留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中低速磁浮车辆研究综述

马卫华 罗世辉 张敏 盛卓航

马卫华, 罗世辉, 张敏, 盛卓航. 中低速磁浮车辆研究综述[J]. 交通运输工程学报, 2021, 21(1): 199-216. doi: 10.19818/j.cnki.1671-1637.2021.01.009
引用本文: 马卫华, 罗世辉, 张敏, 盛卓航. 中低速磁浮车辆研究综述[J]. 交通运输工程学报, 2021, 21(1): 199-216. doi: 10.19818/j.cnki.1671-1637.2021.01.009
MA Wei-hua, LUO Shi-hui, ZHANG Min, SHENG Zhuo-hang. Research review on medium and low speed maglev vehicle[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 199-216. doi: 10.19818/j.cnki.1671-1637.2021.01.009
Citation: MA Wei-hua, LUO Shi-hui, ZHANG Min, SHENG Zhuo-hang. Research review on medium and low speed maglev vehicle[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 199-216. doi: 10.19818/j.cnki.1671-1637.2021.01.009

中低速磁浮车辆研究综述

doi: 10.19818/j.cnki.1671-1637.2021.01.009
基金项目: 

国家自然科学基金项目 51875483

牵引动力国家重点实验室自主课题 2020TPL_T04

详细信息
    作者简介:

    马卫华(1979-),男,山东滕州人,西南交通大学研究员,工学博士,从事磁浮列车悬浮架设计及常导磁浮列车动力学研究

    通讯作者:

    张敏(1987-),女,四川自贡人,西南交通大学助理研究员,工学博士

  • 中图分类号: U266.4

Research review on medium and low speed maglev vehicle

Funds: 

National Natural Science Foundation of China 51875483

Independent Subject of State Key Laboratory of Traction Power 2020TPL_T04

More Information
  • 摘要: 基于电磁悬浮型中低速磁浮列车的工作原理,阐述了中低速磁浮各核心子系统(悬浮导向系统、牵引电机、走行机构、制动系统、轨道-桥梁结构等)的技术特征,综合分析了各子系统存在的技术问题和解决方案;梳理了日本Linimo列车、韩国EcoBee列车、长沙磁浮快线、北京磁浮S1线和西南交通大学自主研发的(悬挂)中置式磁浮列车的发展历程及技术特点,总结了中低速磁浮列车的技术重点和难点。研究结果表明:车-轨耦合振动应综合考虑悬浮控制、车辆结构参数、桥梁结构参数、空气动力效应、直线电机等因素的影响,建立完备的车-轨耦合振动研究模型;悬浮冗余匮乏可综合利用机械冗余和电气冗余的技术特点,对中低速磁浮的冗余设计方案进行改进;磁浮靴轨受流应与地铁靴轨受流区分,充分考虑磁浮列车的耦合作用特性,探索无缝供电轨技术在中低速磁浮中的工程实用性;悬浮控制由于控制器主频较低,程序运行周期过长,应提高控制算法和悬浮系统故障诊断技术的精确性和稳定性;车辆轻量化设计应在保证结构强度的基础上,综合考虑车体、走行机构等多因素的结构特点,以提高中低速磁浮列车运载能力;应综合不同磁浮线路要求,建立统一的线路标准,提高中低速磁浮工程化应用能力。

     

  • 图  1  中低速磁浮车辆悬浮与导向系统断面

    Figure  1.  Cross section of levitation-guidance system of medium and low speed maglev vehicle

    图  2  悬浮控制系统的信号流

    Figure  2.  Signal flow of levitation control system

    图  3  短定子直线感应电机原理

    Figure  3.  Principle of short stator LIM

    图  4  中低速磁浮车辆转向架

    Figure  4.  Bogie for medium and low speed maglev vehicle

    图  5  (悬挂)中置式悬浮架

    Figure  5.  Levitation frame of (suspension) mid-set

    图  6  中低速磁浮轨道-桥梁结构断面

    Figure  6.  Structure sections of track-bridge of medium and low speed maglev

    图  7  TKL线轨道梁

    Figure  7.  Track beam of TKL line

    图  8  HSST磁浮车辆走行机构

    Figure  8.  Running gear of HSST maglev vehicle

    图  9  仁川机场线轨道梁

    Figure  9.  Track beam of Incheon Airport Line

    图  10  长沙磁浮车辆的走行机构基本方案

    Figure  10.  Basic scheme of Changsha maglev vehicle running gear

    图  11  (悬挂)中置式磁浮工程试验车

    Figure  11.  Maglev engineering test vehicle of (suspension) mid-set

    图  12  城市轨道交通各制式最高运行速度域

    Figure  12.  Maximum operating speed ranges of different modes of urban rail transit

    表  1  各国中低速磁浮走行机构基本特点

    Table  1.   Basic characteristics of medium and low speed maglev running gears in various countries

    参数 日本
    Linimo列车
    韩国
    EcoBee列车
    中国
    长沙磁浮线 北京磁浮S1线 (悬挂)中置式
    单节车悬浮架数 5 4 5 5 3~6
    悬浮架结构形式 “口”字型 “口”字型 “口”字型 “口”字型 “工”字型
    设计最高运行速度/(km·h-1) 100 110 110 110 160~200
    驱动方式 LIM LIM LIM LIM LIM
    轨距/mm 1 700 1 850 1 860 2 000 1 900
    下载: 导出CSV

    表  2  简支梁关键设计参数限值

    Table  2.   Limit values of key design parameters of simply supported beams

    现有磁浮线路规范 挠跨比限值 垂向基频最低限值 动力系数限值
    长沙磁浮线 L/4 600 90/ L 1.15
    北京磁浮S1线 L/3 800
    唐山中低速磁浮试验线 L/3 800 64/ L
    韩国UTM磁浮系统 L/4 000
    日本HSST磁浮系统 L/1 500(20 < L≤25) 63/ L 1.1/1.2(钢梁)
    下载: 导出CSV

    表  3  不同车辆质量和速度作用下跨中动力系数

    Table  3.   Dynamic coefficients of midspan under different vehicle masses and speeds

    车体质量/t 速度/(km·h-1)
    10 20 30 40 50 60 70 80
    25 1.030 1.033 1.036 1.037 1.040 1.041 1.047 1.061
    30 1.031 1.036 1.045 1.053 1.053 1.066 1.071 1.075
    35 1.035 1.040 1.049 1.057 1.057 1.068 1.073 1.076
    下载: 导出CSV

    表  4  日本Linimo列车主要性能参数

    Table  4.   Main performance parameters of Linimo train in Japan

    最高运行速度/(km·h-1) 最大爬坡能力/‰ 最大加速度/(m·s-2) 常用制动最大减速度/(m·s-2) 最小通过曲线半径/m 编组 单节车载客量/人
    100 70 1.11 1.25 50 3 82
    下载: 导出CSV

    表  5  韩国EcoBee列车主要性能参数

    Table  5.   Main performance parameters of EcoBee train in Korea

    最高运行速度/(km·h-1) 最大爬坡能力/‰ 最大加速度/(m·s-2) 常用制动最大减速度/(m·s-2) 最小通过曲线半径/m 编组 单节车载客量/人
    110 70 1.11 1.25 50 2 115
    下载: 导出CSV

    表  6  长沙磁浮线列车主要性能参数

    Table  6.   Main performance parameters of Changsha maglev line train

    最高运行速度/(km·h-1) 最大爬坡能力/‰ 最大加速度/(m·s-2) 常用制动最大减速度/(m·s-2) 最小通过曲线半径/m 编组 单节车载客量/人
    110 70 1.1 1.1 50 3 121
    下载: 导出CSV

    表  7  北京磁浮S1线列车主要性能参数

    Table  7.   Main performance parameters of Beijing maglev line S1 train

    设计最高速度/(km·h-1) 最大爬坡能力/‰ 最大加速度/(m·s-2) 常用制动最大减速度/(m·s-2) 最小通过曲线半径/m 编组 单节车载客量/人
    110 70 1.1 1.1 50 6 168
    下载: 导出CSV
  • [1] 翟婉明, 赵春发. 现代轨道交通工程科技前沿与挑战[J]. 西南交通大学学报, 2016, 51(2): 209-226. doi: 10.3969/j.issn.0258-2724.2016.02.001

    ZHAI Wan-ming, ZHAO Chun-fa. Frontiers and challenges of sciences and technologies in modern railway engineering[J]. Journal of Southwest Jiaotong University, 2016, 51(2): 209-226. (in Chinese) doi: 10.3969/j.issn.0258-2724.2016.02.001
    [2] 中国城市轨道交通协会. 城市轨道交通2019年度统计和分析报告[R]. 北京: 中国城市轨道交通协会, 2020.

    China Association of Metros. Statistics and analysis report of urban rail transit in 2019[R]. Beijing: China Association of Metros, 2020. (in Chinese)
    [3] LEE H W, KIM K C, JU L. Review of maglev train technologies[J]. IEEE Transactions on Magnetics, 2006, 42(7): 1917-1925. doi: 10.1109/TMAG.2006.875842
    [4] 徐飞, 罗世辉, 邓自刚. 磁悬浮轨道交通关键技术及全速度域应用研究[J]. 铁道学报, 2019, 41(3): 40-49. doi: 10.3969/j.issn.1001-8360.2019.03.006

    XU Fei, LUO Shi-hui, DENG Zi-gang. Study on key technologies and whole speed range application of maglev rail transport[J]. Journal of the China Railway Society, 2019, 41(3): 40-49. (in Chinese) doi: 10.3969/j.issn.1001-8360.2019.03.006
    [5] 辛本雨, 何思源, 刘春秀. 中低速磁悬浮直线牵引电机设计[J]. 防爆电机, 2019, 54(1): 6-9. doi: 10.3969/J.ISSN.1008-7281.2019.01.02

    XIN Ben-yu, HE Si-yuan, LIU Chun-xiu. Design of medium-and low-speed maglev linear traction motor[J]. Explosion-Proof Electric Machine, 2019, 54(1): 6-9. (in Chinese) doi: 10.3969/J.ISSN.1008-7281.2019.01.02
    [6] ZHANG Min, LUO Shi-hui, GAO Chang, et al. Research on the mechanism of a newly developed levitation frame with mid-set air spring[J]. Vehicle System Dynamics, 2018, 56(12): 1797-1816. doi: 10.1080/00423114.2018.1435892
    [7] KIM M, JEONG J H, LIM J, et al. Design and control of levitation and guidance systems for a semi-high-speed maglev train[J]. Journal of Electrical Engineering and Technology, 2017, 12(1): 117-125. doi: 10.5370/JEET.2017.12.1.117
    [8] 蔡文锋, 颜华, 杨平. 中低速磁浮轨道系统特点及工程适应性分析[J]. 铁道工程学报, 2015, 32(2): 54-59. doi: 10.3969/j.issn.1006-2106.2015.02.011

    CAI Wen-feng, YAN Hua, YANG Ping. Analysis of the characteristics and engineering adaptability of track system for medium and low speed maglev transit[J]. Journal of Railway Engineering Society, 2015, 32(2): 54-59. (in Chinese) doi: 10.3969/j.issn.1006-2106.2015.02.011
    [9] ZHOU Dan-feng, HANSEN C H, LI Jie, et al. Review of coupled vibration problems in EMS maglev vehicles[J]. International Journal of Acoustics and Vibration, 2010, 15(1): 10-23. http://www.researchgate.net/publication/286222067_Review_of_Coupled_Vibration_Problems_in_EMS_Maglev_Vehicles
    [10] YABUNO H, KANDA R, LACARBONARA W, et al. Nonlinear active cancellation of the parametric resonance in a magnetically levitated body[J]. Journal of Dynamic Systems Measurement and Control-transactions of the ASME, 2004, 126(3): 433-442. doi: 10.1115/1.1789530
    [11] KIM K J, HAN J B, HAN H S, et al. Coupled vibration analysis of maglev vehicle-guideway while standing still or moving at low speeds[J]. Vehicle System Dynamics, 2015, 53(4): 587-601. doi: 10.1080/00423114.2015.1013039
    [12] 耿杰. 中低速磁浮简支轨道梁关键设计参数的理论与试验研究[D]. 成都: 西南交通大学, 2018.

    GENG Jie. Theory and experimental research of key parameters design on simply-supported track girders of low to medium speed maglev line[D]. Chengdu: Southwest Jiaotong University, 2018. (in Chinese)
    [13] 李小珍, 金鑫, 王党雄, 等. 长沙中低速磁浮运营线列车-桥梁系统耦合振动试验研究[J]. 振动与冲击, 2019, 38(13): 57-63. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201913010.htm

    LI Xiao-zhen, JIN Xin, WANG Dang-xiong, et al. Tests for coupled vibration of a train-bridge system on Changsha low-medium speed maglev line[J]. Journal of Vibration and Shock, 2019, 38(13): 57-63. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201913010.htm
    [14] 杨平, 刘德军, 李小珍. 中低速磁浮简支轨道梁动力系数研究[J]. 桥梁建设, 2016, 46(4): 79-84. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201604015.htm

    YANG Ping, LIU De-jun, LI Xiao-zhen. Investigation of dynamic factors of low and medium speed maglev simply-supported guideway beam[J]. Bridge Construction, 2016, 46(4): 79-84. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201604015.htm
    [15] HAN H S, YIM B H, LEE N J, et al. Effects of the guideway's vibrational characteristics on the dynamics of a maglev vehicle[J]. Vehicle System Dynamics, 2009, 47(3): 309-324. doi: 10.1080/00423110802054342
    [16] 刘卫东. 日本Linimo磁浮线的技术特点和运行情况[J]. 城市轨道交通研究, 2014, 17(4): 133-136. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201404036.htm

    LIU Wei-dong. Technical characters and operation of the low-speed maglev line"Linimo" in Japan[J]. Urban Mass Transit, 2014, 17(4): 133-136. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201404036.htm
    [17] 张志洲, 张惠霞. 韩国磁悬浮列车发展[J]. 国外铁道车辆, 2006(4): 8-12. doi: 10.3969/j.issn.1002-7610.2006.04.002

    ZHANG Zhi-zhou, ZHANG Hui-xia. Development of magnetic levitation trains in Korea[J]. Foreign Rolling Stock, 2006(4): 8-12. (in Chinese) doi: 10.3969/j.issn.1002-7610.2006.04.002
    [18] PARK D Y, SHIN B C, HAN H. Korea's urban maglev program[J]. Proceedings of the IEEE, 2009, 97(11): 1886-1891. doi: 10.1109/JPROC.2009.2030247
    [19] 佟来生. 长沙磁浮快线列车概述[J]. 电力机车与城轨车辆, 2020, 43(4): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-DJJI202004001.htm

    TONG Lai-sheng. Summary of Changsha maglev express train[J]. Electric Locomotives and Mass Transit Vehicles, 2020, 43(4): 1-5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DJJI202004001.htm
    [20] 周源. 长沙中低速磁浮列车磁浮走行部的组装工艺[J]. 城市轨道交通研究, 2019, 22(7): 159-160, 164. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201907043.htm

    ZHOU Yuan. Assembly process of the levitation stock of Changsha medium and low speed maglev train[J]. Urban Mass Transit, 2019, 22(7): 159-160, 164. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201907043.htm
    [21] 王波, 罗世辉, 孙琦, 等. EMS型磁浮列车车体响应与轨道不平顺的相干性分析[J]. 机车电传动, 2020(2): 113-117. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC202002026.htm

    WANG Bo, LUO Shi-hui, SUN Qi, et al. Coherence analysis between vehicle vibration response of EMS maglev vehicles and track irregularities[J]. Electric Drive for Locomotives, 2020(2): 113-117. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC202002026.htm
    [22] 梁鑫, 罗世辉, 马卫华, 等. 磁浮列车单铁悬浮车桥耦合振动分析[J]. 交通运输工程学报, 2012, 12(2): 32-37. doi: 10.3969/j.issn.1671-1637.2012.02.006

    LIANG Xin, LUO Shi-hui, MA Wei-hua, et al. Coupling vibration an analysis of single-magnet suspension vehicle-bridge for maglev train[J]. Journal of Traffic and Transportation Engineering, 2012, 12(2): 32-37. (in Chinese) doi: 10.3969/j.issn.1671-1637.2012.02.006
    [23] 梁鑫, 罗世辉, 马卫华. 单磁铁悬浮控制系统反馈参数动力学特性分析[J]. 噪声与振动控制, 2012, 32(5): 62-66, 135. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK201205015.htm

    LIANG Xin, LUO Shi-hui, MA Wei-hua. Dynamic characteristics of feedback coefficient of single magnet suspension control system[J]. Noise and Vibration Control, 2012, 32(5): 62-66, 135. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK201205015.htm
    [24] 徐银光, 蔡文锋. 中低速磁浮交通工程建设核心技术研究[J]. 铁道工程学报, 2015, 32(7): 82-87. doi: 10.3969/j.issn.1006-2106.2015.07.016

    XU Yin-guang, CAI Wen-feng. Research on the core technology of engineering construction for medium and low speed maglev transit[J]. Journal of Railway Engineering Society, 2015, 32(7): 82-87. (in Chinese) doi: 10.3969/j.issn.1006-2106.2015.07.016
    [25] CAI Y, CHEN S S, ROTE D M. Vehicle/guideway dynamic interaction in maglev systems[J]. Journal of Dynamic Systems Measurement and Control, 1992, 118(3): 61-65. http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=9704253232&site=ehost-live
    [26] REN Shi-bo, ROMEIJN A, KALP K. Dynamic simulation of the maglev vehicle/guideway system[J]. Journal of Bridge Engineering, 2010, 15(3): 269-278. doi: 10.1061/(ASCE)BE.1943-5592.0000071
    [27] MEISINGER R. Simulation of maglev vehicles riding over single and double span guideways[J]. Mathematics and Computers in Simulation, 1979, 21(2): 197-206. doi: 10.1016/0378-4754(79)90134-4
    [28] MIN D J, JUNG M R, KIM M Y, et al. Dynamic interaction analysis of maglev-guideway system based on a 3D full vehicle model[J]. International Journal of Structural Stability and Dynamics, 2017, 17(1): 175-180. doi: 10.1142/S0219455417500067
    [29] KWON S D, LEE J S, MOON J W, et al. Dynamic interaction analysis of urban transit maglev vehicle and guideway suspension bridge subjected to gusty wind[J]. Engineering Structures, 2008, 30(12): 3445-3456. doi: 10.1016/j.engstruct.2008.05.003
    [30] KWON S D, LEE J S, KIM Y P, et al. Urban maglev transportation system and its dynamic coupling behaviours[J]. IABSE Symposium Report, 2009, 96(16): 54-61. http://www.ingentaconnect.com/content/iabse/report/2009/00000096/00000016/art00007
    [31] 李小珍, 王党雄, 耿杰, 等. F轨对中低速磁浮列车-桥梁系统竖向耦合振动的影响研究[J]. 土木工程学报, 2017, 50(4): 97-106. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201704012.htm

    LI Xiao-zhen, WANG Dang-xiong, GENG Jie, et al. Study on the influence of F-rail in vertical coupling vibration of low-medium speed maglev train-bridge system[J]. China Civil Engineering Journal, 2017, 50(4): 97-106. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201704012.htm
    [32] 黎松奇, 张昆仑. 磁浮列车车轨耦合振动仿真研究[J]. 计算机仿真, 2014, 31(8): 137-141. doi: 10.3969/j.issn.1006-9348.2014.08.031

    LI Song-qi, ZHANG Kun-lun. On simulation of track coupling vibration for maglev train[J]. Computer Simulation, 2014, 31(8): 137-141. (in Chinese) doi: 10.3969/j.issn.1006-9348.2014.08.031
    [33] 梁鑫, 罗世辉, 马卫华. 基于相似原理的磁浮车桥耦合振动研究[J]. 铁道科学与工程学报, 2014, 11(3): 31-36. doi: 10.3969/j.issn.1672-7029.2014.03.005

    LIANG Xin, LUO Shi-hui, MA Wei-hua. Study on coupling vibration of maglev vehicle-bridge based on the similarity theory[J]. Journal of Railway Science and Engineering, 2014, 11(3): 31-36. (in Chinese) doi: 10.3969/j.issn.1672-7029.2014.03.005
    [34] CHI Zhen-xiang, LI Jie. Simulation analysis of the vehicle-guideway coupling vibration of EMS maglev train[C]//IEEE. Proceedings of the 36th Chinese Control Conference. New York: IEEE, 2017: 10376-10380.
    [35] YAU J D. Aerodynamic vibrations of a maglev vehicle running on flexible guideways under oncoming wind actions[J]. Journal of Sound and Vibration, 2010, 329(10): 1743-1759. doi: 10.1016/j.jsv.2009.11.039
    [36] YAU J D. Interaction response of maglev masses moving on a suspended beam shaken by horizontal ground motion[J]. Journal of Sound and Vibration, 2010, 329(2): 171-188. doi: 10.1016/j.jsv.2009.08.038
    [37] YAU J D. Vibration control of maglev vehicles traveling over a flexible guideway[J]. Journal of Sound and Vibration, 2009, 321: 184-200. doi: 10.1016/j.jsv.2008.09.030
    [38] 赵春发, 翟婉明. 低速磁浮车辆导向方式及其横向动态特性[J]. 中国铁道科学, 2005, 26(6): 28-32. doi: 10.3321/j.issn:1001-4632.2005.06.006

    ZHAO Chun-fa, ZHAI Wan-ming. Guidance mode and lateral dynamic characteristics of low speed maglev vehicle[J]. China Railway Science, 2005, 26(6): 28-32. (in Chinese) doi: 10.3321/j.issn:1001-4632.2005.06.006
    [39] 赵春发, 翟婉明. 常导电磁悬浮动态特性研究[J]. 西南交通大学学报, 2004, 39(4): 464-468. doi: 10.3969/j.issn.0258-2724.2004.04.011

    ZHAO Chun-fa, ZHAI Wan-ming. Dynamic characteristics of electromagnetic levitation systems[J]. Journal of Southwest Jiaotong University, 2004, 39(4): 464-468. (in Chinese) doi: 10.3969/j.issn.0258-2724.2004.04.011
    [40] 邹东升, 佘龙华, 张志强, 等. 磁浮系统车轨耦合振动分析[J]. 电子学报, 2010, 38(9): 2071-2075. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXU201009019.htm

    ZOU Dong-sheng, SHE Long-hua, ZHANG Zhi-qiang, et al. Maglev vehicle and guideway coupling vibration analysis[J]. Acta Electronica Sinica, 2010, 38(9): 2071-2075. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXU201009019.htm
    [41] 王洪坡, 李杰. 一类非自治位置时滞反馈控制系统的亚谐共振响应[J]. 物理学报, 2007, 56(5): 2504-2516. doi: 10.3321/j.issn:1000-3290.2007.05.007

    WANG Hong-po, LI Jie. Sub-harmonic resonances of the non-autonomous system with delayed position feedback control[J]. Acta Physica Sinica, 2007, 56(5): 2504-2516. (in Chinese) doi: 10.3321/j.issn:1000-3290.2007.05.007
    [42] WANG Hong-po, LI Jie, ZHANG Kun. Stability and Hopf bifurcation of the maglev system with delayed speed feedback control[J]. Acta Automatica Sinica, 2007, 33(8): 829-834. doi: 10.1360/aas-007-0829
    [43] 张玲玲. 磁浮列车悬浮系统的Hopf分岔及滑模控制研究[D]. 长沙: 湖南大学, 2010.

    ZHANG Ling-ling. Research on Hopf bifurcation and sliding mode control for suspension system of maglev train[D]. Changsha: Hunan University, 2010. (in Chinese)
    [44] ZHANG Ling-ling, HUANG Li-hong, ZHANG Zhi-zhou. Stability and Hopf bifurcation of the maglev system with delayed position and speed feedback control[J]. Nonlinear Dynamics, 2009, 57(1/2): 197-207. http://www.cqvip.com/QK/90250X/20078/25131143.html
    [45] 李金辉. EMS型磁浮列车-桥梁耦合振动控制技术研究[D]. 长沙: 国防科学技术大学, 2015.

    LI Jin-hui. The vibration control technology of EMS maglev vehicle-bridge coupled system[D]. Changsha: Graduate School of National University of Defense Technology, 2015. (in Chinese)
    [46] HE Guang, LI Jie, CUI Peng. Decoupling control design for the module suspension control system in maglev train[J]. Mathematical Problems in Engineering, 2015, DOI: 10.1155/2015/865650.
    [47] HE Guang, LI Jie, LI Yun, et al. Interactions analysis in the maglev bogie with decentralized controllers using an effective relative gain array measure[C]//IEEE. 2013 10th IEEE International Conference on Control and Automation. New York: IEEE, 2013: 1070-1075.
    [48] HE Guang, LI Jie, CUI Peng. Nonlinear Control scheme for the levitation module of maglev train[J]. Journal of Dynamic Systems, Measurement and Control, 2016, 138(7): 4-8. http://smartsearch.nstl.gov.cn/paper_detail.html?id=eedee43c001462a102cf4914024cc997
    [49] LI Yun, HE Guang, LI Jie. Nonlinear robust observer-based fault detection for networked suspension control system of maglev train[J]. Mathematical Problems in Engineering, 2013(14): 147-160. http://www.researchgate.net/publication/258397490_Nonlinear_Robust_Observer-Based_Fault_Detection_for_Networked_Suspension_Control_System_of_Maglev_Train
    [50] LONG Zhi-qiang, HE Guang, XUE Song. Study of EDS and EMS hybrid suspension system with per-manent magnet Halbach array[J]. IEEE Transactions on Magnetics, 2011, 47(12): 4717-4724. doi: 10.1109/TMAG.2011.2159237
    [51] HE Guang, LI Jie, CUI Peng, et al. T-S fuzzy model based control strategy for the networked suspension control system of maglev train[J]. Mathematical Problems in Engineering, 2015, DOI: 10.1155/2015/291702.
    [52] CHEN Xiao-hao, MA Wei-hua, LUO Shi-hui, et al. A vehicle-track beam matching index in EMS maglev transportation system[J]. Archive of Applied Mechanics, 2020, 90(4): 773-787. doi: 10.1007/s00419-019-01638-6
    [53] CHEN Xiao-hao, MA Wei-hua, LUO Shi-hui. Study on stability and bifurcation of electromagnet-track beam coupling system for EMS maglev vehicle[J]. Nonlinear Dynamics, 2020, 101(4): 2181-2193. doi: 10.1007/s11071-020-05917-8
    [54] 张志洲, 李晓龙, 龙志强. 基于状态观测器的磁悬浮列车传感器故障容错方法[J]. 机车电传动, 2008(4): 39-42. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC200804011.htm

    ZHANG Zhi-zhou, LI Xiao-long, LONG Zhi-qiang. Sensor fault tolerance method for maglev train based on state-observer[J]. Electric Drive for Locomotives, 2008(4): 39-42. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC200804011.htm
    [55] YETENDJE A, SERON M M, DE DONA J A, et al. Sensor fault-tolerant control of a magnetic levitation system[J]. International Journal of Robust and Nonlinear Control, 2010, 20(18): 2108-2121. doi: 10.1002/rnc.1572
    [56] HE Ning, LONG Zhi-qiang, XUE Song. Switching algorithm for maglev train double-modular redundant positioning sensors[J]. Sensors, 2012, 12(8): 11294-11306. doi: 10.3390/s120811294
    [57] 秦岭. 磁悬浮列车悬浮系统容错控制的研究[J]. 智慧工厂, 2014(7): 80-84, 90. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201201005.htm

    QIN Ling. Research on fault-tolerant controllers for maglev levitation system[J]. Smart Factory, 2014(7): 80-84, 90. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201201005.htm
    [58] 龙志强, 薛松, 陈慧星. 基于LMI的磁浮列车悬浮系统被动容错控制[J]. 计算机仿真, 2008(2): 265-268. doi: 10.3969/j.issn.1006-9348.2008.02.069

    LONG Zhi-qiang, XUE Song, CHEN Hui-xing. Passive fault tolerant control for suspension system of maglev train based on LMI[J]. Computer Simulation, 2008(2): 265-268. (in Chinese) doi: 10.3969/j.issn.1006-9348.2008.02.069
    [59] 严伟, 滕青芳, 范多旺. 考虑输入滞后的磁悬浮列车悬浮系统的鲁棒H容错控制[J]. 机车电传动, 2012(1): 25-29, 32. doi: 10.3969/j.issn.1000-128X.2012.01.006

    YAN Wei, TENG Qing-fang, FAN Duo-wang. Robust H fault tolerant control on suspension system of maglev train with delayed input[J]. Electric Drive for Locomotives, 2012(1): 25-29, 32. (in Chinese) doi: 10.3969/j.issn.1000-128X.2012.01.006
    [60] SUNG H K, KIM D S, CHO H J, et al. Fault tolerant control of electromagnetic levitation system[J]. Advances in Industrial Control, 2004, 57(10): 676-689. http://www.researchgate.net/publication/228814877_Fault_tolerant_control_of_electromagnetic_levitation_system
    [61] SUNG H K, LEE S H, BIEN Z. Design and implementation of a fault tolerant controller for EMS systems[J]. Mechatronics, 2005, 15(10): 1253-1272. doi: 10.1016/j.mechatronics.2005.04.003
    [62] ZHOU Hai-bo, DUAN Ji-an. A novel levitation control strategy for a class of redundant actuation maglev system[J]. Control Engineering Practice, 2011, 19(12): 1468-1478. doi: 10.1016/j.conengprac.2011.08.006
    [63] 向湘林, 龙志强, 梁潇, 等. 中低速磁悬浮列车、走行部及用于提高冗余的搭接结构: 中国, CN208452798U[P]. 2019-02-01.

    XIANG Xiang-lin, LONG Zhi-qiang, LIANG Xiao, et al. Medium and low speed maglev train, running gear and overlap structure for improving redundancy: China, CN208452798U[P]. 2019-02-01. (in Chinese)
    [64] 韩鹏, 林国斌, 徐俊起, 等. 一种中低速磁浮列车悬浮冗余系统: 中国, CN108372798A[P]. 2018-08-07.

    HAN Peng, LIN Guo-bin, XU Jun-qi, et al. Suspension redundancy system of medium and low speed maglev train: China, CN108372798A[P]. 2018-08-07. (in Chinese)
    [65] 孙友刚, 林国斌, 高定刚, 等. 一种具有冗余功能的中低速磁浮车辆走行部: 中国, CN110254446A[P]. 2019-09-20.

    SUN You-gang, LIN Guo-bin, GAO Ding-gang, et al. A middle and low speed maglev vehicle running gear with redundancy function: China, CN110254446A[P]. 2019-09-20. (in Chinese)
    [66] 龙志强, 吕治国, 常文森. 基于模糊故障树的磁浮列车悬浮系统故障诊断[J]. 控制与决策, 2004(2): 139-142. doi: 10.3321/j.issn:1001-0920.2004.02.004

    LONG Zhi-qiang, LYU Zhi-guo, CHANG Wen-sen. Fault diagnosis to suspension system of maglev train based on fuzzy fault tree[J]. Control and Decision, 2004(2): 139-142. (in Chinese) doi: 10.3321/j.issn:1001-0920.2004.02.004
    [67] 钟慧娟, 龙志强, 洪华杰. 磁悬浮列车PLC故障自诊断方法研究[J]. 电气传动, 2003(1): 40-42, 50. doi: 10.3969/j.issn.1001-2095.2003.01.010

    ZHONG Hui-juan, LONG Zhi-qiang, HONG Hua-jie. The method of PLC diagnosis on maglev train[J]. Electric Drive, 2003(1): 40-42, 50. (in Chinese) doi: 10.3969/j.issn.1001-2095.2003.01.010
    [68] LIU Zhi-gang, HOU Yun-chang, FU Wei-jie. Communication simulation of on-board diagnosis network in high-speed maglev trains[J]. Journal of Modern Transportation, 2011, 19(4): 240-246. doi: 10.1007/BF03325764
    [69] CUI Ying-pu, SHE Long-hua, LI Xiao-long, et al. Fault diagnosis for suspension signal of maglev vehicle based on mathematical model[J]. Applied Mechanics and Materials, 2012, 190-191: 987-992. doi: 10.4028/www.scientific.net/AMM.190-191.987
    [70] LI Yun, LI Jie, ZHANG Geng, et al. Disturbance decoupled fault diagnosis for sensor fault of maglev suspension system[J]. Journal of Central South University, 2013, 20(6): 1545-1551. doi: 10.1007/s11771-013-1646-0
    [71] 翟婉明, 赵春发. 磁浮车辆/轨道系统动力学(Ⅰ)——磁/轨相互作用及稳定性[J]. 机械工程学报, 2005(7): 1-10. doi: 10.3321/j.issn:0577-6686.2005.07.001

    ZHAI Wan-ming, ZHAO Chun-fa. Dynamics of maglev vehicle/track system (Ⅰ)——magnetic/track interaction and stability[J]. Journal of Mechanical Engineering, 2005(7): 1-10. (in Chinese) doi: 10.3321/j.issn:0577-6686.2005.07.001
    [72] 王成杰, 伍星, 张静, 等. 中低速磁浮列车悬浮控制策略研究综述[J]. 电气自动化, 2019, 41(5): 1-3, 56. doi: 10.3969/j.issn.1000-3886.2019.05.001

    WANG Cheng-jie, WU Xing, ZHANG Jing, et al. Summary of researches on levitation control strategies for low and medium speed maglev trains[J]. Electrical Automation, 2019, 41(5): 1-3, 56. (in Chinese) doi: 10.3969/j.issn.1000-3886.2019.05.001
    [73] 孙玉昆, 张昆仑. 磁悬浮列车的非线性鲁棒控制[J]. 机车电传动, 2005(6): 29-32. doi: 10.3969/j.issn.1000-128X.2005.06.008

    SUN Yu-kun, ZHANG Kun-lun. Nonlinear robust control of maglev train[J]. Electric Drive for Locomotives, 2005(6): 29-32. (in Chinese) doi: 10.3969/j.issn.1000-128X.2005.06.008
    [74] 马忠宝, 孙荣斌. 磁悬浮列车电磁悬浮系统的自适应模糊滑模控制[J]. 机车电传动, 2007(1): 29-32. doi: 10.3969/j.issn.1000-128X.2007.01.010

    MA Zhong-bao, SUN Rong-bin. Adaptive fuzzy sliding mode control for electromagnetic suspension system of maglev train[J]. Electric Drive for Locomotives, 2007(1): 29-32. (in Chinese) doi: 10.3969/j.issn.1000-128X.2007.01.010
    [75] 李云钢, 常文森. 磁浮列车悬浮系统的串级控制[J]. 自动化学报, 1999(2): 107-111. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO902.016.htm

    LI Yun-gang, CHANG Wen-sen. Cascade control of an EMS maglev vehicle's levitation control system[J]. Acta Automatica Sinica, 1999(2): 107-111. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO902.016.htm
    [76] 黎松奇, 张昆仑, 刘国清, 等. 基于逆系统方法的磁浮列车非线性控制[J]. 控制工程, 2017, 24(8): 1542-1546. https://www.cnki.com.cn/Article/CJFDTOTAL-JZDF201708004.htm

    LI Song-qi, ZHANG Kun-lun, LIU Guo-qing, et al. Nonlinear control of maglev train based on inverse system method[J]. Control Engineering of China, 2017, 24(8): 1542-1546. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZDF201708004.htm
    [77] LIANG Xiao. Research of maglev train suspension algorithm based on active disturbance rejection control[C]//IEEE. 2016 IEEE International Conference on Information and Automation. New York: IEEE, 2016: 1296-1300.
    [78] CHEN Chen, XU Jun-qi, JI Wen, et al. Adaptive levitation control for characteristic model of low speed maglev vehicle[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2020, 234(7): 1-12. http://www.researchgate.net/publication/338486371_Adaptive_levitation_control_for_characteristic_model_of_low_speed_maglev_vehicle
    [79] SUN You-gang, LI Wan-li, QIANG Hai-yan. The design and realization of magnetic suspension controller of low-speed maglev train[C]//IEEE. 2016 IEEE/SICE International Symposium on System Integration. New York: IEEE, 2016: 1-6.
    [80] 王玉国. 电磁悬浮系统的专家PID控制[J]. 唐山学院学报, 2008(2): 29-30. doi: 10.3969/j.issn.1672-349X.2008.02.012

    WANG Yu-guo. Expert PID control for electro-magnetic suspension system[J]. Journal of Tangshan College, 2008(2): 29-30. (in Chinese) doi: 10.3969/j.issn.1672-349X.2008.02.012
    [81] DAGHOOGHI Z, MENHAJ M B, ZOMORODIAN A, et al. A real-time control of maglev system using neural networks and genetic algorithms[C]//IEEE. 2012 IEEE International Conference on Information and Automation(ICIA). New York: IEEE, 2012: 527-532.
    [82] 陈屹. 城市轨道交通四轨供电方式的探讨[J]. 电气化铁道, 2010(2): 49-50. doi: 10.3969/j.issn.1007-936X.2010.02.016

    CHEN Yi. Discussion on four rail power supply mode of urban rail transit[J]. Electric Railway, 2010(2): 49-50. (in Chinese) doi: 10.3969/j.issn.1007-936X.2010.02.016
    [83] 胡基士, 潘慧龙. 磁浮列车受流器设计依据分析[J]. 西南交通大学学报, 2000(2): 170-173. doi: 10.3969/j.issn.0258-2724.2000.02.015

    HU Ji-shi, PAN Hui-long. A design basis for collector of maglev trains[J]. Journal of Southwest Jiaotong University, 2000(2): 170-173. (in Chinese) doi: 10.3969/j.issn.0258-2724.2000.02.015
    [84] 李宁, 陈革. 常导中低速磁悬浮列车受流方式选择及受流器结构设计[J]. 电力机车与城轨车辆, 2007(2): 14-15, 19. doi: 10.3969/j.issn.1672-1187.2007.02.004

    LI Ning, CHEN Ge. Current collection modes choice and collector structure design of the mid-/low-speed EMS maglev train[J]. Electric Locomotives and Mass Transit Vehicles, 2007(2): 14-15, 19. (in Chinese) doi: 10.3969/j.issn.1672-1187.2007.02.004
    [85] 宋伟. 接触轨安装精度对中低速磁浮列车受流的影响[J]. 电气化铁道, 2014(5): 33-35. doi: 10.3969/j.issn.1007-936X.2014.05.010

    SONG Wei. Influence of installation accuracy of contact rail on current collection of medium and low speed maglev train[J]. Electric Railway, 2014(5): 33-35. (in Chinese) doi: 10.3969/j.issn.1007-936X.2014.05.010
    [86] 张鹏飞. 中低速磁浮列车靴轨系统优化[D]. 成都: 西南交通大学, 2018.

    ZHANG Peng-fei. Optimization of boot and rail system for medium and low speed maglev train[D]. Chengdu: Southwest Jiaotong University, 2018. (in Chinese)
    [87] 刘铭. 160 km·h-1磁浮列车靴轨系统动力学研究[D]. 成都: 西南交通大学, 2018.

    LIU Ming. Research on dynamics of the 160 km·h-1 maglev train collector shoe and contact rail system[D]. Chengdu: Southwest Jiaotong University, 2018. (in Chinese)
    [88] 彭宝林, 历洋. 160 km·h-1速度等级磁浮列车受流器研究[J]. 机电信息, 2019(11): 13-15. doi: 10.3969/j.issn.1671-0797.2019.11.007

    PENG Bao-lin, LI Yang. Research on current collector of 160 km·h-1 maglev train[J]. Mechanical and Electrical Information, 2019(11): 13-15. (in Chinese) doi: 10.3969/j.issn.1671-0797.2019.11.007
    [89] WESTON P F, STEWART E, ROBERTS C. Measuring the dynamic interaction between electric vehicle shoegear and the third rail[C]//IEEE. IET International Conference on Railway Engineering 2008. New York: IEEE, 2008: 14-17.
    [90] STEWART E, WESTON P F, HILLMANSEN S, et al. Using bogie-mounted sensors to understand the dynamics of third rail current collection systems[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2011, 225(2): 219-227. doi: 10.1177/09544097JRRT401
    [91] 杨新斌. 中低速磁浮车辆轻量化探讨[J]. 电力机车与城轨车辆, 2014, 37(1): 58-60. https://www.cnki.com.cn/Article/CJFDTOTAL-DJJI201401019.htm

    YANG Xin-bin. Lightweight discussion of mid-low speed maglev vehicle[J]. Electric Locomotives and Mass Transit Vehicles, 2014, 37(1): 58-60. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DJJI201401019.htm
    [92] 赵洪伦, 俞程亮, 王文斌. 高速磁浮列车车体承载结构优化设计研究[J]. 铁道学报, 2007(4): 43-47. doi: 10.3321/j.issn:1001-8360.2007.04.009

    ZHAO Hong-lun, YU Cheng-liang, WANG Wen-bin. Study on optimization design of carbody structure of high-speed maglev train[J]. Journal of the China Railway Society, 2007(4): 43-47. (in Chinese) doi: 10.3321/j.issn:1001-8360.2007.04.009
    [93] 赵军. 中低速磁浮列车车体轻量化设计[D]. 成都: 西南交通大学, 2017.

    ZHAO Jun. Lightweight design of medium-low speed maglev train carbody[D]. Chengdu: Southwest Jiaotong University, 2017. (in Chinese)
    [94] 周益, 刘放, 何岚, 等. 长定子中低速磁浮直线电机动力学数值分析与优化设计[J]. 机械设计与制造, 2012(5): 36-38. doi: 10.3969/j.issn.1001-3997.2012.05.014

    ZHOU Yi, LIU Fang, HE Lan, et al. Dynamics numerical analysis and optimization design of long stator linear motor for low-speed maglev train[J]. Machinery Design and Manufacture, 2012(5): 36-38. (in Chinese) doi: 10.3969/j.issn.1001-3997.2012.05.014
    [95] 罗玗琪, 许平, 谢卓君. 磁浮列车走行机构结构优化研究[J]. 城市轨道交通研究, 2011, 14(11): 86-89, 92. doi: 10.3969/j.issn.1007-869X.2011.11.020

    LUO Yu-qi, XU Ping, XIE Zhuo-jun. Research on structure optimization of running gear of maglev train[J]. Urban Mass Transit, 2011, 14(11): 86-89, 92. (in Chinese) doi: 10.3969/j.issn.1007-869X.2011.11.020
    [96] 何肖, 顾保南. 我国大陆各城市轨道交通线路旅行速度统计分析—基于中国城市轨道交通协会数据分析的研究报告之七[J]. 城市轨道交通研究, 2020, 23(1): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT202001002.htm

    HE Xiao, GU Bao-nan. Statistical analysis of travel speed of urban rail transit lines in mainland China—Report 7: Analysis of data from China association of metros[J]. Urban Mass Transit, 2020, 23(1): 1-5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT202001002.htm
    [97] 梁潇, 陈峰, 傅庆湘. 160 km·h-1中速磁浮交通系统的关键技术问题[J]. 城市轨道交通研究, 2019, 22(9): 21-26. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201909008.htm

    LIANG Xiao, CHEN Feng, FU Qing-xiang. Key technical issues on 160 km·h-1 medium-speed maglev transit system[J]. Urban Mass Transit, 2019, 22(9): 21-26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201909008.htm
  • 加载中
图(12) / 表(7)
计量
  • 文章访问数:  1798
  • HTML全文浏览量:  1700
  • PDF下载量:  525
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-14
  • 刊出日期:  2021-08-27

目录

    /

    返回文章
    返回