Expanding hub location-routing problem for hybrid hub-and-spoke multimodal transport network considering carbon emissions
-
摘要: 针对现有多式联运网络枢纽饱和度高、枢纽到城市直达运输成本高且效率低等不足,提出采用混合轴辐式多式联运网络研究扩增枢纽选址,同时优化运输线路;基于允许枢纽间转运和需求城市间巡回运输的运输网络,考虑低碳因素构建了最小化总运输成本、二级枢纽开放建设成本、枢纽处转运成本和总碳排放成本的数学模型,将问题分解为选址-分配与路径优化2个阶段,并针对两阶段特点分别采用0-1编码和数字编码设计了两阶段遗传算法;针对现有实际案例采用设计的算法进行求解,并将求得的最优运输方案与现实方案进行对比。研究结果表明:采用提出的算法进行10次运行获得的最优解与其平均值的差值百分比仅为4.7%,且平均求解时间仅为90.6 s;优化后网络扩增了2个枢纽,弃用了1个不合理枢纽,网络转运能力提高了11.3%,枢纽的平均饱和度降低了15.7%,不同枢纽的饱和度比原网络更均衡,不仅缓解了饱和枢纽的压力,还提高了空闲枢纽的周转率,从而提高了转运效率;优化后运输方案对应的总成本、运输成本、中转成本和碳排放成本分别降低了68.41%、68.14%、56.55%和86.76%,且碳排放减少最为突出。由此可见,提出的模型和算法对扩张轴辐式网络选址和混合轴辐式多式联运网络运输方案的组合优化具有较好的性能。Abstract: In view of the high hub saturation, as well as the high cost and low efficiency of direct transportation from a hub to cities of the existing multimodal transport network, a hybrid hub-and-spoke multimodal transport network was proposed to expand the hub locations and optimize the transportation routes. On the basis of the transport network allowing transfer between hubs and tours between cities and considering the low-carbon factors, a mathematical model was built to minimize costs including the total transportation cost, the construction cost to open secondary hubs, the transfer cost at hubs, and the total carbon emission cost. In this way, the problem was decomposed into two stages: the location-allocation and route optimization, and according to the characteristics of the two stages, a two-stage genetic algorithm using the 0-1 coding and digital coding was designed, respectively. The designed algorithm was applied to solve an existing real case, and the optimal transportation scheme obtained by the algorithm was compared with the actual scheme. Research results show that the difference percentage between the optimal solution and its average value obtained by 10 runs of the proposed algorithm is only 4.7%, and the average solution time is only 90.6 s. In the optimized network, two hubs are added, and an unreasonable hub is abandoned. The transfer capacity of the network improves by 11.3%, and the average saturation of hubs reduces by 15.7%. The saturations of different hubs are more balanced than that in the original network. The pressures of saturated hubs are relieved, and the turnover rates of idle hubs are raised to improve the transfer efficiency. The total cost, transportation cost, transfer cost, and carbon emission cost corresponding to the optimized transportation scheme reduce by 68.41%, 68.14%, 56.55%, and 86.76%, respectively, with the most prominent reduction in carbon emissions. It can be seen that the proposed model and algorithm have good performance in expanding the hub-and-spoke network locations and comprehensively optimizing the transportation scheme for the hybrid hub-and-spoke multimodal transport network. 7 tabs, 12 figs, 31 refs.
-
表 1 城市编号
Table 1. City numbers
编号 1 2 3 4 5 6 7 8 城市 宁波 重庆 成都 南昌 呼和浩特 北京 郑州 长沙 编号 9 10 11 12 13 14 15 16 城市 昆明 西安 兰州 乌鲁木齐 武汉 芜湖 蚌埠 徐州 表 2 规模经济折扣因子
Table 2. Discount factors of scale economy
不同枢纽 铁路运输 公路运输 一级枢纽与二级枢纽间 0.75 0.90 二级枢纽与二级枢纽间 0.75 0.90 表 3 两阶段遗传算法10次运行结果
Table 3. Results of 10 runs by two-stage genetic algorithm
最优方案目标函数值/万元 最优总成本平均值/万元 差值百分比/% 计算时间/s 最优总成本 Z1 Z2 Z3 Z4 7.30×106 7.12×106 900 1.01×105 7.02×104 7.65×106 4.7 90.6 表 4 案例最优解对应的二级枢纽选址及运输方案
Table 4. Optimal solutions of cases for locations and transportation schemes of secondary hub
开放为二级枢纽 运输路径方案 路段运输方式 已开放的枢纽:2、3、4 [1, 2] [1] [1, 2, 3] [1, 1] [1, 4] [1] 选择开放的枢纽:7、10 [1, 7, 5] [1, 1] [1, 7, 6] [1, 1] [1, 7] [1] [1, 8] [1] [1, 2, 9] [1, 1] [1, 10] [1] [1, 10, 11] [1, 1] [1, 10, 11, 12] [1, 1, 1] [1, 4, 13, 14] [1, 2, 2] [1, 4, 13] [1, 2] [1, 7, 16, 15] [1, 2, 2] [1, 7, 16] [1, 2] 表 5 原网络流量分配
Table 5. Original network flow allocation
二级枢纽 一级枢纽至二级枢纽运输方式 一级枢纽至二级枢纽运量/104 t 运达需求城市 枢纽至需求城市运输方式 物资流量/104 t 重庆 公路 15 000 重庆 3 690 呼和浩特 铁路 1 772 郑州 铁路 3 449 长沙 铁路 2 073 昆明 铁路 1 940 西安 铁路 2 076 成都 公路 7 562 成都 3 011 西安 铁路 515 兰州 铁路 1 859 乌鲁木齐 铁路 1 885 徐州 铁路 292 南昌 2 025 南昌 公路 12 000 北京 铁路 1 856 武汉 公路 2 787 芜湖 公路 1 787 蚌埠 公路 1 910 徐州 铁路 1 635 表 6 优化前后二级枢纽转运量对比
Table 6. Comparison of transfer volumes of secondary hubs before and after optimization
对比项 重庆 成都 南昌 郑州 西安 均值 枢纽容量/104 t 15 000 14 000 12 000 13 000 8 000 原实际转运量/104 t 15 000 7 562 12 000 原饱和度/% 100.00 54.01 100.00 84.67 优化后转运量/104 t 8 641 0 6 599 10 914 6 335 优化后饱和度/% 57.61 0 54.99 83.95 79.19 68.94 表 7 两种网络运输方案成本对比
Table 7. Cost comparison of two network transporation schemes
成本类型 优化结果/万元 原网络结果/万元 差值百分比/% 总成本 7.30×106 2.31×107 68.41 运输成本 7.12×106 2.24×107 68.14 中转成本 1.01×105 2.32×105 56.55 二级枢纽开放成本 900 0 碳排放成本 7.02×104 2.299×105 86.76 -
[1] O'KELLY M E, LAO Yong. Mode choice in a hub-and-spoke network: a zero-one linear programming approach[J]. Geographical Analysis, 2010, 23(4): 283-297. doi: 10.1111/j.1538-4632.1991.tb00240.x [2] ISHFAQ R, SOX C R. Design of intermodal logistics networks with hub delays[J]. European Journal of Operational Research, 2012, 220(3): 629-641. doi: 10.1016/j.ejor.2012.03.010 [3] 辛春林, 冯倩茹, 张建文. 危险品配送选址-多式联运路径优化[J]. 中国安全科学学报, 2016, 26(9): 73-78. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201609015.htmXIN Chun-lin, FENG Qian-ru, ZHANG Jian-wen. Problem of distribution center location-routing optimization for multi-modal hazardous materials transportation[J]. China Safety Science Journal, 2016, 26(9): 73-78. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201609015.htm [4] 赵志文, 杨斌, 朱小林. 考虑多类别危险品的危险品多式联运选址及路径规划[J]. 计算机应用与软件, 2018, 35(12): 90-94, 143. https://www.cnki.com.cn/Article/CJFDTOTAL-JYRJ201812017.htmZHAO Zhi-wen, YANG Bin, ZHU Xiao-lin. A multimodal transport site selection and path planning for hazardous material considering multi-category goods[J]. Computer Applications and Software, 2018, 35(12): 90-94, 143. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYRJ201812017.htm [5] 王俊芳. 轴辐式多式联运物流网络规划研究[D]. 武汉: 武汉理工大学, 2018.WANG Jun-fang. The research of the optimization of the hub-and-spoke multimodal transport logistics network[D]. Wuhan: Wuhan University of Technology, 2018. (in Chinese) [6] 蒋洋, 张星臣, 周晓晔. 考虑支线运输服务的多式联运网络优化[J]. 沈阳工业大学学报(社会科学版), 2019, 12(4): 338-343. https://www.cnki.com.cn/Article/CJFDTOTAL-SHES201904009.htmJIANG Yang, ZHANG Xing-chen, ZHOU Xiao-ye. Multimodal transport network optimization considering branch transport services[J]. Journal of Shenyang University of Technology (Social Science Edition), 2019, 12(4): 338-343. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SHES201904009.htm [7] FAZAYELI S, EYDI A, KAMALABADI I N. Location- routing problem in multimodal transportation network with time windows and fuzzy demands: presenting a two-part genetic algorithm[J]. Computers and Industrial Engineering, 2018, 119: 233-246. doi: 10.1016/j.cie.2018.03.041 [8] KUMAR A, ANBANANDAM R. Location selection of multimodal freight terminal under STEEP sustainability[J]. Research in Transportation Business and Management, 2019, 33: 100434. doi: 10.1016/j.rtbm.2020.100434 [9] 蒋晓丹. 考虑港口竞合及腹地运输路径选择的多式联运网络优化研究[D]. 大连: 大连海事大学, 2019.JIANG Xiao-dan. Multimodal transport network optimization considering port competition and cooperation and hinterland transport route choice[D]. Dalian: Dalian Maritime University, 2019. (in Chinese) [10] 王婧. "一带一路"下考虑政府补贴的多式联运枢纽选址决策研究[D]. 武汉: 华中科技大学, 2020.WANG Jing. Location dicision-making for intermodal transportation hub considering government subsidy under the B and R Initiative[D]. Wuhan: Huazhong University of Science and Technology, 2020. (in Chinese) [11] REAL L B, CONTRERAS D, CORDEAU J F, et al. Multimodal hub network design with flexible routes[J]. Transportation Research Part E: Logistics and Transportation Review, 2021, 146: 102188. doi: 10.1016/j.tre.2020.102188 [12] 郑长江, 胡欢, 杜牧青. 考虑枢纽失效的多式联运快递网络结构设计[J/OL]. 吉林大学学报(工学版), (2022-06-01)[2022-07-04]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=JLGY2022-0530002&uniplatform=NZKPT&v=zX8fnD22V2VdhMXb-LQKDhUqitzXRezbq7-Ej4J5JIDVQYO10DIfOeR641tje95ri.ZHENG Chang-jiang, HU Huan, DU Mu-qing. Network structure design of multimodal express transportation considering hub failure[J/OL]. Journal of Jilin University (Engineering and Technology Edition), (2022-06-01)[2022-07-04]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=JLGY2022-0530002&uniplatform=NZKPT&v=zX8fnD22V2VdhMXb-LQKDhUqitzXRezbq7-Ej4J5JIDVQYO10DIfOeR641tje95ri. (in Chinese) [13] 张亮. 基于可扩展轴辐式网络模型的航空物流运输路径优化[J]. 物流技术, 2015, 34(18): 104-107. https://www.cnki.com.cn/Article/CJFDTOTAL-WLJS201518029.htmZHANG Liang. Transportation route optimization in aviation logistics based on scalable hub-and-spoke network model[J]. Logistics Technology, 2015, 34(18): 104-107. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WLJS201518029.htm [14] BENEDYK I V, PEETA S, ZHENG Hong, et al. Dynamic model for system-level strategic intermodal facility investment planning[J]. Transportation Research Record, 2016, 2548(1): 24-34. doi: 10.3141/2548-04 [15] WANZALA W G. 东非物流网络中的无水港及其扩展通道研究[D]. 大连: 大连海事大学, 2016.WANZALA W G. Research on the dry ports and extended gateways for East Africa's logistics network[D]. Dalian: Dalian Maritime University, 2016. (in Chinese) [16] FOTUHI F, HUYNH N. A reliable multi-period intermodal freight network expansion problem[J]. Computers and Industrial Engineering, 2018, 115: 138-150. doi: 10.1016/j.cie.2017.11.007 [17] 尹传忠, 邱慧妍, 柯媛定, 等. 区域主枢纽港多式联运网络协同优化[J]. 铁道科学与工程学报, 2022, 19(1): 63-70. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202201008.htmYIN Chuan-zhong, QIU Hui-yan, KE Yuan-ding, et al. Collaborative optimization for multimodal transport network of regional main hub ports[J]. Journal of Railway Science and Engineering, 2022, 19(1): 63-70. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202201008.htm [18] ZUKHRUF F, FRAZILA R B, BURHANI J T, et al. Developing an integrated restoration model of multimodal transportation network[J]. Transportation Research Part D: Transport and Environment, 2022, 10: 103413. [19] BAUER J, BEKTAŞ T, CRAINIC T G. Minimizing greenhouse gas emissions in intermodal freight transport: an application to rail service design[J]. The Journal of the Operational Research Society, 2010, 61(3): 530-542. [20] BENJAAFAR S, LI Yan-zhi, DASKIN M. Carbon footprint and the management of supply chains: insights from simple models[J]. IEEE Transactions on Automation Science and Engineering, 2013, 10(1): 99-116. [21] FAHIMNIA B, SARKIS J, CHOUDHARY A, et al. Tactical supply chain planning under a carbon tax policy scheme: a case study[J]. International Journal of Production Economics, 2015, 164: 206-215. [22] 董蕴博. 考虑碳排放成本的联合运输路径优化研究[D]. 长春: 吉林大学, 2017.DONG Yun-bo. Research on intermodal transport path optimization considering the carbon emissions cost[D]. Changchun: Jilin University, 2017. (in Chinese) [23] 谢静, 林国龙, 何红弟, 等. 模糊需求环境下考虑碳成本的多式联运路径优化[J]. 宁夏大学学报(自然科学版), 2017, 38(2): 173-179. https://www.cnki.com.cn/Article/CJFDTOTAL-NXDZ201702011.htmXIE Jing, LIN Guo-long, HE Hong-di, et al. Optimization of multimodal transportation in fuzzy demand condition with consideration of carbon cost[J]. Journal of Ningxia University (Natural Science Edition), 2017, 38(2): 173-179. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NXDZ201702011.htm [24] 喻声频, 刘杰. 考虑碳排放的多式联运路径优化[J]. 交通节能与环保, 2018, 14(6): 38-42, 78. https://www.cnki.com.cn/Article/CJFDTOTAL-CBJL201806011.htmYU Sheng-pin, LIU Jie. Optimization of multimodal transport path considering carbon emission[J]. Transport Energy Conservation and Environmental Protection in Transportation, 2018, 14(6): 38-42, 78. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CBJL201806011.htm [25] 李珺, 杨斌, 朱小林. 混合不确定条件下绿色对多式联运路径优化[J]. 交通运输系统工程与信息, 2019, 19(4): 13-19, 27. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201904003.htmLI Jun, YANG Bin, ZHU Xiao-lin. Path optimization of green multimodal transportation under mixed uncertainties[J]. Journal of Transportation Systems Engineering and Information Technology, 2019, 19(4): 13-19, 27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201904003.htm [26] HEINOLD A, MEISEL F. Emission limits and emission allocation schemes in intermodal freight transportation[J]. Transportation Research Part E: Logistics and Transportation Review, 2020, 141: 101963. [27] WANG Wen-yuan, XU Xing-lu, JIANG Ying, et al. Integrated scheduling of intermodal transportation with seaborne arrival uncertainty and carbon emission[J]. Transportation Research Part D: Transport and Environment, 2020, 88: 102571. [28] 顾名祥. 不确定环境下考虑碳排放的多式联运路径优化[D]. 长春: 吉林大学, 2020.GU Ming-xiang. Research on optimization of multimodal transport path considering carbon emissions in uncertain environment[D]. Changchun: Jilin University, 2020. (in Chinese) [29] 孙家庆, 王胜男, 闫淑贤. 考虑碳排放的冷藏集装箱多式联运路径选择[J]. 大连海事大学学报, 2022, 48(2): 57-65. https://www.cnki.com.cn/Article/CJFDTOTAL-DLHS202202007.htmSUN Jia-qing. WANG Sheng-nan, YAN Shu-xian. Path selection of multimodal transport for refrigerated containers considering carbon emission[J]. Journal of Dalian Maritime University, 2022, 48(2): 57-65. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLHS202202007.htm [30] QI Ying-xiu, HARROD S, PSARAFTIS H N, et al. Transport service selection and routing with carbon emissions and inventory costs consideration in the context of the Belt and Road Initiative[J]. Transportation Research Part E: Logistics and Transportation Review, 2022, 159: 102630. [31] 朱永彬, 刘晓, 王铮. 碳税政策的减排效果及其对我国经济的影响分析[J]. 中国软科学, 2020(4): 1-9, 87. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGRK201004002.htmZHU Yong-bin, LIU Xiao, WANG Zheng. Abatement effect of carbon tax and its impacts on economy in China[J]. China Soft Science, 2020(4): 1-9, 87. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGRK201004002.htm