留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

LSTM Encoder-Decoder方法预测设备剩余使用寿命

赵志宏 李晴 李乐豪 赵敬娇

赵志宏, 李晴, 李乐豪, 赵敬娇. LSTM Encoder-Decoder方法预测设备剩余使用寿命[J]. 交通运输工程学报, 2021, 21(6): 269-277. doi: 10.19818/j.cnki.1671-1637.2021.06.021
引用本文: 赵志宏, 李晴, 李乐豪, 赵敬娇. LSTM Encoder-Decoder方法预测设备剩余使用寿命[J]. 交通运输工程学报, 2021, 21(6): 269-277. doi: 10.19818/j.cnki.1671-1637.2021.06.021
ZHAO Zhi-hong, LI Qing, LI Le-hao, ZHAO Jing-jiao. Remaining useful life prediction for equipment based on LSTM encoder-decoder method[J]. Journal of Traffic and Transportation Engineering, 2021, 21(6): 269-277. doi: 10.19818/j.cnki.1671-1637.2021.06.021
Citation: ZHAO Zhi-hong, LI Qing, LI Le-hao, ZHAO Jing-jiao. Remaining useful life prediction for equipment based on LSTM encoder-decoder method[J]. Journal of Traffic and Transportation Engineering, 2021, 21(6): 269-277. doi: 10.19818/j.cnki.1671-1637.2021.06.021

LSTM Encoder-Decoder方法预测设备剩余使用寿命

doi: 10.19818/j.cnki.1671-1637.2021.06.021
基金项目: 

国家自然科学基金项目 11972236

国家自然科学基金项目 11790282

石家庄铁道大学研究生创新资助项目 YC2021077

详细信息
    作者简介:

    赵志宏(1972-),男,河北石家庄人,石家庄铁道大学教授,工学博士,从事机械故障诊断与大数据分析研究

  • 中图分类号: U270

Remaining useful life prediction for equipment based on LSTM encoder-decoder method

Funds: 

National Natural Science Foundation of China 11972236

National Natural Science Foundation of China 11790282

Graduate Innovation Support Project of Shijiazhuang Tiedao University YC2021077

More Information
  • 摘要: 应用LSTM Encoder-Decoder提出了机械设备剩余使用寿命预测方法;对获取的传感器数据进行预处理,利用LSTM Encoder对数据序列进行编码,得到设备状态信息的中间表示,其中蕴含了设备状态的特征信息,利用LSTM Decoder对中间表示信息进行解码,利用解码后的信息预测剩余使用寿命;研究了LSTM Encoder-Decoder方法在公开的C-MAPSS数据集上的剩余使用寿命预测试验,与LSTM、D-LSTM等方法进行了对比试验;研究了不同滑动窗口大小对于剩余寿命预测结果的影响。研究结果表明:LSTM Encoder-Decoder方法的剩余使用寿命预测结果的评分函数值和均方根误差均优于LSTM、D-LSTM方法;在FD001子集上,LSTM Encoder-Decoder方法、LSTM方法和D-LSTM方法对应的均方根误差分别为11、12、16;当滑动窗口大小为30时,LSTM Encoder-Decoder方法在FD001~FD004子集对应的评分函数值分别为164、3 012、372、4 800,对应的均方根误差分别为11、20、14、22;当滑动窗口大小为40时,LSTM Encoder-Decoder方法在FD001~FD004子集对应的评分函数值分别为305、1 220、408、4 828,对应的均方根误差分别为14、16、15、19。可见,提出的LSTM Encoder-Decoder方法是一种有效的预测机械设备剩余使用寿命方法,并且滑动窗口大小对于剩余使用寿命预测结果存在一定的影响。

     

  • 图  1  LSTM网络结构

    Figure  1.  LSTM network structure

    图  2  Encoder-Decoder框架

    Figure  2.  Encoder-Decoder structure

    图  3  基于LSTM Encoder-Decoder的RUL预测方法

    Figure  3.  RUL prediction method based on LSTM Encoder-Decoder

    图  4  FD001子集中21个传感器测量数据可视化结果

    Figure  4.  Data visualization results of 21 sensors in FD001 subset

    图  5  FD001~FD004子集测试集中剩余寿命实际值与预测值对比

    Figure  5.  Comparison between actual and predicted RULs in FD001-FD004 subsets' test sets

    图  6  每个测试数据集中不同发动机剩余寿命实际值与预测值对比

    Figure  6.  Comparison between actual and predicted RULs of different engines in each test data set

    表  1  C-MAPSS数据集

    Table  1.   C-MAPSS data sets

    子集名称 FD001 FD002 FD003 FD004
    训练发动机单元个数 100 260 100 249
    测试发动机单元个数 100 259 100 248
    操作条件 1 6 1 6
    故障类型 1 1 2 2
    下载: 导出CSV

    表  2  每个子集26列具体含义

    Table  2.   Specific meanings of 26 columns in each subset

    列数 1 2 3~5 6~26
    具体含义 发动机单元号 当前工作周期数 操作设置 传感器值
    下载: 导出CSV

    表  3  八种方法与提出方法对比

    Table  3.   Comparison between eight methods and proposed method

    数据集 评价指标 本文方法 D-LSTM[27] LSTM[28] MODBNE[29] TWBNN[30] FADCNN[31] GB[29] RF[29] SVM[29]
    FD001 评分函数 164 338 334 1 287 474 480 7 703
    均方根误差 11 16 12 15 15 18 16 18 41
    FD002 评分函数 3 012 4 450 5 585 13 570 87 280 70 457 316 483
    均方根误差 20 24 25 30 29 30 53
    FD003 评分函数 372 852 422 1 596 577 711 22 542
    均方根误差 14 16 12 20 17 20 46
    FD004 评分函数 4 800 5 550 6 558 7 886 17 818 46 568 141 122
    均方根误差 22 28 29 29 29 31 60
    下载: 导出CSV

    表  4  滑动窗口大小对RUL的影响

    Table  4.   Effects of sliding windows sizes on RULs

    数据集 评价指标 滑动窗口为10 滑动窗口为20 滑动窗口为30 滑动窗口为40 滑动窗口为50
    FD001 评分函数 4 065 840 164 305 336
    均方根误差 25 19 11 14 14
    FD002 评分函数 3 693 4 124 3 012 1 220 1 107
    均方根误差 19 20 20 16 15
    FD003 评分函数 1 119 562 372 408 246
    均方根误差 22 18 14 15 13
    FD004 评分函数 8 697 9 559 4 800 4 828 3 116
    均方根误差 24 23 22 19 19
    下载: 导出CSV
  • [1] KHAN S, YAIRI T. A review on the application of deep learning in system health management[J]. Mechanical Systems and Signal Processing, 2018, 107: 241-265. doi: 10.1016/j.ymssp.2017.11.024
    [2] 年夫顺. 关于故障预测与健康管理技术的几点认识[J]. 仪器仪表学报, 2018, 39(8): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201808001.htm

    NIAN Fu-shun. Viewpoints about the prognostic and health management[J]. Chinese Journal of Scientific Instrument, 2018, 39(8): 1-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201808001.htm
    [3] ZHAO Ze-qi, LIANG Bin, WANG Xue-qian, et al. Remaining useful life prediction of aircraft engine based on degradation pattern learning[J]. Reliability Engineering and System Safety, 2017, 164: 74-83. doi: 10.1016/j.ress.2017.02.007
    [4] LIU Hui, LIU Zhen-yu, JIA Wei-qiang, et al. A novel deep learning-based encoder-decoder model for remaining useful life prediction[C]//IEEE. Proceedings of the 2019 International Joint Conference on Neural Networks. Washington DC: IEEE, 2019: 1-8.
    [5] LIM P, GOH C K, TAN K C. A time window neuralnetwork based framework for remaining useful life estimation[C]//IEEE. Proceedings of the 2016 International Joint Conference on Neural Networks. Washington DC: IEEE, 2016: 1746-1753.
    [6] LIAO Lin-xia, KÖTTIG F. Review of hybrid prognostics approaches for remaining useful life prediction of engineered systems, and an application to battery life prediction[J]. IEEE Transactions on Reliability, 2014, 63(1): 191-207. doi: 10.1109/TR.2014.2299152
    [7] 朱朔, 白瑞林, 吉峰. 改进CHSMM的滚动轴承剩余寿命预测方法[J]. 机械传动, 2018, 42(10): 46-52, 95. https://www.cnki.com.cn/Article/CJFDTOTAL-JXCD201810010.htm

    ZHU Shuo, BAI Rui-lin, JI Feng. Rolling bearing remaining useful life prognosis method based on improved CHSMM[J]. Journal of Mechanical Transmission, 2018, 42(10): 46-52, 95. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXCD201810010.htm
    [8] LI C J, LEE H. Gear fatigue crack prognosis using embedded model, gear dynamic model and fracture mechanics[J]. Mechanical Systems and Signal Processing, 2005, 19(4): 836-846. doi: 10.1016/j.ymssp.2004.06.007
    [9] FAN Jia-jie, YUNG K C, PECHT M. Physics-of-failure-basedprognostics and health management for high-power white light-emitting diode lighting[J]. IEEE Transactions on Device and Materials Reliability, 2011, 11(3): 407-416. doi: 10.1109/TDMR.2011.2157695
    [10] 姜媛媛, 曾文文, 沈静静, 等. 基于凸优化-寿命参数退化机理模型的锂离子电池剩余使用寿命预测[J]. 电力系统及其自动化学报, 2019, 31(3): 23-28. https://www.cnki.com.cn/Article/CJFDTOTAL-DLZD201903004.htm

    JIANG Yuan-yuan, ZENG Wen-wen, SHEN Jing-jing, et al. Prediction of remaining useful life of lithium-ion battery based on convex optimization-life parameter degradation mechanism model[J]. Proceedings of the CSU-EPSA, 2019, 31(3): 23-28. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLZD201903004.htm
    [11] 张继冬, 邹益胜, 邓佳林, 等. 基于全卷积层神经网络的轴承剩余寿命预测[J]. 中国机械工程, 2019, 30(18): 2231-2235. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX201918014.htm

    ZHANG Ji-dong, ZOU Yi-sheng, DENG Jia-lin, et al. Bearing remaining life prediction based on full convolutional layer neural networks[J]. China Mechanical Engineering, 2019, 30(18): 2231-2235. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX201918014.htm
    [12] 陈自强. 基于LSTM网络的设备健康状况评估与剩余寿命预测方法的研究[D]. 合肥: 中国科学技术大学, 2019.

    CHEN Zi-qiang. Research on equipment health assessment and remaining useful life prediction method based on LSTM[D]. Hefei: University of Science and Technology of China, 2019. (in Chinese)
    [13] KONG Zheng-min, CUI Yan-de, XIA Zhou, et al. Convolution and long short-term memory hybrid deep neural networks for remaining useful life prognostics[J]. Applied Sciences, 2019, DOI: 10.3390/app9194156.
    [14] 葛阳, 郭兰中, 牛曙光, 等. 基于t-SNE和LSTM的旋转机械剩余寿命预测[J]. 振动与冲击, 2020, 39(7): 223-231, 273. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202007032.htm

    GE Yang, GUO Lan-zhong, NIU Shu-guang, et al. Prediction of remaining useful life based on t-SNE and LSTM for rotating machinery[J]. Journal of Vibration and Shock, 2020, 39(7): 223-231, 273. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202007032.htm
    [15] 康守强, 周月, 王玉静, 等. 基于改进SAE和双向LSTM的滚动轴承RUL预测方法[J]. 自动化学报, 2020, DOI:10.16383/j.aas.c190796.

    KANG Shou-qiang, ZHOU Yue, WANG Yu-jing, et al. RUL prediction method of a rolling bearing based on improved SAE and Bi-LSTM[J]. Acta Automatica Sinica, 2020, DOI:10.16383/j.aas.c190796.(in Chinese)
    [16] SCHMIDHUBER J. Deep learning in neural networks: an overview[J]. Neural Networks, 2015, 61: 85-117.
    [17] CHO K, VAN MERRIENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[J]. Computer Science, 2014, DOI: 10.3115/v1/D14-1179.
    [18] ZHU Yong-hua, ZHANG Wei-lin, CHEN Yi-ha, et al. A novel approach to workload prediction using attention-based LSTM encoder-decoder network in cloud environment[J]. EURASIP Journal on Wireless Communications and Networking, 2019(1): 1-18.
    [19] BENGIO Y, SIMARD P, FRASCONI P. Learning long-term dependencies with gradient descent is difficult[J]. IEEE Transactions on Neural Networks, 1994, 5(2): 157-166. doi: 10.1109/72.279181
    [20] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. doi: 10.1162/neco.1997.9.8.1735
    [21] CHEN Yuan-hang, PENG Gao-liang, ZHU Zhi-yu, et al. A novel deep learning method based on attention mechanism for bearing remaining useful life prediction[J]. Applied Soft Computing Journal, 2019, DOI:https://doi.org/ 10.1016/j.asoc.2019.105919.
    [22] 李敏, 李红娇, 陈杰. 差分隐私保护下的Adam优化算法研究[J]. 计算机应用与软件, 2020, 37(6): 253-258, 296. doi: 10.3969/j.issn.1000-386x.2020.06.044

    LI Min, LI Hong-jiao, CHEN Jie. Adam optimization algorithm based on differential privacy protection[J]. Computer Applications and Software, 2020, 37(6): 253-258, 296. (in Chinese) doi: 10.3969/j.issn.1000-386x.2020.06.044
    [23] GOU Peng-qi, YU Jian-jun. A nonlinear ANN equalizer with mini-batch gradient descent in 40Gbaud PAM-8 IM/DD system[J]. Optical Fiber Technology, 2018, 46: 113-117. doi: 10.1016/j.yofte.2018.09.015
    [24] 李杰, 贾渊杰, 张志新, 等. 基于融合神经网络的航空发动机剩余寿命预测[J]. 推进技术, 2021, 42(8): 1725-1734. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS202108007.htm

    LI Jie, JIA Yuan-jie, ZHANG Zhi-xin, et al. Remaining useful life prediction of aeroengine based on fusion neural network[J]. Journal of Propulsion Technology, 2021, 42(8): 1725-1734. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS202108007.htm
    [25] ZHAO Zhi-bin, WU Jing-yao, LI Tian-fu, et al. Challenges and opportunities of AI-enabled monitoring, diagnosis and prognosis: a review[J]. Chinese Journal of Mechanical Engineering, 2021, 34(3): 16-44.
    [26] SAXENA A, GOEBEL K, SIMON D, et al. Damage propagation modeling for aircraft engine run-to-failure simulation[C]//IEEE. 2008 International Conference on Prognostics and Health Management. Washington DC: IEEE, 2008: 1-9.
    [27] ZHENG Shuai, RISTOVSKI K, FARAHAT A, et al. Long short-term memory network for remaining useful life estimation[C]//IEEE. 2017 IEEE International Conference on Prognostics and Health Management (ICPHM). Washington DC: IEEE, 2017: 88-95.
    [28] HSU C S, JIANG J R. Remaining useful life estimation using long short-term memory deep learning[C]//IEEE. International Conference on Applied System Invention. Washington DC: IEEE, 2018: 58-61.
    [29] ZHANG C, LIM P, QIN A K, et al. Multiobjective deep belief networks ensemble for remaining useful life estimation in prognostics[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(10): 2306-2318. doi: 10.1109/TNNLS.2016.2582798
    [30] LIM P, GOH C K, TAN K C, A time window neural network based framework for remaining useful life estimation[C]//IEEE. International Joint Conference on Neural Networks. Washington DC: IEEE, 2016: 1746-1753.
    [31] BABU G S, ZHAO Pei-lin, LI Xiao-li. Deep convolutional neural network based regression approach for estimation of remaining useful life[C]//Springer. International Conference on Database Systems for Advanced Applications. Berlin: Springer, 2016: 214-228.
    [32] AL-DULAIMI A, ZABIHI S, ASIF A, et al. A multimodal and hybrid deep neural network model for remaining useful life estimation[J]. Computers in Industry, 2019, 108: 186-196. doi: 10.1016/j.compind.2019.02.004
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  1274
  • HTML全文浏览量:  678
  • PDF下载量:  113
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-20
  • 网络出版日期:  2022-02-11
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回