 高速磁悬浮列车对轨道的动力作用及其与轮轨高速铁路的比较[J]. 交通运输工程学报, 2001, 1(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC200101000.htmSHEN Zhi-yun. Dynamic interaction of high speed maglev train on girders and its comparison with the case in ordinary high speed railways[J]. Journal of Traffic and Transportation Engineering, 2001, 1(1): 1-6. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC200101000.htm [63] 张瑞华, 严陆光, 徐善纲. 几种典型的高速磁悬浮列车方案比较[J]. 电工电能新技术, 2004, 23(2): 46-50. https://www.cnki.com.cn/Article/CJFDTOTAL-DGDN200402011.htmZHANG Rui-hua, YAN Lu-guang, XU Shan-gang. Comparison of several typical high speed maglev trains[J]. Advanced Technology of Electrical Engineering and Energy, 2004, 23(2): 46-50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGDN200402011.htm [64] 于子良, 任坤华, 许文天. 高速轨道交通发展趋势[J]. 装备制造技术, 2020(3): 230-232. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJX202003063.htmYU Zi-liang, REN Kun-hua, XU Wen-tian. Development trend of high speed rail transit[J]. Equipment Manufacturing Technology, 2020(3): 230-232. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXJX202003063.htm [65] 马光同, 杨文姣, 王志涛, 等. 超导磁浮交通研究进展[J]. 华南理工大学学报(自然科学版), 2019, 47(7): 68-74. https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG201907009.htmMA Guang-tong, YANG Wen-jiao, WANG Zhi-tao, et al. Superconducting maglev transportation research progress[J]. Journal of South China University of Technology (Natural Science Edition), 2019, 47(7): 68-74. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG201907009.htm [66] 孙玉玲, 秦阿宁, 董璐. 全球磁悬浮交通发展态势、前景展望及对中国的建议[J]. 世界科技研究与发展, 2019, 41(2): 109-119. https://www.cnki.com.cn/Article/CJFDTOTAL-SJKF201902001.htmSUN Yu-ling, QIN A-ning, DONG Lu. Research on development and prospects of maglev transportation and suggestions to China[J]. World Sci-Tech R & D, 2019, 41(2): 109-119. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJKF201902001.htm [67] MA K B, POSTREKHIN Y V, CHU W K. Superconductor and magnet levitation devices[J]. Review of Scientific Instrunents, 2003, 74(12): 4989-5017. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5000126 [68] 沈志云. 对磁悬浮高速列车技术认识的两个错误观点[J]. 交通运输工程学报, 2004, 4(1): 1-2. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC200401001.htmSHEN Zhi-yun. Two wrong understanding of high-speed maglev train technology point of view[J]. Journal of Traffic and Transportation Engineering, 2004, 4(1): 1-2. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC200401001.htm [69] 金茂菁, 黄玲. 超高速真空管道交通技术发展现状与趋势[J]. 科技中国, 2018(3): 13-15. https://www.cnki.com.cn/Article/CJFDTOTAL-KJZG201803004.htmJIN Mao-jing, HUANG Ling. Ultra high speed vacuum pipeline transportation technology development status and trends[J]. China SciTechnology Business, 2018(3): 13-15. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KJZG201803004.htm [70] LIU Lu, WANG Jia-su, WANG Su-yu, et al. Levitation force transition of high-Tc superconducting bulks within a maglev vehicle system under different dynamic operation[J]. IEEE Transactions on Applied Superconductivity, 2011, 21(3): 1547-1550. http://ieeexplore.ieee.org/document/5643199 [71] 田恺. 超高速磁悬浮铁路移动通信关键技术分析[J]. 铁道建筑技术, 2020(6): 158-161. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJS202006037.htmTIAN Kai. High-speed magnetic levitation railway mobile communication key technology analysis[J]. Railway Construction Technology, 2020(6): 158-161. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJS202006037.htm [72] 刘留, 裘陈成, 刘叶, 等. 真空管道高速飞行列车车地无线通信技术[J]. 北京交通大学学报, 2019, 43(1): 146-156. https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT201901017.htmLIU Liu, QIU Chen-cheng, LIU Ye, et al. Wireless communication technology for vacuum tube high-speed flight train[J]. Journal of Beijing Jiaotong University, 2019, 43(1): 146-156. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT201901017.htm